1
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Vaid T, Demissie R, Kwon Y, Tran T, Moon HG, Villegas JA, Park GY, Johnson ME, Lee H. Synergistic Inhibition Guided Fragment-Linking Strategy and Quantitative Structure-Property Relationship Modeling To Design Inhalable Therapeutics for Asthma Targeting CSF1R. ACS OMEGA 2023; 8:20505-20512. [PMID: 37323402 PMCID: PMC10268011 DOI: 10.1021/acsomega.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
The colony-stimulating factor-1 receptor (CSF1R) is a tyrosine-protein kinase that is a potential target for asthma therapeutics. We have applied a fragment-lead combination approach to identify small fragments that act synergistically with GW2580, a known inhibitor of CSF1R. Two fragment libraries were screened in combination with GW2580 by surface plasmon resonance (SPR). Binding affinity measurements confirmed that thirteen fragments bind specifically to the CSF1R, and a kinase activity assay further validated the inhibitory effect of these fragments. Several fragment compounds enhanced the inhibitory activity of the lead inhibitor. Computational solvent mapping, molecular docking, and modeling studies suggest that some of these fragments bind adjacent to the binding site of the lead inhibitor and further stabilize the inhibitor-bound state. Modeling results guided the computational fragment-linking approach to design potential next-generation compounds. The inhalability of these proposed compounds was predicted using quantitative structure-property relationships (QSPR) modeling based on an analysis of 71 drugs currently on the market. This work provides new insights into the development of inhalable small molecule therapeutics for asthma.
Collapse
Affiliation(s)
- Tasneem
M. Vaid
- Center
for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Robel Demissie
- Biophysics
Core at Research Resource Center, University
of Illinois at Chicago, 1100 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Youngjin Kwon
- Biophysics
Core at Research Resource Center, University
of Illinois at Chicago, 1100 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Thao Tran
- Center
for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
- Biophysics
Core at Research Resource Center, University
of Illinois at Chicago, 1100 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Hyung-Geun Moon
- Division
of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - José A. Villegas
- Center
for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Gye Young Park
- Division
of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Michael E. Johnson
- Center
for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
| | - Hyun Lee
- Center
for Biomolecular Sciences and Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, United States
- Biophysics
Core at Research Resource Center, University
of Illinois at Chicago, 1100 S. Ashland Avenue, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Hume DA, Batoon L, Sehgal A, Keshvari S, Irvine KM. CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple. Curr Osteoporos Rep 2022; 20:516-531. [PMID: 36197652 PMCID: PMC9718875 DOI: 10.1007/s11914-022-00757-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis. RECENT FINDINGS Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors. Loss-of-function mutations in CSF1 or CSF1R lead to loss of OCL and macrophages and dysregulation of postnatal bone development. MPS cells continuously degrade CSF1R ligands via receptor-mediated endocytosis. As a consequence, any local or systemic increase or decrease in macrophage or OCL abundance is rapidly reversible. In principle, both CSF1R agonists and antagonists have potential in bone regenerative medicine but their evaluation in disease models and therapeutic application needs to carefully consider the intrinsic feedback control of MPS biology.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lena Batoon
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
4
|
Yadav S, Priya A, Borade DR, Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 2022; 71:130-152. [PMID: 36266603 PMCID: PMC9589538 DOI: 10.1007/s12026-022-09330-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are one of the first innate immune cells to reach the site of infection or injury. Diverse functions from the uptake of pathogen or antigen, its killing, and presentation, the release of pro- or anti-inflammatory cytokines, activation of adaptive immune cells, clearing off tissue debris, tissue repair, and maintenance of tissue homeostasis have been attributed to macrophages. Besides tissue-resident macrophages, the circulating macrophages are recruited to different tissues to get activated. These are highly plastic cells, showing a spectrum of phenotypes depending on the stimulus received from their immediate environment. The macrophage differentiation requires colony-stimulating factor-1 (CSF-1) or macrophage colony-stimulating factor (M-CSF), colony-stimulating factor-2 (CSF-2), or granulocyte–macrophage colony-stimulating factor (GM-CSF) and different stimuli activate them to different phenotypes. The richness of tissue macrophages is precisely controlled via the CSF-1 and CSF-1R axis. In this review, we have given an overview of macrophage origin via hematopoiesis/myelopoiesis, different phenotypes associated with macrophages, their clinical significance, and how they are altered in various diseases. We have specifically focused on the function of CSF-1/CSF-1R signaling in deciding macrophage fate and the outcome of aberrant CSF-1R signaling in relation to macrophage phenotype in different diseases. We further extend the review to briefly discuss the possible strategies to manipulate CSF-1R and its signaling with the recent updates.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Astik Priya
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Diksha R Borade
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
5
|
Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders. Inflammopharmacology 2022; 30:821-842. [PMID: 35290551 DOI: 10.1007/s10787-022-00958-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Colony Stimulating Factor-1 (CSF-1)/Colony Stimulating Factor-1 Receptor (CSF-1R) signaling axis plays an essential role in the development, maintenance, and proliferation of macrophage lineage cells. Within the central nervous system, CSF-1R signaling primarily maintains microglial homeostasis. Microglia, being the resident macrophage and first responder to any neurological insults, plays critical importance in overall health of the human brain. Aberrant and sustained activation of microglia along with continued proliferation and release of neurotoxic proinflammatory cytokines have been reported in various neurological and neurodegenerative diseases. Therefore, halting the neuroinflammatory pathway via targeting microglial proliferation, which depends on CSF-1R signaling, has emerged as a potential therapeutic target for neurological disorders. However, apart from regulating the microglial function, recently it has been discovered that CSF-1R has much broader role in central nervous system. These findings limit the therapeutic utility of CSF-1R inhibitors but also highlight the need for a complete understanding of CSF-1R function within the central nervous system. Moreover, it has been found that selective inhibitors of CSF-1R may be more efficient in avoiding non-specific targeting and associated side effects. Short-term depletion of microglial population in diseased conditions have also been found to be beneficial; however, the dose and therapeutic window for optimum effects may need to be standardized further.This review summarizes the present understanding of CSF-1R function within the central nervous system. We discuss the CSF-1R signaling in the context of microglia function, crosstalk between microglia and astroglia, and regulation of neuronal cell function. We also discuss a few of the neurological disorders with a focus on the utility of CSF-1R inhibitors as potential therapeutic strategy for halting the progression of neurological diseases.
