1
|
Rahman SN, Imhaouran F, Leurs R, Christopoulos A, Valant C, Langmead CJ. Ligand-directed biased agonism at human histamine H 3 receptor isoforms across Gα i/o- and β-arrestin2-mediated pathways. Biochem Pharmacol 2024; 228:115988. [PMID: 38159685 DOI: 10.1016/j.bcp.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. β-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.
Collapse
Affiliation(s)
- Sabrina N Rahman
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia; Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Faissal Imhaouran
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecular Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Arthur Christopoulos
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia
| | - Céline Valant
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| | - Christopher J Langmead
- Drug Discovery Biology and Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052 VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
2
|
Gao M, Ooms JF, Leurs R, Vischer HF. Histamine H 3 Receptor Isoforms: Insights from Alternative Splicing to Functional Complexity. Biomolecules 2024; 14:761. [PMID: 39062475 PMCID: PMC11274711 DOI: 10.3390/biom14070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Henry F. Vischer
- Amsterdam Institute of Molecular and Life Sciences, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.G.); (J.F.O.); (R.L.)
| |
Collapse
|
3
|
Zhou Z, An Q, Zhang W, Li Y, Zhang Q, Yan H. Histamine and receptors in neuroinflammation: Their roles on neurodegenerative diseases. Behav Brain Res 2024; 465:114964. [PMID: 38522596 DOI: 10.1016/j.bbr.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Histamine, an auto-reactive substance and mediator of inflammation, is synthesized from histidine through the action of histidine decarboxylase (HDC). It primarily acts on histamine receptors in the central nervous system (CNS). Increasing evidence suggests that histamine and its receptors play a crucial role in neuroinflammation, thereby modulating the pathology of neurodegenerative diseases. Recent studies have demonstrated that histamine regulates the phenotypic switching of microglia and astrocytes, inhibits the production of pro-inflammatory cytokines, and alleviates inflammatory responses. In the CNS, our research group has also found that histamine and its receptors are involved in regulating inflammatory responses and play a central role in ameliorating chronic neuroinflammation in neurodegenerative diseases. In this review, we will discuss the role of histamine and its receptors in neuroinflammation associated with neurodegenerative diseases, potentially providing a novel therapeutic target for the treatment of chronic neuroinflammation-related neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qi An
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Wanying Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qihang Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Tamargo J, Caballero R, Delpón E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 2022; 45:101-126. [PMID: 35025085 DOI: 10.1007/s40264-021-01132-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain.
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| |
Collapse
|
5
|
Kitanaka N, Hall FS, Tanaka KI, Tomita K, Igarashi K, Nishiyama N, Sato T, Uhl GR, Kitanaka J. Are Histamine H 3 Antagonists the Definitive Treatment for Acute Methamphetamine Intoxication? Curr Drug Res Rev 2022; 14:162-170. [PMID: 35431009 DOI: 10.2174/2589977514666220414122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, USA
| | - Koh-Ichi Tanaka
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kento Igarashi
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
| | - Nobuyoshi Nishiyama
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
- Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
6
|
Rodriguez M, Frost JA, Schonbrunn A. Real-Time Signaling Assays Demonstrate Somatostatin Agonist Bias for Ion Channel Regulation in Somatotroph Tumor Cells. J Endocr Soc 2018; 2:779-793. [PMID: 30151433 PMCID: PMC6106105 DOI: 10.1210/js.2018-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/11/2018] [Indexed: 11/19/2022] Open
Abstract
Acromegaly is a neuroendocrine disorder caused by excess secretion of GH by somatotroph tumor cells. It is often treated with somatostatin receptor (SSTR) 2 agonists, which suppress GH secretion. SOM230 is a somatostatin analogue that targets multiple SSTRs and was recently approved for patients with treatment-resistant acromegaly. Previous reports indicate that SOM230 may function as a biased agonist, suggesting that its ability to selectively activate SSTR-dependent signaling events may contribute to its therapeutic efficacy. To better understand how SOM230 modulates Sstr2A function, which is the most commonly expressed SSTR in somatotrophs, we used real-time assays to study SOM230-dependent signaling in rat pituitary tumor cells. We observed that SOM230 suppressed cAMP production in a Gαi-dependent manner, similar to conventional Sstr2A agonists. However, it did not cause receptor internalization as would be expected for an Sstr2A agonist. Surprisingly, SOM230 did not cause membrane hyperpolarization, which is an important mechanism by which Sstr2a activation suppresses intracellular calcium (Ca2+) accumulation and GH secretion. In fact, SOM230 inhibited the ability of conventional somatostatin analogues to control membrane potential. However, SOM230 still inhibited intracellular Ca2+ accumulation in a novel, Gβγ-dependent manner. These studies show that SOM230 exhibits strong agonist bias in regulating signaling pathways downstream of Sstr2A that control GH secretion.
