1
|
Snider NT, Hollenberg PF. Assay of Endocannabinoid Oxidation by Cytochrome P450. Methods Mol Biol 2023; 2576:317-327. [PMID: 36152199 DOI: 10.1007/978-1-0716-2728-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome P450 enzymes are a large family of heme-containing proteins that have important functions in the biotransformation of xenobiotics, including pharmacologic and environmental agents, as well as endogenously produced chemicals with broad structural and functional diversity. Anandamide and 2-arachidonoylglycerol (2-AG) are substrates for P450s expressed in multiple tissues, leading to the production of a diverse set of mono- and di-oxygenated metabolites. This chapter describes tools and methods that have been used to identify major endocannabinoid metabolizing P450s and their corresponding products using subcellular tissue fractions, cultured cells, and purified recombinant enzymes in a reconstituted system.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
3
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Chen X, Chen Y, Xie S, Wang X, Wu Y, Zhang H, Zhao Y, Jia J, Wang B, Li W, Tang J, Xiao X. The mechanism of Renshen-Fuzi herb pair for treating heart failure-Integrating a cardiovascular pharmacological assessment with serum metabolomics. Front Pharmacol 2022; 13:995796. [PMID: 36545315 PMCID: PMC9760753 DOI: 10.3389/fphar.2022.995796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Medicine, Chengdu University of Chinese Medicine, Chengdu, China,Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yulong Chen
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyang Xie
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Zhao
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinhao Jia
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Wang
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Jinfa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| |
Collapse
|
5
|
Synergistic action between a synthetic cannabinoid compound and tramadol in neuropathic pain rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:509-527. [PMID: 36651363 DOI: 10.2478/acph-2022-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
In the present study the interaction of cannabinoid, PhAR-DBH-Me [(R, Z)-18-((1S,4S)-5-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)-18-oxooctadec-9-en-7-ylphenyl-acetate] and tramadol in two neuropathy models, as well as their possible toxic effects, was analyzed. The anti-allodynic effect of PhAR-DBH-Me, tramadol, or their combination, were evaluated in neuropathic rats. Furthermore, the effective dose 35 (as the 35 % of the anti allodynic effect) was calculated from the maximum effect of each drug. Moreover, the isobolographic analysis was performed to determine the type of interaction between the drugs. A plasma acute toxicity study was carried out to assess the hepatic, renal, and heart functions after an individual or combined administration of the drugs, as well as histology using the hematoxylin-eosin or Masson-trichome method. PhAR-DBH-Me, tramadol, and their combination produced an antiallodynic effect on spinal nerve ligation (SNL) and cisplatin-induced neuropathic pain in rats. Moreover, PhAR-DBH-Me and tramadol combination showed a synergistic interaction in neuropathic pain rats induced by SNL but not for cisplatin-induced neuropathy. On the other hand, changes in renal and hepatic functions were not observed. Likewise, analysis of liver, kidney and heart histology showed no alterations compared with controls. Results show that the combination of PhAR-DBH-Me and tramadol attenuates the allodynia in SNL rats; the acute toxicology analysis suggests that this combination could be considered safe in administered doses.
Collapse
|
6
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Present address: Department of Pathology and Laboratory Medicine, University of British Columbia / BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Jean-Philippe C Lavoie
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche (CNR), 80078 Pozzuoli, Italy; Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, École de Nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC G1V 0A6, Canada; Joint International Unit between the Consiglio Nazionale delle Ricerche (Italy) and Université Laval (Canada) on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu)
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département of médecine, Faculté de médecine, Université Laval, Québec City, QC G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Kutuk MO, Tufan AE, Topal Z, Acikbas U, Guler G, Karakas B, Basaga H, Kilicaslan F, Altintas E, Aka Y, Kutuk O. CYP450 2D6 and 2C19 genotypes in ADHD: not related with treatment resistance but with over-representation of 2C19 ultra-metabolizers. Drug Metab Pers Ther 2022; 37:261-269. [PMID: 35218180 DOI: 10.1515/dmpt-2021-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cytochrome P450 (CYP450) is a major enzyme system involved in drug metabolism as well as regulation of brain function. Although individual variability in CYP enzymes have been studied in terms of personality traits and treatment effects, no study up to now evaluated CYP polymorphisms in children with attention deficit/hyperactivity disorder (ADHD). We aimed to define the genetic profiles of CYP2D6 and CYP2C19 relevant alleles in children with ADHD according to treatment status and compare the frequencies according to past results. METHODS Three hundred and seventeen patients with ADHD-Combined Presentation were enrolled; symptom severity was evaluated by parents and clinicians while adverse effects of previous treatments were evaluated with parent and child reports. Reverse blotting on strip assays was used for genotyping and descriptive and bivariate analyses were conducted. A p-value was set at 0.05 (two-tailed). RESULTS Children were divided into treatment-naïve (n=194, 61.2%) and treatment-resistant (n=123, 38.8%) groups. Within the whole sample PM, EM and UM status according to 2D6 were 3.8% (n=12), 94.3% (n=299) and 21.9% (n=6); respectively. PM, IM, EM and UM status according to 2C19 were 2.5% (n=8), 19.8% (n=63), 48.6% (n=154) and 29.0% (n=92), respectively. No relationship with treatment resistance, comorbidity or gender could be found. Importantly, CYP2C19 UMs were significantly more frequent in ADHD patients compared to previous studies in the general population. CONCLUSIONS CYPs may be a rewarding avenue of research to elucidate the etiology and treatment of patients with ADHD.