Collapse
|
6
|
Hu H, Yang Y, Lan X, Zhang Q, Pan C. Relationships between novel nucleotide variants within the colony-stimulating factor 1 receptor ( CSF1R) gene and mastitis indicators in sheep. Anim Biotechnol 2020; 33:731-738. [PMID: 33043858 DOI: 10.1080/10495398.2020.1830102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) plays an important role in the process of innate immunity and inflammation, thus it was hypothesized that the CSF1R gene might affect the occurrence of mammalian mastitis. The purpose of this study was to investigate the association between nucleotide variations of CSF1R gene and mastitis in Australian white sheep (AUWs). Two indel variants (Intron5-27 bp and Intron5-22 bp) within the CSF1R gene have been found in AUWs. The Chi-square test for different mastitis symptoms demonstrated that individuals without symptoms of mastitis had higher 'I' allele frequencies and 'II' genotype frequencies (p < 0.01). We found strong correlation between mastitis and lactation score through Pearson correlation analysis. Therefore, we also analyzed the relationship between the two indel loci and lactation, we found that the lactation ability of individuals with type II was stronger than that of DD genotype at the Intron5-22 bp (p < 0.05). Additionally, we found that the combined genotype of the two loci was significantly associated with mastitis (p < 0.01). These findings indicated that CSF1R mutations were significantly associated with mastitis, and could affect lactation performance, suggesting that two deletion sites could be used as the effective molecular markers against mastitis in sheep breeding.
Collapse
Affiliation(s)
- Huina Hu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuta Yang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
8
|
Uesato N, Miyagawa N, Inagaki K, Kakefuda R, Kitagawa Y, Matsuo Y, Yamaguchi T, Hata T, Ikegashira K, Matsushita M. Pharmacological Properties of JTE-952, an Orally Available and Selective Colony Stimulating Factor 1 Receptor Kinase Inhibitor. Biol Pharm Bull 2020; 43:325-333. [DOI: 10.1248/bpb.b19-00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naofumi Uesato
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Naoki Miyagawa
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Koji Inagaki
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Reina Kakefuda
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Yushi Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | - Takahiro Hata
- Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | | | | |
Collapse
|
9
|
Neal ML, Fleming SM, Budge KM, Boyle AM, Kim C, Alam G, Beier EE, Wu LJ, Richardson JR. Pharmacological inhibition of CSF1R by GW2580 reduces microglial proliferation and is protective against neuroinflammation and dopaminergic neurodegeneration. FASEB J 2020; 34:1679-1694. [PMID: 31914683 PMCID: PMC7212500 DOI: 10.1096/fj.201900567rr] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Increased pro-inflammatory cytokine levels and proliferation of activated microglia have been found in Parkinson's disease (PD) patients and animal models of PD, suggesting that targeting of the microglial inflammatory response may result in neuroprotection in PD. Microglial proliferation is regulated by many factors, but colony stimulating factor-1 receptor (CSF1R) has emerged as a primary factor. Using data mining techniques on existing microarray data, we found that mRNA expression of the CSF1R ligand, CSF-1, is increased in the brain of PD patients compared to controls. In two different neurotoxic mouse models of PD, acute MPTP and sub-chronic LPS treatment, mRNA and protein levels of CSF1R and CSF-1 were significantly increased. Treatment with the CSF1R inhibitor GW2580 significantly attenuated MPTP-induced CSF1R activation and Iba1-positive cell proliferation, without a reduction of the basal Iba1-positive population in the substantia nigra. GW2580 treatment also significantly decreased mRNA levels of pro-inflammatory factors, without alteration of anti-inflammatory mediators, and significantly attenuated the MPTP-induced loss of dopamine neurons and motor behavioral deficits. Importantly, these effects were observed in the absence of overt microglial depletion, suggesting that targeting CSF1R signaling may be a viable neuroprotective strategy in PD that disrupts pro-inflammatory signaling, but maintains the beneficial effects of microglia.
Collapse
Affiliation(s)
- Matthew L. Neal
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kevin M. Budge
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexa M. Boyle
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Chunki Kim
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Gelareh Alam
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Eric E. Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jason R. Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
10
|
Machiraju PK, Yedla P, Gubbala SP, Bohari T, Abdul JK, Xu S, Patel R, Chittireddy VRR, Boppana K, Jagarlapudi SA, Neamati N, Syed R, Amanchy R. Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Comput Biol Chem 2019; 80:374-383. [DOI: 10.1016/j.compbiolchem.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2018] [Revised: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
11
|
Udomsinprasert W, Jittikoon J, Honsawek S. Interleukin-34 as a promising clinical biomarker and therapeutic target for inflammatory arthritis. Cytokine Growth Factor Rev 2019; 47:43-53. [PMID: 31126875 DOI: 10.1016/j.cytogfr.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
Abstract
Interleukin-34 (IL-34), recently identified as a novel inflammatory cytokine and the second ligand for colony-stimulating factor-1 receptor, is known to play regulatory roles in the development, maintenance, and function of mononuclear phagocyte lineage cells - especially osteoclasts. Regarding its primary effect on osteoclasts, IL-34 has been shown to stimulate formation and activation of osteoclasts, which in turn magnifies osteoclasts-resorbing activity. In addition to its role in osteoclastogenesis, IL-34 has been implicated in inflammation of synovium via augmenting production of inflammatory mediators, in which altered IL-34 expression is regulated by pro-inflammatory cytokines responsible for cartilage degradation. Indeed, IL-34 has been documented to be highly expressed in inflamed synovium of rheumatoid arthritis (RA) and knee osteoarthritis (OA) patients, which are recognized as inflammatory arthritis. Furthermore, a number of clinical studies demonstrated that IL-34 levels were significantly increased in the circulation and synovial fluid of patients with RA and knee OA. Its levels were also found to be positively associated with disease severity - especially radiographic severity of both RA and knee OA patients. Interestingly, emerging evidence has accumulated that functional blockage of IL-34 with specific antibody can alleviate the severity of inflammatory arthritis. It is therefore reasonable to speculate that IL-34 may be developed as a potential biomarker and a new therapeutic candidate for inflammatory arthritis. To date, there are numerous studies showing IL-34 involvement and association with many aspects of inflammatory arthritis. Herein, this review aimed to summarize the recent findings regarding regulatory role of IL-34 in synovial inflammation-mediated cartilage destruction and update the current comprehensive knowledge on usefulness of IL-34-based treatment in inflammatory arthritis - particularly RA and knee OA.