Collapse
Affiliation(s)
- Melissa Rodriguez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Agnes Schonbrunn
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Jończyk J, Malawska B, Bajda M. Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification. PLoS One 2017; 12:e0186108. [PMID: 28982153 PMCID: PMC5629032 DOI: 10.1371/journal.pone.0186108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds.
Collapse
Affiliation(s)
- Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| |
Collapse
|
8
|
Zheng K, Lu P, Delpapa E, Bellve K, Deng R, Condon JC, Fogarty K, Lifshitz LM, Simas TAM, Shi F, ZhuGe R. Bitter taste receptors as targets for tocolytics in preterm labor therapy. FASEB J 2017; 31:4037-4052. [PMID: 28559440 PMCID: PMC5572693 DOI: 10.1096/fj.201601323rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Preterm birth (PTB) is the leading cause of neonatal mortality and morbidity, with few prevention and treatment options. Uterine contraction is a central feature of PTB, so gaining new insights into the mechanisms of this contraction and consequently identifying novel targets for tocolytics are essential for more successful management of PTB. Here we report that myometrial cells from human and mouse express bitter taste receptors (TAS2Rs) and their canonical signaling components (i.e., G-protein gustducin and phospholipase C β2). Bitter tastants can completely relax myometrium precontracted by different uterotonics. In isolated single mouse myometrial cells, a phenotypical bitter tastant (chloroquine, ChQ) reverses the rise in intracellular Ca2+ concentration ([Ca2+]i) and cell shortening induced by uterotonics, and this reversal effect is inhibited by pertussis toxin and by genetic deletion of α-gustducin. In human myometrial cells, knockdown of TAS2R14 but not TAS2R10 inhibits ChQ's reversal effect on an oxytocin-induced rise in [Ca2+]i Finally, ChQ prevents mouse PTBs induced by bacterial endotoxin LPS or progesterone receptor antagonist mifepristone more often than current commonly used tocolytics, and this prevention is largely lost in α-gustducin-knockout mice. Collectively, our results reveal that activation of the canonical TAS2R signaling system in myometrial cells produces profound relaxation of myometrium precontracted by a broad spectrum of contractile agonists, and that targeting TAS2Rs is an attractive approach to developing effective tocolytics for PTB management.-Zheng, K., Lu, P., Delpapa, E., Bellve, K., Deng, R., Condon, J. C., Fogarty, K., Lifshitz, L. M., Simas, T. A. M., Shi, F., ZhuGe, R. Bitter taste receptors as targets for tocolytics in preterm labor therapy.
Collapse
Affiliation(s)
- Kaizhi Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ruitang Deng
- College of Pharmacy, University of Rhode Island, Kingstown, Rhode Island, USA
| | - Jennifer C Condon
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tiffany A Moore Simas
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China;
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
9
|
Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016; 90:649-673. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ana-Maricela García-Gálvez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| |
Collapse
|
10
|
Liu X, Grove JCR, Hirano AA, Brecha NC, Barnes S. Dopamine D1 receptor modulation of calcium channel currents in horizontal cells of mouse retina. J Neurophysiol 2016; 116:686-97. [PMID: 27193322 DOI: 10.1152/jn.00990.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 μM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 μM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 μM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 μM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gβγ-blocking peptide suggested involvement of Gβγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gβγ proteins in horizontal cells.