Collapse
Affiliation(s)
- Meryem Ozlem Kutuk
- Department of Child and Adolescent Psychiatry, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Abant Izzet Baysal University, School of Medicine, Bolu, Turkey
| | - Zehra Topal
- Department of Child and Adolescent Psychiatry, Gaziantep University, Gaziantep, Turkey
| | | | - Gulen Guler
- Department of Child and Adolescent Psychiatry, Mersin University School of Medicine, Mersin, Turkey
| | - Bahriye Karakas
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fethiye Kilicaslan
- Department of Child and Adolescent Psychiatry, Harran University, Sanliurfa, Turkey
| | - Ebru Altintas
- Department of Psychiatry, Baskent University, Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Yeliz Aka
- Department of Immunology, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Department of Immunology, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| |
Collapse
|
8
|
Di Nunno N, Esposito M, Argo A, Salerno M, Sessa F. Pharmacogenetics and Forensic Toxicology: A New Step towards a Multidisciplinary Approach. TOXICS 2021; 9:292. [PMID: 34822683 PMCID: PMC8620299 DOI: 10.3390/toxics9110292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/24/2023]
Abstract
Pharmacogenetics analyzes the individual behavior of DNA genes after the administration of a drug. Pharmacogenetic research has been implemented in recent years thanks to the improvement in genome sequencing techniques and molecular genetics. In addition to medical purposes, pharmacogenetics can constitute an important tool for clarifying the interpretation of toxicological data in post-mortem examinations, sometimes crucial for determining the cause and modality of death. The purpose of this systematic literature review is not only to raise awareness among the forensic community concerning pharmacogenetics, but also to provide a workflow for forensic toxicologists to follow in cases of unknown causes of death related to drug use/abuse. The scientific community is called on to work hard in order to supply evidence in forensic practice, demonstrating that this investigation could become an essential tool both in civil and forensic contexts. The following keywords were used for the search engine: (pharmacogenetics) AND (forensic toxicology); (pharmacogenetics) AND (post-mortem); (pharmacogenetics) AND (forensic science); and (pharmacogenetics) AND (autopsy). A total of 125 articles were collected. Of these, 29 articles were included in this systematic review. A total of 75% of the included studies were original articles (n = 21) and 25% were case reports (n = 7). A total of 78% (n = 22) of the studies involved deceased people for whom a complete autopsy was performed, while 22% (n = 6) involved people in good health who were given a drug with a subsequent pharmacogenetic study. The most studied drugs were opioids (codeine, morphine, and methadone), followed by antidepressants (tricyclic antidepressants and venlafaxine). Furthermore, all studies highlighted the importance of a pharmacogenetics study in drug-related deaths, especially in cases of non-overdose of drugs of abuse. This study highlights the importance of forensic pharmacogenetics, a field of toxicology still not fully understood, which is of great help in cases of sudden death, deaths from overdose, deaths after the administration of a drug, and also in cases of complaint of medical malpractice.
Collapse
Affiliation(s)
- Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 73100 Lecce, Italy
| | - Massimiliano Esposito
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Antonina Argo
- Department of Health Promotion Sciences, Section of Legal Medicine, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
10
|
Deodhar M, Turgeon J, Michaud V. Contribution of CYP2D6 Functional Activity to Oxycodone Efficacy in Pain Management: Genetic Polymorphisms, Phenoconversion, and Tissue-Selective Metabolism. Pharmaceutics 2021; 13:1466. [PMID: 34575542 PMCID: PMC8468517 DOI: 10.3390/pharmaceutics13091466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 02/01/2023] Open
Abstract
Oxycodone is a widely used opioid for the management of chronic pain. Analgesic effects observed following the administration of oxycodone are mediated mostly by agonistic effects on the μ-opioid receptor. Wide inter-subject variability observed in oxycodone efficacy could be explained by polymorphisms in the gene coding for the μ-opioid receptor (OPRM1). In humans, oxycodone is converted into several metabolites, particularly into oxymorphone, an active metabolite with potent μ-opioid receptor agonist activity. The CYP2D6 enzyme is principally responsible for the conversion of oxycodone to oxymorphone. The CYP2D6 gene is highly polymorphic with encoded protein activities, ranging from non-functioning to high-functioning enzymes. Several pharmacogenetic studies have shown the importance of CYP2D6-mediated conversion of oxycodone to oxymorphone for analgesic efficacy. Pharmacogenetic testing could optimize oxycodone therapy and help achieve adequate pain control, avoiding harmful side effects. However, the most recent Clinical Pharmacogenetics Implementation Consortium guidelines fell short of recommending pharmacogenomic testing for oxycodone treatment. In this review, we (1) analyze pharmacogenomic and drug-interaction studies to delineate the association between CYP2D6 activity and oxycodone efficacy, (2) review evidence from CYP3A4 drug-interaction studies to untangle the nature of oxycodone metabolism and its efficacy, (3) report on the current knowledge linking the efficacy of oxycodone to OPRM1 variants, and (4) discuss the potential role of CYP2D6 brain expression on the local formation of oxymorphone. In conclusion, we opine that pharmacogenetic testing, especially for CYP2D6 with considerations of phenoconversion due to concomitant drug administration, should be appraised to improve oxycodone efficacy.