Collapse
Affiliation(s)
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
12
|
Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel Schiffelers R, Prakash J. 3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806590. [PMID: 30702785 DOI: 10.1002/adma.201806590] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/11/2018] [Revised: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Glioblastoma-associated macrophages (GAMs) play a crucial role in the progression and invasiveness of glioblastoma multiforme (GBM); however, the exact crosstalk between GAMs and glioblastoma cells is not fully understood. Furthermore, there is a lack of relevant in vitro models to mimic their interactions. Here, novel 3D-bioprinted mini-brains consisting of glioblastoma cells and macrophages are presented as tool to study the interactions between these two cell types and to test therapeutics that target this interaction. It is demonstrated that in the mini-brains, glioblastoma cells actively recruit macrophages and polarize them into a GAM-specific phenotype, showing clinical relevance to transcriptomic and patient survival data. Furthermore, it is shown that macrophages induce glioblastoma cell progression and invasiveness in the mini-brains. Finally, it is demonstrated how therapeutics can inhibit the interaction between GAMs and tumor cells resulting in reduced tumor growth and more sensitivity to chemotherapy. It is envisioned that this 3D-bioprinted tumor model is used to improve the understanding of tumor biology and for evaluating novel cancer therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Targeted Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Targeted Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074, Aachen, Germany
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Targeted Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
13
|
Kim YY, Choi J, Choi K, Park C, Kim YH, Suh KH, Ham YJ, Jang SY, Lee KH, Hwang KW. Synthesis and evaluation of thieno[3,2-d]pyrimidine derivatives as novel FMS inhibitors. Bioorg Med Chem Lett 2019; 29:271-275. [PMID: 30522957 DOI: 10.1016/j.bmcl.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
Colony stimulating factor-1 receptor (CSF-1R or FMS) and it ligand, CSF-1, signaling regulates the differentiation and function of tumor-associated macrophages (TAMs) that play an important role in tumor progression. Derivatives of thieno[3,2-d]pyrimidine were synthesized and evaluated as kinase inhibitors of FMS. The most representative compound 21 showed strong activity (IC50 = 2 nM) against FMS kinase and served as candidate for proof of concept. Anti-tumor activity alone and/or in combination with paclitaxel was examined via a tumor cell growth inhibition assay and via an in vitro tumor invasion assay using human breast adenocarcinoma cells.
Collapse
Affiliation(s)
- Yu-Yon Kim
- Host Defense Modulation Lab, Collage of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jaeyul Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kyungjin Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Changhee Park
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Jin Ham
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kyu-Hang Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kwang Woo Hwang
- Host Defense Modulation Lab, Collage of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
14
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
15
|
Okugawa Y, Toiyama Y, Ichikawa T, Kawamura M, Yasuda H, Fujikawa H, Saigusa S, Ohi M, Araki T, Tanaka K, Inoue Y, Tanaka M, Miki C, Kusunoki M. Colony-stimulating factor-1 and colony-stimulating factor-1 receptor co-expression is associated with disease progression in gastric cancer. Int J Oncol 2018; 53:737-749. [PMID: 29767252 DOI: 10.3892/ijo.2018.4406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Colony‑stimulating‑factor‑1 (CSF‑1) is a hematopoietic growth factor that exerts its effects through the c‑fms/CSF‑1 receptor (CSF‑1R). The CSF‑1/CSF‑1R axis is thought to be involved in the development of several types of cancer. This study aimed to clarify the clinical and biological significance of the CSF‑1/CSF‑1R axis in gastric cancer (GC). For this purpose, we evaluated CSF‑1 and CSF‑1R expression in GC tissues from 148 patients by RT‑qPCR and immunohistochemistry. The biological roles of the CSF‑1/CSF‑1R axis were investigated by measuring the cell proliferation and migration, and anoikis resistance in a human GC cell line following treatment with recombinant human CSF‑1 and/or CSF‑1R inhibitor. The results revealed that an elevated expression of CSF‑1 or CSF‑1R significantly correlated with disease progression and with a poor overall survival (OS, P=0.037 and 0.016, respectively) and disease‑free survival (DFS, P<0.001 and <0.001, respectively) of patients with GC. Furthermore, a high co‑expression of CSF‑1 and CSF‑1R was an independent prognostic factor for OS (HR, 1.38; 95% CI, 1.02‑1.88; P=0.038) and DFS (HR, 1.79; 95% CI, 1.21‑2.67; P=0.004), and an independent risk factor for lymph node and peritoneal metastasis. Immunohistochemical analysis revealed an intense CSF‑1/CSF‑1R expression in the cytoplasm of cancer cells in primary GC tissues. CSF‑1 or CSF‑1R expression positively correlated with vascular endothelial growth factor A (VEGFA) or Fms related tyrosine kinase 1 (FLT1) expression in GC tissues. Treatment with recombinant human CSF‑1 promoted proliferation, migration and anoikis resistance in a GC cell line. These effects were generally blocked by CSF‑1R inhibition. On the whole, the findings of this study indicate that the CSF‑1/CSF‑1R axis may be a clinically useful prognostic and predictive biomarker for lymph node and peritoneal metastasis and a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takashi Ichikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiromi Yasuda
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koji Tanaka
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motoyoshi Tanaka
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Chikao Miki
- Department of Surgery and Medical Oncology, Iga City General Hospital, Iga, Mie 518-0823, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
16
|
Doerner J, Chalmers SA, Friedman A, Putterman C. Fn14 deficiency protects lupus-prone mice from histological lupus erythematosus-like skin inflammation induced by ultraviolet light. Exp Dermatol 2018; 25:969-976. [PMID: 27305603 DOI: 10.1111/exd.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The cytokine TNF-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 are involved in cell survival and cytokine production. The TWEAK/Fn14 pathway plays a role in the pathogenesis of spontaneous cutaneous lesions in the MRL/lpr lupus strain; however, the role of TWEAK/Fn14 in disease induced by ultraviolet B (UVB) irradiation has not been explored. MRL/lpr Fn14 knockout (KO) was compared to MRL/lpr Fn14 wild-type (WT) mice following exposure to UVB. We found that irradiated MRL/lpr KO mice had significantly attenuated cutaneous disease when compared to their WT counterparts. There were also fewer infiltrating immune cells (CD3+ , IBA-1+ and NGAL+ ) in the UVB-exposed skin of MRL/lpr Fn14KO mice, as compared to Fn14WT. Furthermore, we identified several macrophage-derived proinflammatory chemokines with elevated expression in MRL/lpr mice after UV exposure. Depletion of macrophages, using a CSF-1R inhibitor, was found to be protective against the development of skin lesions after UVB exposure. In combination with the phenotype of the MRL/lpr Fn14KO mice, these findings indicate a critical role for Fn14 and recruited macrophages in UVB-triggered cutaneous lupus. Our data strongly suggest that TWEAK/Fn14 signalling is important in the pathogenesis of UVB-induced cutaneous disease manifestations in the MRL/lpr model of lupus and further support this pathway as a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Jessica Doerner