Collapse
Affiliation(s)
- Xue Liu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing, People's Republic of China; Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - James C R Grove
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Arlene A Hirano
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and
| | - Nicholas C Brecha
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and
| | - Steven Barnes
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and Department of Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Pinacho-García M, Marichal-Cancino BA, Villalón CM. Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow. Eur J Pharmacol 2016; 773:85-92. [PMID: 26826593 DOI: 10.1016/j.ejphar.2016.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/03/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Since histamine H3 and H4 receptors are coupled to heterotrimeric Gi/o proteins, a signal transduction pathway associated with inhibition of neurotransmitter release, the present study has investigated the inhibition of the rat cardioaccelerator sympathetic outflow induced by the H3/H4 receptor agonist immepip by using antagonists for histamine H1 (ketotifen), H2 (ranitidine), H3 (thioperamide) and H4 (JNJ7777120) receptors. For this purpose, 102 male Wistar rats were pithed, artificially ventilated and prepared for either preganglionic spinal (C7-T1) stimulation of the cardioaccelerator sympathetic outflow (n=90) or i.v. bolus injections of noradrenaline (n=12). This approach resulted in frequency-dependent and dose-dependent tachycardic responses, respectively. I.v. continuous infusions of immepip (3 and 10 μg/kg min), but not of saline (0.02 ml/min), dose-dependently inhibited the sympathetically-induced tachycardic responses. Moreover, the cardiac sympatho-inhibition induced by 10 μg/kg min immepip (which failed to affect the tachycardic responses to i.v. noradrenaline) was: (i) unaltered after i.v. treatment with 1 ml/kg vehicle, 100 μg/kg ketotifen, 3000 μg/kg ranitidine, 30 μg/kg thioperamide or 300 μg/kg JNJ7777120; and (ii) abolished after 100 μg/kg thioperamide (i.v.). These doses of antagonists, which did not affect per se the sympathetically-induced tachycardic responses, were high enough to block their respective receptors. In conclusion, the cardiac sympatho-inhibition induced by 10 μg/kg.min immepip involves histamine H3 receptors, with further pharmacological evidence excluding the involvement of H1, H2 and H4 receptors.
Collapse
Affiliation(s)
- Manuel Pinacho-García
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios No. 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 México D.F., México.
| | - Bruno A Marichal-Cancino
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios No. 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 México D.F., México.
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios No. 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 México D.F., México.
| |
Collapse
|
12
|
Adderley SP, Zhang XE, Breslin JW. Involvement of the H1 Histamine Receptor, p38 MAP Kinase, Myosin Light Chains Kinase, and Rho/ROCK in Histamine-Induced Endothelial Barrier Dysfunction. Microcirculation 2016; 22:237-48. [PMID: 25582918 DOI: 10.1111/micc.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/10/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The mechanisms by which histamine increases microvascular permeability remain poorly understood. We tested the hypothesis that H1 receptor activation disrupts the endothelial barrier and investigated potential downstream signals. METHODS We used confluent EC monolayers, assessing TER as an index of barrier function. HUVEC, HCMEC, and HDMEC were compared. Receptor expression was investigated using Western blotting, IF confocal microscopy and RT-PCR. Receptor function and downstream signaling pathways were tested using pharmacologic antagonists and inhibitors, respectively. RESULTS We identified H1-H4 receptors on all three EC types. H1 antagonists did not affect basal TER but prevented the histamine-induced decrease in TER. Blockade of H2 or H3 attenuated the histamine response only in HDMEC, while inhibition of H4 attenuated the response only in HUVEC. Combined inhibition of both PKC and PI3K caused exaggerated histamine-induced barrier dysfunction in HDMEC, whereas inhibition of p38 MAP kinase attenuated the histamine response in all three EC types. Inhibition of RhoA, ROCK, or MLCK also prevented the histamine-induced decrease in TER in HDMEC. CONCLUSION The data suggest that multiple signaling pathways contribute to histamine-induced endothelial barrier dysfunction via the H1 receptor.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | | | | |
Collapse
|
13
|