Collapse
Affiliation(s)
- Malavika Deodhar
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Veronique Michaud
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
Magliocco G, Desmeules J, Matthey A, Quirós-Guerrero LM, Bararpour N, Joye T, Marcourt L, F Queiroz E, Wolfender JL, Gloor Y, Thomas A, Daali Y. METABOLOMICS REVEALS BIOMARKERS IN HUMAN URINE AND PLASMA TO PREDICT CYP2D6 ACTIVITY. Br J Pharmacol 2021; 178:4708-4725. [PMID: 34363609 PMCID: PMC9290485 DOI: 10.1111/bph.15651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Individualized assessment of cytochrome P450 2D6 (CYP2D6) activity is usually performed through phenotyping following administration of a probe drug to measure the enzyme's activity. To avoid any iatrogenic harm (allergic drug reaction, dosing error) related to the probe drug, the development of non‐burdensome tools for real‐time phenotyping of CYP2D6 could significantly contribute to precision medicine. This study focuses on the identification of markers of the CYP2D6 enzyme in human biofluids using an LC‐high‐resolution mass spectrometry‐based metabolomic approach. Experimental Approach Plasma and urine samples from healthy volunteers were analysed before and after intake of a daily dose of paroxetine 20 mg over 7 days. CYP2D6 genotyping and phenotyping, using single oral dose of dextromethorphan 5 mg, were also performed in all participants. Key Results We report four metabolites of solanidine and two unknown compounds as possible novel CYP2D6 markers. Mean relative intensities of these features were significantly reduced during the inhibition session compared with the control session (n = 37). Semi‐quantitative analysis showed that the largest decrease (−85%) was observed for the ion m/z 432.3108 normalized to solanidine (m/z 398.3417). Mean relative intensities of these ions were significantly higher in the CYP2D6 normal–ultrarapid metabolizer group (n = 37) compared with the poor metabolizer group (n = 6). Solanidine intensity was more than 15 times higher in CYP2D6‐deficient individuals compared with other volunteers. Conclusion and Implications The applied untargeted metabolomic strategy identified potential novel markers capable of semi‐quantitatively predicting CYP2D6 activity, a promising discovery for personalized medicine.
Collapse
Affiliation(s)
- Gaëlle Magliocco
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Clinical Research Center, Geneva University Hospitals, Geneva, Switzerland
| | - Alain Matthey
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Clinical Research Center, Geneva University Hospitals, Geneva, Switzerland
| | - Luis M Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Nasim Bararpour
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Timothée Joye
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
13
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Burstein SH. Eicosanoid mediation of cannabinoid actions. Bioorg Med Chem 2019; 27:2718-2728. [DOI: 10.1016/j.bmc.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
|
17
|
Eap CB. Personalized prescribing: a new medical model for clinical implementation of psychotropic drugs. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27757065 PMCID: PMC5067148 DOI: 10.31887/dcns.2016.18.3/ceap] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of pharmacogenetic tests was already being proposed in psychiatry in the early 2000s because genetic factors were known to influence drug pharmacokinetics and pharmacodynamics. However, sufficient levels of evidence to justify routine use have been achieved for only a few tests (eg, major histocompatibility complex, class I, B, allele 1502 [HLA-B*1502] for carbamazepine in epilepsy and bipolar disorders); many findings are too preliminary or, when replicated, of low clinical relevance because of a small effect size. Although drug selection and dose adaptation according to cytochrome P450 genotypes are sound, a large number of patients need to be genotyped in order to prevent one case of severe side effect and/or nonresponse. The decrease in cost for genetic analysis shifts the cost: benefit ratio toward increasing use of pharmacogenetic tests. However, they have to be combined with careful clinical evaluations and other tools (eg, therapeutic drug monitoring and phenotyping) to contribute to the general aim of providing the best care for psychiatric patients.
Collapse
Affiliation(s)
- Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland; School of Pharmacy, Department of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
18
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
19
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
21
|
Panza F, Lozupone M, Stella E, Miscio G, La Montagna M, Daniele A, di Mauro L, Bellomo A, Logroscino G, Greco A, Seripa D. The pharmacogenetic road to avoid adverse drug reactions and therapeutic failures in revolving door patients with psychiatric illnesses: focus on the CYP2D6 isoenzymes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1232148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Stephens DB, de Leon J. CYP2D6 ultra-rapid metabolizer phenotype not associated with attempted suicide in a large sample of psychiatric inpatients. Pharmacogenomics 2016; 17:1295-304. [PMID: 27463022 DOI: 10.2217/pgs-2016-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Suicide accounts for over 800,000 deaths per year worldwide and is the tenth-leading cause of mortality in USA. Several studies have investigated cytochrome P450 CYP2D6 ultra-rapid metabolizer (UM) phenotype in relation to suicidality, with mixed results. This study tested the hypothesis of increased suicide risk among CYP2D6 UMs. PATIENTS & METHODS Among the 4264 state psychiatric hospital inpatients included, 2435 (57%) reported a prior suicide attempt. RESULTS No association between UM status and attempted suicide was observed in bivariate (odds ratio: 0.87; 95% CI: 0.53-1.25), multivariate (adjusted odds ratio: 0.89; 95% CI: 0.55-1.46), or risk-stratified analyses. CONCLUSION These results contrast with prior reports of increased suicidality among CYP2D6 UMs and highlight the pressing need to identify reliable screening methods to better address this persistent public health problem.