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha A Chalmers
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM. Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds. Eur Surg Res 2017; 58:109-120. [PMID: 28056458 DOI: 10.1159/000451078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2015] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND A prolonged inflammatory phase is seen in aberrant wound healing and in chronic wounds. Macrophages are central to wound healing. Distinct macrophage subtypes have differing roles both in initial inflammation and in later tissue repair. Broadly, these cells can be divided into M1 and M2 macrophages. M2 macrophage proliferation and differentiation is regulated by colony-stimulating factor 1 (CSF-1) signalling and can be blocked by GW2580, a competitive cFMS kinase inhibitor, thereby allowing for analysis of the effect of M2 blockade on progression of surgical wounds. MATERIALS AND METHODS Macrophage Fas-induced apoptosis (MaFIA) transgenic mice with a macrophage-specific promoter used to express green fluorescent protein (GFP) were used to allow for cell tracking. The animals were treated by oral gavage with GW2580. Surgical wounds were created and harvested after 2 weeks for analysis. RESULTS GW2580-treated mice had significantly more GFP+ cells in the surgical scar than vehicle-treated animals (GW2580, 68.0 ± 3.1%; vehicle, 42.8 ± 1.7%; p < 0.001), and GW2580 treatment depleted CD206+ M2 macrophages in the scar (GW2580, 1.4%; vehicle, 19.3%; p < 0.001). Treated animals showed significantly higher numbers of neutrophils (vehicle, 18.0%; GW2580, 51.3%; p < 0.01) and M1 macrophages (vehicle, 3.8%; GW2580, 12.8%; p < 0.01) in the scar compared to vehicle-treated animals. The total collagen content in the area of the scar was decreased in animals treated with GW2580 as compared to those treated with vehicle alone (GW2580, 67.1%; vehicle, 79.9%; p < 0.005). CONCLUSIONS Depletion of M2 macrophages in surgical wounds via CSF-1 signalling blockade leads to persistent inflammation, with an increase in neutrophils and M1 macrophages and attenuated collagen deposition.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Arbab AS, Jain M, Achyut BR. p53 Mutation: Critical Mediator of Therapy Resistance against Tumor Microenvironment. BIOCHEMISTRY & PHYSIOLOGY 2016; 5:e153. [PMID: 27917327 PMCID: PMC5135095 DOI: 10.4172/2168-9652.1000e153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ali S Arbab
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Meenu Jain
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - B R Achyut
- Tumor Angiogenesis Lab, Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Zhou RP, Wu XS, Xie YY, Dai BB, Hu W, Ge JF, Chen FH. Functions of interleukin-34 and its emerging association with rheumatoid arthritis. Immunology 2016; 149:362-373. [PMID: 27550090 DOI: 10.1111/imm.12660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic, synovial inflammation affecting multiple joints, finally leading to extra-articular lesions for which limited effective treatment options are currently available. Interleukin-34 (IL-34), recently discovered as the second colony-stimulating factor-1 receptor (CSF-1R) ligand, is a newly discovered cytokine. Accumulating evidence has disclosed crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis and inflammation. Recently, IL-34 was detected at high levels in patients with active RA and in experimental models of inflammatory arthritis. Blockade of functional IL-34 with a specific monoclonal antibody can reduce the severity of inflammatory arthritis, suggesting that targeting IL-34 or its receptors may constitute a novel therapeutic strategy for autoimmune diseases such as RA. Here, we have comprehensively discussed the structure and biological functions of IL-34, and reviewed recent advances in our understanding of the emerging role of IL-34 in the development of RA as well as its potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao-Shan Wu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Ya-Ya Xie
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Bei-Bei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China. , .,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China. ,
| |
Collapse
|
20
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Leblond AL, Klinkert K, Martin K, Turner EC, Kumar AH, Browne T, Caplice NM. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction. PLoS One 2015; 10:e0137515. [PMID: 26407006 PMCID: PMC4583226 DOI: 10.1371/journal.pone.0137515] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2015] [Accepted: 07/24/2015] [Indexed: 01/27/2023] Open
Abstract
The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1 receptor signalling inhibition strategy to achieve their depletion. In mice, oral administration of GW2580, a CSF-1R kinase inhibitor, induced significant decreases in Gr1lo and F4/80hi monocyte populations in the circulation and the spleen. GW2580 administration also induced a significant depletion of M2 macrophages in the heart after 1 week treatment as well as a reduction of cardiac arginase1 and CD206 gene expression indicative of M2 macrophage activity. In a murine myocardial infarction model, reduced M2 macrophage content was associated with increased M1-related gene expression (IL-6 and IL-1β), and decreased M2-related gene expression (Arginase1 and CD206) in the heart of GW2580-treated animals versus vehicle-treated controls. M2 depletion was also associated with a loss in left ventricular contractile function, infarct enlargement, decreased collagen staining and increased inflammatory cell infiltration into the infarct zone, specifically neutrophils and M1 macrophages. Taken together, these data indicate that CSF-1R signalling is critical for maintaining cardiac tissue resident M2-polarized macrophage population, which is required for the resolution of inflammation post myocardial infarction and, in turn, for preservation of ventricular function.
Collapse
Affiliation(s)
- Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Kerstin Klinkert
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Elizebeth C. Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Arun H. Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Tara Browne
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Noel M. Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, College Road, Cork, Ireland
- * E-mail:
| |
Collapse
|
22
|
Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, Wigmore SJ, Sansom OJ, Forbes SJ. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest 2015; 125:1269-85. [PMID: 25689248 PMCID: PMC4362247 DOI: 10.1172/jci76452] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology. Using these systems, we determined that the WNT pathway is highly activated in CCs and that inflammatory macrophages are required to establish this WNT-high state in vivo. Moreover, depletion of macrophages or inhibition of WNT signaling with one of two small molecule WNT inhibitors in mouse and rat CC models markedly reduced CC proliferation and increased apoptosis, resulting in tumor regression. Together, these results demonstrate that enhanced WNT signaling is a characteristic of CC and suggest that targeting WNT signaling pathways has potential as a therapeutic strategy for CC.