Farrell SR, Rankin DR, Brecha NC, Barnes S. Somatostatin receptor subtype 4 modulates L-type calcium channels via Gβγ and PKC signaling in rat retinal ganglion cells. Channels (Austin) 2015; 8:519-27. [PMID: 25483286 DOI: 10.4161/19336950.2014.967623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Somatostatin subtype-4 receptors (sst4) inhibit L-type calcium channel currents (ICa) in retinal ganglion cells (RGCs). Here we identify the signaling pathways involved in sst4 stimulation leading to suppression of ICa in RGCs. Whole cell patch clamp recordings were made on isolated immunopanned RGCs using barium as a charge carrier to isolate ICa. Application of the selective sst4 agonist, L-803 (10 nM), reduced ICa by 41.2%. Pretreatment of cells with pertussis toxin (Gi/o inhibitor) did not prevent the action of L-803, which reduced ICa by 34.7%. To determine the involvement of Gβγ subunits after sst4 activation, depolarizing pre-pulse facilitation paradigms were used to remove voltage-dependent inhibition of calcium channels. Pre-pulse facilitation did not reverse the inhibitory effects of L-803 on ICa (8.4 vs. 8.8% reductions, ctrl vs. L-803); however, pharmacologic inhibition of Gβγ reduced ICa suppression by L-803 (23.0%, P < 0.05). Inhibition of PKC (GF109203X; GFX) showed a concentration-dependent effect in preventing the action of L-803 on ICa (1 μM GFX, 34.3%; 5 μM GFX, 14.6%, P < 0.05). When both PKC and Gβγ were inhibited, the effects of L-803 on ICa were blocked (1.8%, P < 0.05). These results suggest that sst4 stimulation modulates RGC calcium channels via Gβγ and PKC activation. Since reducing intracellular Ca(2+) is known to be neuroprotective in RGCs, modulating these sst4 signaling pathways may provide insights to the discovery of unique therapeutic targets to reduce intracellular Ca(2+) levels in RGCs.
Collapse
Affiliation(s)
- Spring R Farrell
- a Department of Physiology & Biophysics ; Dalhousie University ; Halifax , NS , Canada
| | | | | | | |
Collapse
|
14
|
Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol 2013; 11:e1001501. [PMID: 23472053 PMCID: PMC3589262 DOI: 10.1371/journal.pbio.1001501] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Bitter tastants can activate bitter taste receptors on constricted smooth muscle cells to inhibit L-type calcium channels and induce bronchodilation. Bronchodilators are a standard medicine for treating airway obstructive diseases, and β2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than β2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca2+ signals, as revealed in cultured ASM cells, to activate large-conductance Ca2+-activated K+ channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca2+ events nor alter spontaneous local Ca2+ transients. Interestingly, they increase global intracellular [Ca2+]i, although to a much lower level than bronchoconstrictors. We show that these Ca2+ changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cβ [PLCβ]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca2+]i induced by bronchoconstrictors, and this lowering of the [Ca2+]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca2+ channels (VDCCs), resulting in reversal in [Ca2+]i, and this inhibition can be prevented by pertussis toxin and G-protein βγ subunit inhibitors, but not by the blockers of PLCβ and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca2+ signaling pathways via Gβγ to increase [Ca2+]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca2+]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants. Bitter taste receptors (TAS2Rs), a G-protein-coupled receptor family long thought to be solely expressed in taste buds on the tongue, have recently been detected in airways. Bitter substances can activate TAS2Rs in airway smooth muscle to cause greater bronchodilation than β2 adrenergic receptor agonists, the most commonly used bronchodilators. However, the mechanisms underlying this bronchodilation remain elusive. Here we show that, in resting primary airway smooth muscle cells, bitter tastants activate a TAS2R-dependent signaling pathway that results in an increase in intracellular calcium levels, albeit to a level much lower than that produced by bronchoconstrictors. In bronchoconstricted cells, however, bitter tastants reverse the bronchoconstrictor-induced increase in calcium levels, which leads to the relaxation of smooth muscle cells. We find that this reversal is due to inhibition of L-type calcium channels. Our results suggest that under normal conditions, bitter tastants can activate TAS2Rs to modestly increase calcium levels, but that when smooth muscle cells are constricted, they can block L-type calcium channels to induce bronchodilation. We postulate that this novel mechanism could operate in other extraoral cells expressing TAS2Rs.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence M. Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl F. Uy