Collapse
Affiliation(s)
- Dustin B Stephens
- Department of Behavioral Science, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jose de Leon
- Department of Psychiatry, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
24
|
Panza F, Lozupone M, Stella E, Lofano L, Gravina C, Urbano M, Daniele A, Bellomo A, Logroscino G, Greco A, Seripa D. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders. Expert Rev Neurother 2016; 16:1357-1369. [DOI: 10.1080/14737175.2016.1204913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Francesco Panza
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy.,b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Madia Lozupone
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Eleonora Stella
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Lucia Lofano
- e Psychiatric Unit, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy
| | - Carolina Gravina
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Maria Urbano
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Antonio Daniele
- f Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Antonello Bellomo
- d Psychiatric Unit, Department of Clinical and Experimental Medicine , University of Foggia , Foggia , Italy
| | - Giancarlo Logroscino
- b Neurodegenerative Diseases Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari "Aldo Moro" , Bari , Italy.,c Neurodegenerative Diseases Unit, Department of Clinical Research in Neurology , University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico" , Lecce , Italy
| | - Antonio Greco
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| | - Davide Seripa
- a Geriatric Unit and Geriatric Research Laboratory, Department of Medical Sciences , IRCCS Casa Sollievo della Sofferenza , Foggia , Italy
| |
Collapse
|
25
|
Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D. Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 2016; 21:1609-1619. [PMID: 27312874 DOI: 10.1016/j.drudis.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | - Mohammed Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Aaron Dadas
- The Ohio State University, Columbus, OH, USA
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (CNRS/INSERM), Montpellier, France
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
|
27
|
Ritter JK, Li G, Xia M, Boini K. Anandamide and its metabolites: what are their roles in the kidney? Front Biosci (Schol Ed) 2016; 8:264-77. [PMID: 27100705 DOI: 10.2741/s461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anandamide (AEA) is the N-acyl ethanolamide of arachidonic acid, an agonist of cannabinoid and non-cannabinoid receptors in the body. The kidneys are enriched in AEA and in enzymes that metabolize AEA, but the roles of AEA and its metabolites in the kidney remain poorly understood. This system likely is involved in the regulation of renal blood flow and hemodynamics and of tubular sodium and fluid reabsorption. It may act as a neuromodulator of the renal sympathetic nervous system. AEA and its cyclooxygenase-2 metabolites, the prostamides, in the renal medulla may represent a unique antihypertensive system involved in the long-term control of blood pressure. AEA and its metabolites are also implicated as modulators of inflammation and mediators of signaling in inflammation. AEA and its metabolites may be influential in chronic kidney disease states associated with inflammation and cardiovascular diseases associated with hyperhomocysteinemia. The current knowledge of the roles of AEA and its derivatives highlights the need for further research to define and potentially exploit the role of this endocannabinoid system in the kidney.
Collapse
Affiliation(s)
- Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA,
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Krishna Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Box 980613, 1217 E. Marshall Street, Richmond, VA
| |
Collapse
|
28
|
Walker VJ, Griffin AP, Hammar DK, Hollenberg PF. Metabolism of Anandamide by Human Cytochrome P450 2J2 in the Reconstituted System and Human Intestinal Microsomes. J Pharmacol Exp Ther 2016; 357:537-44. [PMID: 27000802 DOI: 10.1124/jpet.116.232553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, the incidence of inflammatory bowel diseases (IBD) is about 1 in 250 people in the United States. The disease is characterized by chronic or recurring inflammation of the gut. Because of the localization of the endocannabinoid system in the gastrointestinal tract, it may be a potential pharmacologic target for the treatment of IBD and other diseases. Fatty acid amide hydrolase (FAAH) is a potential candidate because it is upregulated in IBD. FAAH hydrolyzes and, as a consequence, inactivates anandamide (AEA), a prominent endocannabinoid. Inhibition of FAAH would lead to increases in the amount of AEA oxidized by cytochrome P450s (P450s). CYP2J2, the major P450 epoxygenase expressed in the heart, is also expressed in the intestine and has previously been reported to oxidize AEA. We have investigated the possibility that it may play a role in AEA metabolism in the gut and have demonstrated that purified human CYP2J2 metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) and several epoxygenated products, including the 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs), in the reconstituted system. Kinetic studies suggest that the KM values for these products range from approximately 10 to 468 μM and the kcat values from 0.2 to 23.3 pmol/min per picomole of P450. Human intestinal microsomes, which express CYP2J2, metabolize AEA to give the 5,6-, 8,9-, and 11,12-EET-EAs, as well as 20-HETE-EA. Studies using specific P450 inhibitors suggest that although CYP2J2 metabolizes AEA, it is not the primary P450 responsible for AEA metabolism in human intestines.
Collapse
Affiliation(s)
- Vyvyca J Walker
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Alisha P Griffin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Dagan K Hammar
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, Tien YC, Jeong H, Pan X, Shireman LM, Tay-Sontheimer J, Lin YS. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab Dispos 2016; 44:343-51. [PMID: 26681736 PMCID: PMC4767386 DOI: 10.1124/dmd.115.067900] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals.