Collapse
Affiliation(s)
- Luke Boulter
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
| | - Rachel V. Guest
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Timothy J. Kendall
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - David H. Wilson
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
| | - Davina Wojtacha
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Andrew J. Robson
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Rachel A. Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Kay Samuel
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Nico Van Rooijen
- Department of Molecular Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Simon T. Barry
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Stephen J. Wigmore
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Stuart J. Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun 2014; 57:42-52. [PMID: 25554644 DOI: 10.1016/j.jaut.2014.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2014] [Revised: 11/27/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
Kidney involvement affects 40-60% of patients with lupus, and is responsible for significant morbidity and mortality. Using depletion approaches, several studies have suggested that macrophages may play a key role in the pathogenesis of lupus nephritis. However, "off target" effects of macrophage depletion, such as altered hematopoiesis or enhanced autoantibody production, impeded the determination of a conclusive relationship. In this study, we investigated the role of macrophages in mice receiving rabbit anti-glomerular antibodies, or nephrotoxic serum (NTS), an experimental model which closely mimics the immune complex mediated disease seen in murine and human lupus nephritis. GW2580, a selective inhibitor of the colony stimulating factor-1 (CSF-1) receptor kinase, was used for macrophage depletion. We found that GW2580-treated, NTS challenged mice did not develop the increased levels of proteinuria, serum creatinine, and BUN seen in control-treated, NTS challenged mice. NTS challenged mice exhibited significantly increased kidney expression of inflammatory cytokines including RANTES, IP-10, VCAM-1 and iNOS, whereas GW2580-treated mice were protected from the robust expression of these inflammatory cytokines that are associated with lupus nephritis. Quantification of macrophage related gene expression, flow cytometry analysis of kidney single cell suspensions, and immunofluorescence staining confirmed the depletion of macrophages in GW2580-treated mice, specifically within renal glomeruli. Our results strongly implicate a specific and necessary role for macrophages in the development of immune glomerulonephritis mediated by pathogenic antibodies, and support the development of macrophage targeting approaches for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Violeta Chitu
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leal C Herlitz
- Department of Pathology, Columbia-Presbyterian Medical Center, New York, NY 10032, USA
| | - Ranjit Sahu
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - E Richard Stanley
- The Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaim Putterman
- The Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Toh ML, Bonnefoy JY, Accart N, Cochin S, Pohle S, Haegel H, De Meyer M, Zemmour C, Preville X, Guillen C, Thioudellet C, Ancian P, Lux A, Sehnert B, Nimmerjahn F, Voll RE, Schett G. Bone- and Cartilage-Protective Effects of a Monoclonal Antibody Against Colony-Stimulating Factor 1 Receptor in Experimental Arthritis. Arthritis Rheumatol 2014; 66:2989-3000. [DOI: 10.1002/art.38624] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2013] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | | | - Sandy Pohle
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | | | | | | | | | - Anja Lux
- University of Erlangen-Nuremberg; Erlangen Germany
| | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
25
|
Abstract
Cancer continues to present as an increasing and serious global unmet medical need in today's aging population.1 Macrocyclic kinase inhibitors have reached advanced clinical testing and are making an impact in oncologic conditions including myelofibrosis, lymphomas and leukemias. Rheumatoid arthritis (RA) is also beginning to be impacted with the first macrocycle having entered Phase I clinical evaluation in healthy volunteers. Increasing reports of innovative macrocycles in preclinical research are appearing in the literature. Desirable, selective, multi-kinase inhibitory profiles against specific kinases known to be abrogated in cancer, RA, and other diseases have been achieved in a first generation series of clinical stage compact small molecule macrocyclic kinase inhibitors. Herein we discuss their design, synthesis, structure activity relationships and assessment of the latest clinical data in a range of oncologic conditions. Macrocyclic kinase inhibitors have the potential to offer new hope to patients and their families.
Collapse
Affiliation(s)
- Anders Poulsen
- Experimental Therapeutics Centre, A*STAR 11 Biopolis Way, #03-10/11 The Helios 138667 Singapore
| | - Anthony D. William
- Institute of Chemical and Engineering Sciences, A*STAR 11 Biopolis Way, The Helios #03-08 138667 Singapore
| | - Brian W. Dymock
- Department of Pharmacy, National University of Singapore 18 Science Drive 4 117543 Singapore
| |
Collapse
|
26
|
Wang D, Hu S, Zhu J, Yuan J, Wu J, Zhou A, Wu Y, Zhao W, Huang Q, Chang Y, Wang Q, Sun W, Wei W. Angiotensin II type 2 receptor correlates with therapeutic effects of losartan in rats with adjuvant-induced arthritis. J Cell Mol Med 2013; 17:1577-87. [PMID: 24112447 PMCID: PMC3914644 DOI: 10.1111/jcmm.12128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2012] [Accepted: 08/12/2013] [Indexed: 12/18/2022] Open
Abstract
The angiotensin II type 1 receptor (AT1R) blocker losartan ameliorates rheumatoid arthritis (RA) in an experimental model. In RA, AT2R mainly opposes AT1R, but the mechanism by which this occurs still remains obscure. In the present study, we investigated the role of AT2R in the treatment of rats with adjuvant-induced arthritis (AIA) by losartan. Adjuvant-induced arthritis rats were treated with losartan (5, 10 and 15 mg/kg) and methotrexate (MTX; 0.5 mg/kg) in vivo from day 14 to day 28. Arthritis was evaluated by the arthritis index and histological examination. Angiotensin II, tumour necrosis factor-α, and VEGF levels were examined by ELISA. The expression of AT1R and AT2R was detected by western blot and immunohistochemistry analysis. After stimulation with interleukin-1β in vitro, the effects of the AT2R agonist CGP42112 (10−8–10−5 M) on the chemotaxis of monocytes induced by 10% foetal calf serum (FCS) were analysed by using Transwell assay. Subsequently, the therapeutic effects of CGP42112 (5, 10 and 20 μg/kg) were evaluated in vivo by intra-articular injection in AIA rats. After treatment with losartan, the down-regulation of AT1R expression and up-regulation of AT2R expression in the spleen and synovium of AIA rats correlated positively with reduction in the polyarthritis index. Treatment with CGP42112 inhibited the chemotaxis of AIA monocytes in vitro, possibly because of the up-regulation of AT2R expression. Intra-articular injection with CGP42112 (10 and 20 μg/kg) ameliorated the arthritis index and histological signs of arthritis. In summary, the present study strongly suggests that the up-regulation of AT2R might be an additional mechanism by which losartan exerts its therapeutic effects in AIA rats.
Collapse
Affiliation(s)
- Di Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of China Education Ministry, Hefei, Anhui Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 2013; 34:81-9. [DOI: 10.1016/j.it.2012.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2012] [Revised: 08/03/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
|
28
|
Liu G, Campbell BT, Holladay MW, Ford Pulido JM, Hua H, Gitnick D, Gardner MF, James J, Breider MA, Brigham D, Belli B, Armstrong RC, Treiber DK. Discovery of AC710, a Globally Selective Inhibitor of Platelet-Derived Growth Factor Receptor-Family Kinases. ACS Med Chem Lett 2012; 3:997-1002. [PMID: 24900421 DOI: 10.1021/ml300214g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022] Open
Abstract
A series of potent, selective platelet-derived growth factor receptor-family kinase inhibitors was optimized starting from a globally selective lead molecule 4 through structural modifications aimed at improving the physiochemical and pharmacokinetic properties, as exemplified by 18b. Further clearance reduction via per-methylation of the α-carbons of a solubilizing piperidine nitrogen resulted in advanced leads 22a and 22b. Results from a mouse tumor xenograft, a collagen-induced arthritis model, and a 7 day rat in vivo tolerability study culminated in the selection of compound 22b (AC710) as a preclinical development candidate.