- Department of Surgery, Division of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States of America
| | - Mitsuo Ikebe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kevin E. Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chan NYK, Robador PA, Levi R. Natriuretic peptide-induced catecholamine release from cardiac sympathetic neurons: inhibition by histamine H3 and H4 receptor activation. J Pharmacol Exp Ther 2012; 343:568-77. [PMID: 22923736 DOI: 10.1124/jpet.112.198747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We reported previously that natriuretic peptides, including brain natriuretic peptide (BNP), promote norepinephrine release from cardiac sympathetic nerves and dopamine release from differentiated pheochromocytoma PC12 cells. These proexocytotic effects are mediated by an increase in intracellular calcium secondary to cAMP/protein kinase A (PKA) activation caused by a protein kinase G (PKG)-mediated inhibition of phosphodiesterase type 3 (PDE3). The purpose of the present study was to search for novel means to prevent the proadrenergic effects of natriuretic peptides. For this, we focused our attention on neuronal inhibitory Gα(i/o)-coupled histamine H(3) and H(4) receptors. Our findings show that activation of neuronal H(3) and H(4) receptors inhibits the release of catecholamines elicited by BNP in cardiac synaptosomes and differentiated PC12 cells. This effect results from a decrease in intracellular Ca(2+) due to reduced intracellular cAMP/PKA activity, caused by H(3) and H(4) receptor-mediated PKG inhibition and consequent PDE3-induced increase in cAMP metabolism. Indeed, selective H(3) and H(4) receptor agonists each synergized with a PKG inhibitor and a PDE3 activator in attenuating BNP-induced norepinephrine release from cardiac sympathetic nerve endings. This indicates that PKG inhibition and PDE3 stimulation are pivotal for the H(3) and H(4) receptor-mediated attenuation of BNP-induced catecholamine release. Cardiac sympathetic overstimulation is characteristic of advanced heart failure, which was recently found not to be improved by the administration of recombinant BNP (nesiritide), despite the predicated beneficial effects of natriuretic peptides. Because excessive catecholamine release is likely to offset the desirable effects of natriuretic peptides, our findings suggest novel means to alleviate their adverse effects and improve their therapeutic potential.
Collapse
Affiliation(s)
- Noel Yan-Ki Chan
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
16
|
Robador PA, Seyedi N, Chan NYK, Koda K, Levi R. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε. J Pharmacol Exp Ther 2012; 343:97-105. [PMID: 22761303 DOI: 10.1124/jpet.112.196626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During myocardial ischemia/reperfusion, lipid peroxidation leads to the formation of toxic aldehydes that contribute to ischemic dysfunction. Mitochondrial aldehyde dehydrogenase type 2 (ALDH2) alleviates ischemic heart damage and reperfusion arrhythmias via aldehyde detoxification. Because excessive norepinephrine release in the heart is a pivotal arrhythmogenic mechanism, we hypothesized that neuronal ALDH2 activation might diminish ischemic norepinephrine release. Incubation of cardiac sympathetic nerve endings with acetaldehyde, at concentrations achieved in myocardial ischemia, caused a concentration-dependent increase in norepinephrine release. A major increase in norepinephrine release also occurred when sympathetic nerve endings were incubated in hypoxic conditions. ALDH2 activation substantially reduced acetaldehyde- and hypoxia-induced norepinephrine release, an action prevented by inhibition of ALDH2 or protein kinase Cε (PKCε). Selective activation of G(i/o)-coupled adenosine A(1), A(3), or histamine H(3) receptors markedly inhibited both acetaldehyde- and hypoxia-induced norepinephrine release. These effects were also abolished by PKCε and/or ALDH2 inhibition. Moreover, A(1)-, A(3)-, or H(3)-receptor activation increased ALDH2 activity in a sympathetic neuron model (differentiated PC12 cells stably transfected with H(3) receptors). This action was prevented by the inhibition of PKCε and ALDH2. Our findings suggest the existence in sympathetic neurons of a protective pathway initiated by A(1)-, A(3)-, and H(3)-receptor activation by adenosine and histamine released in close proximity of these terminals. This pathway comprises the sequential activation of PKCε and ALDH2, culminating in aldehyde detoxification and inhibition of hypoxic norepinephrine release. Thus, pharmacological activation of PKCε and ALDH2 in cardiac sympathetic nerves may have significant protective effects by alleviating norepinephrine-induced life-threatening arrhythmias that characterize myocardial ischemia/reperfusion.