Collapse
Affiliation(s)
- Timothy S Tracy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yun-Chen Tien
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xian Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Laura M Shireman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Jessica Tay-Sontheimer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| |
Collapse
|
30
|
Abstract
Cytochrome P450 enzymes are a large family of heme-containing proteins that have important functions in the biotransformation of xenobiotics, including pharmacologic and environmental agents, as well as of endogenously produced chemicals with broad structural and functional diversity. Anandamide and 2-arachidonoylglycerol (2-AG) are substrates for P450s expressed in multiple tissues, leading to the production of a diverse set of mono- and di-oxygenated metabolites. This chapter describes tools and methods that have been used to identify major endocannabinoid-metabolizing P450s and their corresponding products, by using subcellular tissue fractions, cultured cells, and purified recombinant enzymes in a reconstituted system.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Vyvyca J Walker
- Department of Medicine - Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
32
|
Ingelman-Sundberg M, Persson A, Jukic MM. Polymorphic expression of CYP2C19 and CYP2D6 in the developing and adult human brain causing variability in cognition, risk for depression and suicide: the search for the endogenous substrates. Pharmacogenomics 2015; 15:1841-4. [PMID: 25495406 DOI: 10.2217/pgs.14.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology & Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive. Pharmacol Res 2015; 97:7-15. [PMID: 25882247 DOI: 10.1016/j.phrs.2015.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022]
Abstract
We need better medicines to control acute and chronic pain. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) catalyze the deactivating hydrolysis of two classes of bioactive lipid mediators--fatty acid ethanolamides (FAEs) and epoxidized fatty acids (EpFAs), respectively--which are biogenetically distinct but share the ability to attenuate pain responses and inflammation. In these experiments, we evaluated the antihyperalgesic activity of small-molecule inhibitors of FAAH and sEH, administered alone or in combination, in two pain models: carrageenan-induced hyperalgesia in mice and streptozocin-induced allodynia in rats. When administered separately, the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea (TPPU) and the peripherally restricted FAAH inhibitor URB937 were highly active in the two models. The combination TPPU plus URB937 was markedly synergistic, as assessed using isobolographic analyses. The results of these experiments reveal the existence of a possible functional crosstalk between FAEs and EpFAs in regulating pain responses. Additionally, the results suggest that combinations of sEH and FAAH inhibitors might be exploited therapeutically to achieve greater analgesic efficacy.
Collapse
|
35
|
Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:366-76. [PMID: 25543004 DOI: 10.1016/j.bbalip.2014.12.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 01/18/2023]
Abstract
The naturally occurring mammalian endocannabinoids possess biological attributes that extend beyond interaction with cannabinoid receptors. These extended biological properties are the result of oxidative metabolism of the principal mammalian endocannabinoids arachidonoyl ethanolamide (anandamide; A-EA) and 2-arachidonoylglycerol (2-AG). Both endocannabinoids are oxidized by cyclo-oxygenase-2 (COX-2), but not by COX-1, to a series of prostaglandin derivatives (PGs) with quite different biological properties from those of the parent substrates. PG ethanolamides (prostamides, PG-EAs) and PG glyceryl esters (PG-Gs) are not only pharmacologically distinct from their parent endocannabinoids, they are distinct from the corresponding acidic PGs, and are differentiated from each other. Ethanolamides and glyceryl esters of the major prostanoids PGD2, PGE2, PGF2α, and PGI2 are formed by the various PG synthases, and thromboxane ethanolamides and glyceryl esters are not similarly produced. COX-2 is also of interest by virtue of its corollary central role in modulating endocannabinoid tone, providing a new therapeutic approach for treating pain and anxiety. Other major oxidative conversion pathways are provided for both A-EA and 2-AG by several lipoxygenases (LOXs), resulting in the formation of numerous hydroxyl metabolites. These do not necessarily represent inactivation pathways for endocannabinoids but may mimic or modulate the endocannabinoids or even display alternative pharmacology. Similarly, A-EA and 2-AG may be oxidized by P450 enzymes. Again a very diverse number of metabolites are formed, with either cannabinoid-like biological properties or an introduction of disparate pharmacology. The biological activity of epoxy and hydroxyl derivatives of the endocannabinoids remains to be fully elucidated. This review attempts to consolidate and compare the findings obtained to date in an increasingly important research area. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
|
36
|
Tay-Sontheimer J, Shireman LM, Beyer RP, Senn T, Witten D, Pearce RE, Gaedigk A, Fomban CLG, Lutz JD, Isoherranen N, Thummel KE, Fiehn O, Leeder JS, Lin YS. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics. Pharmacogenomics 2014; 15:1947-62. [PMID: 25521354 PMCID: PMC4486214 DOI: 10.2217/pgs.14.155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 01/15/2023] Open
Abstract
AIM We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. PATIENTS & METHODS Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. RESULTS A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. CONCLUSION Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping.