Collapse
Affiliation(s)
- Gang Liu
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Brian T. Campbell
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Mark W. Holladay
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Julia M. Ford Pulido
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Helen Hua
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Dana Gitnick
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Michael F. Gardner
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Joyce James
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Mike A. Breider
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Daniel Brigham
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Barbara Belli
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Robert C. Armstrong
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Daniel K. Treiber
- Departments of †Medicinal Chemistry, ‡Cell Biology and Pharmacology, §Technology Development, and ∥DMPK and Toxicology, 4215 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
29
|
Davignon JL, Hayder M, Baron M, Boyer JF, Constantin A, Apparailly F, Poupot R, Cantagrel A. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 2012. [PMID: 23204551 DOI: 10.1093/rheumatology/kes304] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Biotherapies have revolutionized the treatment of RA. However, much work is needed to understand all the mechanisms of these biotherapies, and alternatives are needed to circumvent adverse effects and the high cost of these long-lasting treatments. In this article we outline some of the approaches we have used to target monocytes/macrophages as major components of inflammation and bone homeostasis. We also discuss how anti-TNF-α antibodies target monocytes/macrophages in the complex mechanisms contributing to inhibition of inflammation.
Collapse
|
30
|
Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, Yin H, Wong K, Miyazawa T, Chen J, Chang I, Singh A, Harris RC. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest 2012; 122:4519-32. [PMID: 23143303 DOI: 10.1172/jci60363] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022] Open
Abstract
Renal tubule epithelia represent the primary site of damage in acute kidney injury (AKI), a process initiated and propagated by the infiltration of macrophages. Here we investigated the role of resident renal macrophages and dendritic cells in recovery from AKI after ischemia/reperfusion (I/R) injury or a novel diphtheria toxin-induced (DT-induced) model of selective proximal tubule injury in mice. DT-induced AKI was characterized by marked renal proximal tubular cell apoptosis. In both models, macrophage/dendritic cell depletion during the recovery phase increased functional and histologic injury and delayed regeneration. After I/R-induced AKI, there was an early increase in renal macrophages derived from circulating inflammatory (M1) monocytes, followed by accumulation of renal macrophages/dendritic cells with a wound-healing (M2) phenotype. In contrast, DT-induced AKI only generated an increase in M2 cells. In both models, increases in M2 cells resulted largely from in situ proliferation in the kidney. Genetic or pharmacologic inhibition of macrophage colony-stimulating factor (CSF-1) signaling blocked macrophage/dendritic cell proliferation, decreased M2 polarization, and inhibited recovery. These findings demonstrated that CSF-1-mediated expansion and polarization of resident renal macrophages/dendritic cells is an important mechanism mediating renal tubule epithelial regeneration after AKI.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Madan B, Goh KC, Hart S, William AD, Jayaraman R, Ethirajulu K, Dymock BW, Wood JM. SB1578, a novel inhibitor of JAK2, FLT3, and c-Fms for the treatment of rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2012; 189:4123-34. [PMID: 22962687 DOI: 10.4049/jimmunol.1200675] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
SB1578 is a novel, orally bioavailable JAK2 inhibitor with specificity for JAK2 within the JAK family and also potent activity against FLT3 and c-Fms. These three tyrosine kinases play a pivotal role in activation of pathways that underlie the pathogenesis of rheumatoid arthritis. SB1578 blocks the activation of these kinases and their downstream signaling in pertinent cells, leading to inhibition of pathological cellular responses. The biochemical and cellular activities of SB1578 translate into its high efficacy in two rodent models of arthritis. SB1578 not only prevents the onset of arthritis but is also potent in treating established disease in collagen-induced arthritis mice with beneficial effects on histopathological parameters of bone resorption and cartilage damage. SB1578 abrogates the inflammatory response and prevents the infiltration of macrophages and neutrophils into affected joints. It also leads to inhibition of Ag-presenting dendritic cells and inhibits the autoimmune component of the disease. In summary, SB1578 has a unique kinase spectrum, and its pharmacological profile provides a strong rationale for the ongoing clinical development in autoimmune diseases.
Collapse
|
32
|
Huynh J, Kwa MQ, Cook AD, Hamilton JA, Scholz GM. CSF-1 receptor signalling from endosomes mediates the sustained activation of Erk1/2 and Akt in macrophages. Cell Signal 2012; 24:1753-61. [PMID: 22575736 DOI: 10.1016/j.cellsig.2012.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2012] [Accepted: 04/27/2012] [Indexed: 12/31/2022]
Abstract
Colony stimulating factor-1 (CSF-1) mediates its pleiotropic effects on macrophages through the CSF-1 receptor (CSF-1R), a receptor tyrosine kinase. Current models of CSF-1 signalling imply that the CSF-1R activates signalling pathways exclusively at the plasma membrane and the subsequent internalisation of the CSF-1R simply facilitates its lysosomal degradation in order to prevent on-going signalling. Here, we sought to establish if the CSF-1R may in fact continue to signal following its internalisation. Erk1/2, Akt and Stat3 activation were abrogated when the internalisation of the CSF-1R was impaired, with the effects on Stat3 distinct from those for Erk1/2 and Akt. Pharmacologic inhibition of the CSF-1R following its internalisation resulted in less sustained Erk1/2 and Akt activity, whereas Stat3 activity was unaffected. Significantly, the suppressive effects of the CSF-1R inhibitor on the up-regulation of gene expression by CSF-1 (e.g. cyclin D1 and Bcl-xL gene expression) were comparable irrespective of whether the inhibitor was added prior to CSF-1 stimulation or following the internalisation of the CSF-1R. Similarly, pharmacologic inhibition of Erk1/2 (or Akt) activity either prior to CSF-1 stimulation or subsequent to CSF-1R internalisation had comparable effects on the regulation of gene expression by CSF-1. Together, our data argue that key signalling responses to CSF-1 depend on the ability of the CSF-1R to signal from endosomes following its internalisation, thus adding an important spatiotemporal aspect to CSF-1R signalling.