Collapse
Affiliation(s)
- Pablo A Robador
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
17
|
Reid AC, Brazin JA, Morrey C, Silver RB, Levi R. Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr Pharm Des 2012; 17:3744-52. [PMID: 22103845 DOI: 10.2174/138161211798357908] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2011] [Accepted: 09/07/2011] [Indexed: 11/22/2022]
Abstract
Enhanced production of angiotensin II and excessive release of norepinephrine in the ischemic heart are major causes of arrhythmias and sudden cardiac death. Mast cell-dependent mechanisms are pivotal in the local formation of angiotensin II and modulation of norepinephrine release in cardiac pathophysiology. Cardiac mast cells increase in number in myocardial ischemia and are located in close proximity to sympathetic neurons expressing angiotensin AT1- and histamine H3-receptors. Once activated, cardiac mast cells release a host of potent pro-inflammatory and pro-fibrotic cytokines, chemokines, preformed mediators (e.g., histamine) and proteases (e.g., renin). In myocardial ischemia, angiotensin II (formed locally from mast cell-derived renin) and histamine (also released from local mast cells) respectively activate AT1- and H3-receptors on sympathetic nerve endings. Stimulation of angiotensin AT1-receptors is arrhythmogenic whereas H3-receptor activation is cardioprotective. It is likely that in ischemia/reperfusion the balance may be tipped toward the deleterious effects of mast cell renin, as demonstrated in mast cell-deficient mice, lacking mast cell renin and histamine in the heart. In these mice, no ventricular fibrillation occurs at reperfusion following ischemia, as opposed to wild-type hearts which all fibrillate. Preventing mast cell degranulation in the heart and inhibiting the activation of a local renin-angiotensin system, hence abolishing its detrimental effects on cardiac rhythmicity, appears to be more significant than the loss of histamine-induced cardioprotection. This suggests that therapeutic targets in the treatment of myocardial ischemia, and potentially congestive heart failure and hypertension, should include prevention of mast cell degranulation, mast cell renin inhibition, local ACE inhibition, ANG II antagonism and H3-receptor activation.
Collapse
Affiliation(s)
- Alicia C Reid
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
18
|
Chan NYK, Seyedi N, Takano K, Levi R. An unsuspected property of natriuretic peptides: promotion of calcium-dependent catecholamine release via protein kinase G-mediated phosphodiesterase type 3 inhibition. Circulation 2011; 125:298-307. [PMID: 22158783 DOI: 10.1161/circulationaha.111.059097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although natriuretic peptides are considered cardioprotective, clinical heart failure trials with recombinant brain natriuretic peptide (nesiritide) failed to prove it. Unsuspected proadrenergic effects might oppose the anticipated benefits of natriuretic peptides. METHODS AND RESULTS We investigated whether natriuretic peptides induce catecholamine release in isolated hearts, sympathetic nerve endings (cardiac synaptosomes), and PC12 cells bearing a sympathetic neuron phenotype. Perfusion of isolated guinea pig hearts with brain natriuretic peptide elicited a 3-fold increase in norepinephrine release, which doubled in ischemia/reperfusion conditions. Brain natriuretic peptide and atrial natriuretic peptide also released norepinephrine from cardiac synaptosomes and dopamine from nerve growth factor-differentiated PC12 cells in a concentration-dependent manner. These catecholamine-releasing effects were associated with an increase in intracellular calcium and abolished by blockade of calcium channels and calcium transients, demonstrating a calcium-dependent exocytotic process. Activation of the guanylyl cyclase-cyclic GMP-protein-kinase-G system with nitroprusside or membrane-permeant cyclic GMP analogs mimicked the proexocytotic effect of natriuretic peptides, an action associated with an increase in intracellular cyclic AMP (cAMP) and protein-kinase-A activity. Cyclic AMP enhancement resulted from an inhibition of phosphodiesterase type 3-induced cAMP hydrolysis. Collectively, these findings indicate that, by inhibiting phosphodiesterase type 3, natriuretic peptides sequentially enhance intracellular cAMP levels, protein kinase A activity, intracellular calcium, and catecholamine exocytosis. CONCLUSIONS Our results show that natriuretic peptides, at concentrations likely to be reached at cardiac sympathetic nerve endings in advanced congestive heart failure, promote norepinephrine release via a protein kinase G-induced inhibition of phosphodiesterase type 3-mediated cAMP hydrolysis. We propose that this proadrenergic action may counteract the beneficial cardiac and hemodynamic effects of natriuretic peptides and thus explain the ineffectiveness of nesiritide as a cardiac failure medication.