Collapse
Affiliation(s)
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Richard P Beyer
- Center for Ecogenetics & Environmental Health, University of Washington, Seattle, WA, USA
| | - Taurence Senn
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Daniela Witten
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Robin E Pearce
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Hospitals & Clinics, Kansas City, MO, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Hospitals & Clinics, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | - Justin D Lutz
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Oliver Fiehn
- UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Hospitals & Clinics, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
38
|
McDougle DR, Kambalyal A, Meling DD, Das A. Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. J Pharmacol Exp Ther 2014; 351:616-27. [PMID: 25277139 DOI: 10.1124/jpet.114.216598] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are arachidonic acid (AA) derivatives that are known to regulate human cardiovascular functions. CYP2J2 is the primary cytochrome P450 in the human heart and is most well known for the metabolism of AA to the biologically active epoxyeicosatrienoic acids. In this study, we demonstrate that both 2-AG and AEA are substrates for metabolism by CYP2J2 epoxygenase in the model membrane bilayers of nanodiscs. Reactions of CYP2J2 with AEA formed four AEA-epoxyeicosatrienoic acids, whereas incubations with 2-AG yielded detectable levels of only two 2-AG epoxides. Notably, 2-AG was shown to undergo enzymatic oxidative cleavage to form AA through a NADPH-dependent reaction with CYP2J2 and cytochrome P450 reductase. The formation of the predominant AEA and 2-AG epoxides was confirmed using microsomes prepared from the left myocardium of porcine and bovine heart tissues. The nuances of the ligand-protein interactions were further characterized using spectral titrations, stopped-flow small-molecule ligand egress, and molecular modeling. The experimental and theoretical data were in agreement, which showed that substitution of the AA carboxylic acid with the 2-AG ester-glycerol changes the binding interaction of these lipids within the CYP2J2 active site, leading to different product distributions. In summary, we present data for the functional metabolomics of AEA and 2-AG by a membrane-bound cardiovascular epoxygenase.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amogh Kambalyal
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Aditi Das
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
39
|
Fernández-Aranda F, Sauchelli S, Pastor A, Gonzalez ML, de la Torre R, Granero R, Jiménez-Murcia S, Baños R, Botella C, Fernández-Real JM, Fernández-García JC, Frühbeck G, Gómez-Ambrosi J, Rodríguez R, Tinahones FJ, Arcelus J, Fagundo AB, Agüera Z, Miró J, Casanueva FF. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament. PLoS One 2014; 9:e104534. [PMID: 25101961 PMCID: PMC4125187 DOI: 10.1371/journal.pone.0104534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI) however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1) examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA), temperament traits and plasma endocannabinoid concentrations; and 2) explore the association and interaction between MVPA, temperament, endocannabinoids and BMI. METHODS Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls). The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA. RESULTS Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG) were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039) and high MVPA levels were associated with elevated anandamide (AEA) levels (b = 0.16, p = .049) and N-oleylethanolamide (OEA) levels (b = 0.22, p = .004), as well as high Novelty seeking (b = 0.18, p<.001) and low Harm avoidance (b = -0.16, p<.001). CONCLUSIONS Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.
Collapse
Affiliation(s)
- Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail: (FF-A); (FFC)
| | - Sarah Sauchelli
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Antoni Pastor
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Rosa Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Psychological, Personality, Evaluation and Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Jose M. Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Jose C. Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Roser Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Jon Arcelus
- Eating Disorders Service, Glenfield University Hospital, Leicester, United Kingdom
| | - Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
| | - Zaida Agüera
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Miró
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
- Department of Medicine, Endocrinology Division, Santiago de Compostela University, Complejo Hospitalario Universitario, Santiago de Compostela, Spain
- * E-mail: (FF-A); (FFC)
| |
Collapse
|
40
|
Miller RT, Miksys S, Hoffmann E, Tyndale RF. Ethanol self-administration and nicotine treatment increase brain levels of CYP2D in African green monkeys. Br J Pharmacol 2014; 171:3077-88. [PMID: 24611668 PMCID: PMC4055207 DOI: 10.1111/bph.12652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE CYP2D6 metabolizes many centrally acting drugs, neurotoxins and endogenous neurochemicals, and differences in brain levels of CYP2D have been associated with brain function and drug response. Alcohol consumers and smokers have higher levels of CYP2D6 in brain, but not liver, suggesting ethanol and/or nicotine may induce human brain CYP2D6. We investigated the independent and combined effects of chronic ethanol self-administration and nicotine treatment on CYP2D expression in African green monkeys. EXPERIMENTAL APPROACH Forty monkeys were randomized into control, ethanol-only, nicotine-only and ethanol + nicotine groups. Two groups voluntarily self-administered 10% ethanol in sucrose solution for 4 h·day(-1) , whereas two groups consumed sucrose solution on the same schedule. Two groups received daily s.c. injections of 0.5 mg·kg(-1) nicotine in saline bid, whereas two groups were injected with saline on the same schedule. KEY RESULTS Both nicotine and ethanol dose-dependently increased CYP2D in brain; brain mRNA was unaffected, and neither drug altered hepatic CYP2D protein or mRNA. The combination of ethanol and nicotine increased brain CYP2D protein levels to a greater extent than either drug alone (1.2-2.2-fold, P < 0.05 among the eight brain regions assessed). Immunohistochemistry revealed the induction of brain CYP2D protein within specific cell types and regions in the treatment groups. CONCLUSIONS AND IMPLICATIONS Ethanol and nicotine increase brain CYP2D protein levels in monkeys, in a region and treatment-specific manner, suggesting that CNS drug responses, neurodegeneration and personality may be affected among people who consume alcohol and/or nicotine.