Collapse
Affiliation(s)
- Jennifer Huynh
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
33
|
El-Gamal MI, Anbar HS, Yoo KH, Oh CH. FMS Kinase Inhibitors: Current Status and Future Prospects. Med Res Rev 2012; 33:599-636. [PMID: 22434539 DOI: 10.1002/med.21258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
FMS, first discovered as the oncogene responsible for Feline McDonough Sarcoma, is a type III receptor tyrosine kinase that binds to the macrophage or monocyte colony-stimulating factor (M-CSF or CSF-1). Signal transduction through that binding results in survival, proliferation, and differentiation of monocyte/macrophage lineage. Overexpression of CSF-1 and/or FMS has been implicated in a number of disease states such as the growth of metastasis of certain types of cancer, in promoting osteoclast proliferation in bone osteolysis, and many inflammatory disorders. Inhibition of CSF-1 and/or FMS may help treat these pathological conditions. This article reviews FMS gene, FMS kinase, CSF-1, IL-34, and their roles in bone osteolysis, cancer biology, and inflammation. Monoclonal antibodies, FMS crystal structure, and small molecule FMS kinase inhibitors of different chemical scaffolds are also reviewed.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2011; 119:1810-20. [PMID: 22186992 DOI: 10.1182/blood-2011-09-379214] [Citation(s) in RCA: 541] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.
Collapse
|
35
|
Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Schwarting A, Kelley VR. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res 2011; 72:187-200. [PMID: 22052465 DOI: 10.1158/0008-5472.can-11-1232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Coexpression of the monocytic growth factor colony-stimulating factor (CSF)-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and antiapoptosis during regeneration of renal tubules. Here, we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were coexpressed in RCCs and TECs proximally adjacent to RCCs. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and epidermal growth factor signaling in RCCs. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R, and epidermal growth factor expression in RCCs. Furthermore, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCCs.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
36
|
HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation. Immunol Cell Biol 2011; 90:14-22. [DOI: 10.1038/icb.2011.88] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
37
|
Crespo O, Kang SC, Daneman R, Lindstrom TM, Ho PP, Sobel RA, Steinman L, Robinson WH. Tyrosine kinase inhibitors ameliorate autoimmune encephalomyelitis in a mouse model of multiple sclerosis. J Clin Immunol 2011; 31:1010-20. [PMID: 21847523 DOI: 10.1007/s10875-011-9579-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2011] [Accepted: 07/05/2011] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system characterized by neuroinflammation and demyelination. Although considered a T cell-mediated disease, multiple sclerosis involves the activation of both adaptive and innate immune cells, as well as resident cells of the central nervous system, which synergize in inducing inflammation and thereby demyelination. Differentiation, survival, and inflammatory functions of innate immune cells and of astrocytes of the central nervous system are regulated by tyrosine kinases. Here, we show that imatinib, sorafenib, and GW2580-small molecule tyrosine kinase inhibitors-can each prevent the development of disease and treat established disease in a mouse model of multiple sclerosis. In vitro, imatinib and sorafenib inhibited astrocyte proliferation mediated by the tyrosine kinase platelet-derived growth factor receptor (PDGFR), whereas GW2580 and sorafenib inhibited macrophage tumor necrosis factor (TNF) production mediated by the tyrosine kinases c-Fms and PDGFR, respectively. In vivo, amelioration of disease by GW2580 was associated with a reduction in the proportion of macrophages and T cells in the CNS infiltrate, as well as a reduction in the levels of circulating TNF. Our findings suggest that GW2580 and the FDA-approved drugs imatinib and sorafenib have potential as novel therapeutics for the treatment of autoimmune demyelinating disease.
Collapse
Affiliation(s)
- Oliver Crespo
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hayder M, Poupot M, Baron M, Nigon D, Turrin CO, Caminade AM, Majoral JP, Eisenberg RA, Fournie JJ, Cantagrel A, Poupot R, Davignon JL. A Phosphorus-Based Dendrimer Targets Inflammation and Osteoclastogenesis in Experimental Arthritis. Sci Transl Med 2011; 3:81ra35. [DOI: 10.1126/scitranslmed.3002212] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
39
|
Abstract
INTRODUCTION Macrophages are key drivers of both the innate and adaptive immune systems. The cellular receptor for CSF-1 and IL-34, c-FMS, is a key component of the mechanism(s) by which macrophages are regulated. Several drug discovery programs aimed at uncovering inhibitors of the tyrosine kinase activity of this receptor are now entering clinical phase, and the prospect of readjusting the behavior of macrophages in a number of pathological situations, such as inflammation and cancer, is now on us. AREAS COVERED In this review, we evaluate the available patent literature on the topic of small molecule inhibitors of c-FMS. By way of background, we review the biology of c-FMS and make an analysis of the therapeutic opportunities that a small molecule c-FMS inhibitor might present. In order to place the pharmacology in perspective, we examine the literature concerning the role of the CSF-1-IL-34-c-FMS axis in macrophage function as well as cell types related to macrophages, such as the osteoclast, the dendritic cell and microglia, and provide a background to the understanding of the therapeutic opportunities for c-FMS inhibitors as well as potential obstacles that could limit their use. EXPERT OPINION The c-FMS receptor is a hot target for the development of novel regulators of macrophage behavior. Some nice candidates have been developed by a number of groups, and their recent entry into clinical phase testing means that we are now on the cusp of a fuller understanding of the role of these important regulators of the innate and adaptive immune systems in the development of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Christopher J Burns
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, La Trobe R & D Park, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
40
|
Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine 2010; 52:215-20. [PMID: 20829061 DOI: 10.1016/j.cyto.2010.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2010] [Revised: 05/31/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
The aim of this study is to investigate if macrophage-colony stimulating factor (M-CSF) or interleukin-34 (IL-34) induces cytokines or chemokines using human whole blood (HWB) and if an M-CSF- or IL-34-induced cytokine or chemokine production from HWB is inhibited by soluble M-CSF receptor or c-FMS kinase inhibitors. Among eight cytokines or growth factors tested, only IL-6 level was increased by up to 6-fold by M-CSF or IL-34 in HWB. In contrast, chemokine levels (IP-10/CXCL10, IL-8/CXCL8, and MCP-1/CCL2) were dramatically increased by M-CSF or IL-34 in HWB while exhibiting a large variation among donors. Variability of the MCP-1 signal induced by M-CSF or IL-34 was relatively less among donors compared to the IP-10 and IL-8 signals. The elevation of these chemokine levels was significantly decreased by soluble M-CSF receptor, indicating the elevation of these chemokines was mediated by M-CSF or IL-34. Furthermore, GW2580, a c-FMS kinase inhibitor, inhibited the induction of MCP-1 by M-CSF or IL-34 in a concentration dependent manner. These indicate MCP-1 is the most appropriate chemokine target for a chemokine release assay to evaluate the potency of c-FMS kinase inhibitors and MCP-1 release assay using HWB would be useful, relevant tool for translational pharmacology of c-FMS kinase inhibitors.