Collapse
Affiliation(s)
- Noel Yan-Ki Chan
- Dept of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065-4896, USA
| | | | | | | |
Collapse
|
19
|
Hashikawa-Hobara N, Chan NYK, Levi R. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart. J Pharmacol Exp Ther 2011; 340:185-91. [PMID: 22011436 DOI: 10.1124/jpet.111.187765] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and norepinephrine effects and alleviation of arrhythmias.
Collapse
|
20
|
Corti F, Olson KE, Marcus AJ, Levi R. The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons. J Pharmacol Exp Ther 2011; 337:524-32. [PMID: 21325440 PMCID: PMC3083107 DOI: 10.1124/jpet.111.179994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 11/22/2022] Open
Abstract
Once released, norepinephrine is removed from cardiac synapses via reuptake into sympathetic nerves, whereas transmitter ATP is catabolized by ecto-NTP diphosphohydrolase 1 (E-NTPDase1)/CD39, an ecto-ATPase. Because ATP is known to modulate neurotransmitter release at prejunctional sites, we questioned whether this action may be ultimately controlled by the expression of E-NTPDase1/CD39 at sympathetic nerve terminals. Accordingly, we silenced E-NTPDase1/CD39 expression in nerve growth factor-differentiated PC12 cells, a cellular model of sympathetic neuron, in which dopamine is the predominant catecholamine. We report that E-NTPDase1/CD39 deletion markedly increases depolarization-induced exocytosis of ATP and dopamine and increases ATP-induced dopamine release. Moreover, overexpression of E-NTPDase1/CD39 resulted in enhanced removal of exogenous ATP, a marked decrease in exocytosis of ATP and dopamine, and a large decrease in ATP-induced dopamine release. Administration of a recombinant form of E-NTPDase1/CD39 reproduced the effects of E-NTPDase1/CD39 overexpression. Exposure of PC12 cells to simulated ischemia elicited a release of ATP and dopamine that was markedly increased in E-NTPDase1/CD39-silenced cells and decreased in E-NTPDase1/CD39-overexpressing cells. Therefore, transmitter ATP acts in an autocrine manner to promote its own release and that of dopamine, an action that is controlled by the level of E-NTPDase1/CD39 expression. Because ATP availability greatly increases in myocardial ischemia, recombinant E-NTPDase1/CD39 therapeutically used may offer a novel approach to reduce cardiac dysfunctions caused by excessive catecholamine release.
Collapse
Affiliation(s)
- Federico Corti
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065-4896, USA
| | | | | | | |
Collapse
|
21
|
Evidence for functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells. Neurosci Lett 2010; 471:15-9. [PMID: 20056131 DOI: 10.1016/j.neulet.2009.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 11/23/2022]
Abstract
The Type I cells are the sensory elements of the carotid bodies and play a critical role in defining the ventilatory response to hypoxia and hypercapnia. Type I cells release multiple neurotransmitters during a chemosensory stimulus resulting in increased firing of the carotid sinus nerve and modification of the breathing pattern. While much is known about the actions of individual neurotransmitters in this system, very little is known about how multiple neurotransmitters may integrate to shape the output of the carotid body. Recent data has indicated that the neurotransmitter histamine does not excite isolated Type I cells despite being released during hypoxia and its receptors being present on the Type I cells. Here the hypothesis that histamine might modulate an excitatory neurotransmitter such as acetylcholine was tested. Using calcium imaging techniques it was found that histamine attenuated calcium signaling events initiated by the muscarinic acetylcholine receptor agonist acetyl-beta-methylcholine via an H3 receptor mediated mechanism. In summary, these results suggest that when acetylcholine and histamine are co-released from Type I cells in response to chemostimuli, histamine may attenuate or modulate the excitatory presynaptic actions of acetylcholine.
Collapse
|
22
|
Sander K, Kottke T, Stark H. Histamine H3 Receptor Antagonists Go to Clinics. Biol Pharm Bull 2008; 31:2163-81. [DOI: 10.1248/bpb.31.2163] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| | - Tim Kottke
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| | - Holger Stark
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie
| |
Collapse
|