Collapse
Affiliation(s)
- R T Miller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
41
|
Peñas-LLedó EM, LLerena A. CYP2D6 variation, behaviour and psychopathology: implications for pharmacogenomics-guided clinical trials. Br J Clin Pharmacol 2014; 77:673-83. [PMID: 24033670 PMCID: PMC3971983 DOI: 10.1111/bcp.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/11/2013] [Indexed: 12/16/2022] Open
Abstract
Individual and population differences in polymorphic cytochrome P450 enzyme function have been known for decades. The biological significance of these differences has now been deciphered with regard to drug metabolism, action and toxicity as well as disposition of endogenous substrates, including neuroactive compounds. While the cytochrome P450 enzymes occur abundantly in the liver, they are expressed in most tissues of the body, albeit in varying amounts, including the brain. The latter location of cytochrome P450s is highly pertinent for susceptibility to neuropsychiatric diseases, not to mention local drug metabolism at the site of psychotropic drug action in the brain. In the current era of personality medicine with companion theranostics (i.e. the fusion of therapeutics with diagnostics), this article underscores that such versatile biological roles of cytochrome P450s offer multiple points of entry for personalized medicine and rational therapeutics. We focus our discussion on CYP2D6, one of the most intensively researched drug and endogenous compound metabolism pathways, with a view to relevance for, and optimization of, pharmacogenomic-guided clinical trials. Working on the premise that CYP2D6 is related to human behaviour and certain personality traits such as serotonin and dopamine system function, we further suggest that the motivation of healthy volunteers to participate in clinical trials may in part be influenced by an under- or over-representation of certain CYP2D6 metabolic groups.
Collapse
Affiliation(s)
- Eva M Peñas-LLedó
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical SchoolBadajoz
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital and Medical SchoolBadajoz
- CIBERSAM, ISCIIIMadrid, Spain
| |
Collapse
|
42
|
Abstract
Delta⁹-tetrahydrocannabinol (THC) competes with the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) at cannabinoid receptors. This may cause adaptive changes in the endocannabinoid signaling cascade with possible consequences for the biological functions of the endocannabinoid system. We show that administration of a single oral dose of 20 mg THC to 30 healthy volunteers resulted in higher circulating concentrations of anandamide, 2-AG, palmitoyl ethanolamide, and oleoylethanolamide at 2 and 3 hours after administration as compared with placebo. At 2 hours after THC administration, changes in oleoylethanolamide plasma concentrations from baseline were linearly related to the THC plasma concentrations. In rats, treatment with the CB₁/CB₂ agonist WIN 55,212 also increased plasma endocannabinoid concentrations. However, this was associated with a decrease of ethanolamide endocannabinoids in specific brain regions including spinal cord, cortex, and hypothalamus; whereas 2-arachidonoyl glycerol increased in the cortex. Thus, administration of THC to human volunteers influenced the concentrations of circulating endocannabinoids, which was mimicked by WIN-55,212 in rats, suggesting that exogenous cannabinoids may lead to changes in the endocannabinoid system that can be detected in plasma.
Collapse
|
43
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
44
|
Bishay P, Häussler A, Lim HY, Oertel B, Galve-Roperh I, Ferreirós N, Tegeder I. Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology 2013; 71:204-15. [PMID: 23597506 DOI: 10.1016/j.neuropharm.2013.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023]
Abstract
Damaging of peripheral nerves may result in chronic neuropathic pain for which the likelihood is increased in the elderly. We assessed in mice if age-dependent alterations of endocannabinoids contributed to the heightened vulnerability to neuropathic pain at old age. We assessed nociception, endocannabinoids and the therapeutic efficacy of R-flurbiprofen in young and aged mice in the spared nerve injury model of neuropathic pain. R-flurbiprofen was used because it is able to reduce neuropathic pain in young mice in part by increasing anandamide. Aged mice developed stronger nociceptive hypersensitivity after sciatic nerve injury than young mice. This was associated with low anandamide levels in the dorsal root ganglia, spinal cord, thalamus and cortex, which further decreased after nerve injury. In aged mice, R-flurbiprofen had only weak antinociceptive efficacy and it failed to restore normal anandamide levels after nerve injury. In terms of the mechanisms, we found that fatty acid amide hydrolase (FAAH) which degrades anandamide, was upregulated after nerve injury at both ages, so that this upregulation likely did not account for the age-dependent differences. However, enzymes contributing to oxidative metabolism of anandamide, namely cyclooxygenase-1 and Cyp2D6, were increased in the brain of aged mice, possibly enhancing the oxidative breakdown of anandamide. This may overwhelm the capacity of R-flurbiprofen to restore anandamide homeostasis and may contribute to the heightened risk for neuropathic pain at old age.
Collapse
Affiliation(s)
- Philipp Bishay
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 2013; 18:273-87. [PMID: 22565785 DOI: 10.1038/mp.2012.42] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymorphic drug-metabolizing enzymes (DMEs) are responsible for the metabolism of the majority of psychotropic drugs. By explaining a large portion of variability in individual drug metabolism, pharmacogenetics offers a diagnostic tool in the burgeoning era of personalized medicine. This review updates existing evidence on the influence of pharmacogenetic variants on drug exposure and discusses the rationale for genetic testing in the clinical context. Dose adjustments based on pharmacogenetic knowledge are the first step to translate pharmacogenetics into clinical practice. However, also clinical factors, such as the consequences on toxicity and therapeutic failure, must be considered to provide clinical recommendations and assess the cost-effectiveness of pharmacogenetic treatment strategies. DME polymorphisms are relevant not only for clinical pharmacology and practice but also for research in psychiatry and neuroscience. Several DMEs, above all the cytochrome P (CYP) enzymes, are expressed in the brain, where they may contribute to the local biochemical homeostasis. Of particular interest is the possibility of DMEs playing a physiological role through their action on endogenous substrates, which may underlie the reported associations between genetic polymorphisms and cognitive function, personality and vulnerability to mental disorders. Neuroimaging studies have recently presented evidence of an effect of the CYP2D6 polymorphism on basic brain function. This review summarizes evidence on the effect of DME polymorphisms on brain function that adds to the well-known effects of DME polymorphisms on pharmacokinetics in explaining the range of phenotypes that are relevant to psychiatric practice.