Collapse
Affiliation(s)
- Hiroyuki Eda
- Discovery Biology, Global Research and Development, St. Louis Laboratories, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Small-molecule kinase inhibitors are increasingly taking center stage in the quest for new drugs for the treatment of rheumatoid arthritis (RA). By targeting kinases, small-molecule inhibitors can exert potent anti-inflammatory and immunomodulatory effects; the success of small-molecule kinase inhibitors in the treatment of cancer has spurred efforts to identify kinases that could be targeted for the treatment of chronic inflammatory disorders, such as RA. Although many kinase inhibitors have proved efficacious in the treatment of inflammatory arthritis in animals few have been tested in RA clinical trials. This article discusses the challenges and progress in the pursuit of small-molecule kinase inhibitors for RA, including lessons learned from the failure of erstwhile frontrunner inhibitors and the promise of inhibitors making their debut on the RA stage.
Collapse
|
42
|
An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 2010; 116:3955-63. [PMID: 20682855 DOI: 10.1182/blood-2010-02-266296] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The development of the mononuclear phagocyte system requires macrophage colony-stimulating factor (CSF-1) signaling through the CSF-1 receptor (CSF1R, CD115). We examined the effect of an antibody against CSF1R on macrophage homeostasis and function using the MacGreen transgenic mouse (csf1r-enhanced green fluorescent protein) as a reporter. The administration of a novel CSF1R blocking antibody selectively reduced the CD115(+)Gr-1(neg) monocyte precursor of resident tissue macrophages. CD115(+)Gr-1(+) inflammatory monocytes were correspondingly increased, supporting the view that monocytes are a developmental series. Within tissue, the antibody almost completely depleted resident macrophage populations in the peritoneum, gastrointestinal tract, liver, kidney, and skin, but not in the lung or female reproductive organs. CSF1R blockade reduced the numbers of tumor-associated macrophages in syngeneic tumor models, suggesting that these cells are resident type macrophages. Conversely, it had no effect on inflammatory monocyte recruitment in models, including lipopolysaccharide-induced lung inflammation, wound healing, peritonitis, and severe acute graft-versus-host disease. Depletion of resident tissue macrophages from bone marrow transplantation recipients actually resulted in accelerated pathology and exaggerated donor T-cell activation. The data indicate that CSF1R signaling is required only for the maturation and replacement of resident-type monocytes and tissue macrophages, and is not required for monocyte production or inflammatory function.
Collapse
|
43
|
Meyers MJ, Pelc M, Kamtekar S, Day J, Poda GI, Hall MK, Michener ML, Reitz BA, Mathis KJ, Pierce BS, Parikh MD, Mischke DA, Long SA, Parlow JJ, Anderson DR, Thorarensen A. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode. Bioorg Med Chem Lett 2010; 20:1543-7. [DOI: 10.1016/j.bmcl.2010.01.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
44
|
Paniagua RT, Chang A, Mariano MM, Stein EA, Wang Q, Lindstrom TM, Sharpe O, Roscow C, Ho PP, Lee DM, Robinson WH. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther 2010; 12:R32. [PMID: 20181277 PMCID: PMC2875666 DOI: 10.1186/ar2940] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2009] [Revised: 12/25/2009] [Accepted: 02/24/2010] [Indexed: 12/15/2022] Open
Abstract
Introduction Tyrosine kinases are key mediators of multiple signaling pathways implicated in rheumatoid arthritis (RA). We previously demonstrated that imatinib mesylate--a Food and Drug Administration (FDA)-approved, antineoplastic drug that potently inhibits the tyrosine kinases Abl, c-Kit, platelet-derived growth factor receptor (PDGFR), and c-Fms--ameliorates murine autoimmune arthritis. However, which of the imatinib-targeted kinases is the principal culprit in disease pathogenesis remains unknown. Here we examine the role of c-Fms in autoimmune arthritis. Methods We tested the therapeutic efficacy of orally administered imatinib or GW2580, a small molecule that specifically inhibits c-Fms, in three mouse models of RA: collagen-induced arthritis (CIA), anti-collagen antibody-induced arthritis (CAIA), and K/BxN serum transfer-induced arthritis (K/BxN). Efficacy was evaluated by visual scoring of arthritis severity, paw thickness measurements, and histological analysis. We assessed the in vivo effects of imatinib and GW2580 on macrophage infiltration of synovial joints in CIA, and their in vitro effects on macrophage and osteoclast differentiation, and on osteoclast-mediated bone resorption. Further, we determined the effects of imatinib and GW2580 on the ability of macrophage colony-stimulating factor (M-CSF; the ligand for c-Fms) to prime bone marrow-derived macrophages to produce tumor necrosis factor (TNF) upon subsequent Fc receptor ligation. Finally, we measured M-CSF levels in synovial fluid from patients with RA, osteoarthritis (OA), or psoriatic arthritis (PsA), and levels of total and phosphorylated c-Fms in synovial tissue from patients with RA. Results GW2580 was as efficacious as imatinib in reducing arthritis severity in CIA, CAIA, and K/BxN models of RA. Specific inhibition of c-Fms abrogated (i) infiltration of macrophages into synovial joints of arthritic mice; (ii) differentiation of monocytes into macrophages and osteoclasts; (iii) osteoclast-mediated bone resorption; and (iv) priming of macrophages to produce TNF upon Fc receptor stimulation, an important trigger of synovitis in RA. Expression and activation of c-Fms in RA synovium were high, and levels of M-CSF were higher in RA synovial fluid than in OA or PsA synovial fluid. Conclusions These results suggest that c-Fms plays a central role in the pathogenesis of RA by mediating the differentiation and priming of monocyte lineage cells. Therapeutic targeting of c-Fms could provide benefit in RA.
Collapse
Affiliation(s)
- Ricardo T Paniagua
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA.
Collapse
|
46
|
Huang H, Hutta DA, Rinker JM, Hu H, Parsons WH, Schubert C, DesJarlais RL, Crysler CS, Chaikin MA, Donatelli RR, Chen Y, Cheng D, Zhou Z, Yurkow E, Manthey CL, Player MR. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors. J Med Chem 2009; 52:1081-99. [DOI: 10.1021/jm801406h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Huang
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Daniel A. Hutta
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - James M. Rinker
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Huaping Hu
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - William H. Parsons
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Carsten Schubert
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Renee L. DesJarlais
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Carl S. Crysler
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Margery A. Chaikin
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Robert R. Donatelli
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Yanmin Chen
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Deping Cheng
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Zhao Zhou
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Edward Yurkow
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Carl L. Manthey
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| | - Mark R. Player
- Johnson & Johnson Pharmaceutical Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477-0776
| |
Collapse
|