Collapse
|
46
|
Abstract
Endocannabinoids are endogenous ligands of cannabinoid, vanilloid and peroxisome proliferator-activated receptors that activate multiple signal transduction pathways. Together with their receptor and the enzymes responsible for their synthesis and degradation, these compounds constitute the endocannabinoid system that has been recently shown to play, in humans, an important role in modulating several central and peripheral functions including reproduction. Given the relevance of the system, drugs that are able to interfere with the activity of endocannabinoids are currently considered as candidates for the treatment of various diseases. In this review, we will summarise the current knowledge regarding the effects of endocannabinoids in female reproductive organs. In particular, we will focus on some newly reported mechanisms that can affect endometrial plasticity both in physiological and in pathological conditions.
Collapse
Affiliation(s)
- Anna Maria Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milano, Italy.
| | | | | |
Collapse
|
47
|
Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos 2012; 40:2174-84. [PMID: 22904561 PMCID: PMC3477201 DOI: 10.1124/dmd.112.047530] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/17/2012] [Indexed: 11/22/2022] Open
Abstract
Abuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB(1)) receptor. Kinetic analysis using human liver microsomes and recombinant human protein identified CYP2C9 and CYP1A2 as major P450s involved in the oxidation of the JWH-018 and AM2201. In vitro metabolite formation mirrored human urinary metabolic profiles, and each of the primary enzymes exhibited high affinity (K(m) = 0.81-7.3 μM) and low to high reaction velocities (V(max) = 0.0053-2.7 nmol of product · min(-1) · nmol protein(-1)). The contribution of CYP2C19, 2D6, 2E1, and 3A4 in the hepatic metabolic clearance of these synthetic cannabinoids was minimal (f(m) = <0.2). In vitro studies demonstrated that the primary metabolites produced in humans display high affinity and intrinsic activity at the CB(1) receptor, which was attenuated by the CB(1) receptor antagonist (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (O-2050). Results from the present study provide critical, missing data related to potential toxicological properties of "K2" parent compounds and their human metabolites, including mechanism(s) of action at cannabinoid receptors.
Collapse
Affiliation(s)
- Krishna C Chimalakonda
- Departments of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AK 72205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peñas-Lledó EM, Blasco-Fontecilla H, Dorado P, Vaquero-Lorenzo C, Baca-García E, Llerena A. CYP2D6 and the severity of suicide attempts. Pharmacogenomics 2012; 13:179-84. [DOI: 10.2217/pgs.11.146] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Among people who die by suicide, an increased frequency of CYP2D6 active gene multiplication has been described. Therefore, the present study analyzed the relationship between the severity of the suicidal intent and CYP2D6 number of active genes among survivors. Materials & methods: A group of 342 individuals were evaluated with Beck Suicide Intent Scale within 24 h of the failed attempt. ‘Severe’ suicide attempters were classified as those scoring above percentile 75 in the objective circumstances section of the Suicide Intent Scale Scale. A group of 377 healthy controls were also genotyped. Results: A higher number of ‘severe’ suicide attempters carrying ≥2 active CYP2D6 genes as compared with the rest of the patients population (p < 0.01) or the healthy control group (p < 0.01) was found. Conclusion: Considering that ‘severe’ suicide attempters are more likely eventually to die by suicide, CYP2D6 genetic polymorphism might be of use as a biomarker of death by suicide, which is in agreement with previous findings. Original submitted: 17 July 2011; Revision submitted: 21 September 2011
Collapse
Affiliation(s)
- Eva M Peñas-Lledó
- CICAB, Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Hilario Blasco-Fontecilla
- Department of Psychiatry at Fundación Jimenez Diaz Hospital, Autónoma University, Madrid, Spain
- Centro de Investigación Biomedica en Red en el Área de Salud Mental (CIBERSAM), Madrid, Spain
| | - Pedro Dorado
- CICAB, Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Concepción Vaquero-Lorenzo
- Department of Psychiatry at Fundación Jimenez Diaz Hospital, Autónoma University, Madrid, Spain
- Biology Department, Sciences Faculty-Autónoma University (UAM), Madrid, Spain
| | - Enrique Baca-García
- Department of Psychiatry at Fundación Jimenez Diaz Hospital, Autónoma University, Madrid, Spain
- Centro de Investigación Biomedica en Red en el Área de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Psychiatry at the New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Adrián Llerena
- CIS Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
49
|
Wagner K, Inceoglu B, Hammock BD. Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception. Prostaglandins Other Lipid Mediat 2011; 96:76-83. [PMID: 21854866 DOI: 10.1016/j.prostaglandins.2011.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/28/2011] [Accepted: 08/02/2011] [Indexed: 01/17/2023]
Abstract
The soluble epoxide hydrolase (sEH) enzyme regulates the levels of endogenous epoxygenated fatty acid (EFA) lipid metabolites by rapidly degrading these molecules. The EFAs have pleiotropic biological activities including the modulation of nociceptive signaling. Recent findings indicate that the EFAs, in particular the arachidonic acid (AA) derived epoxyeicosatrienoic acids (EETs), the docosahexaenoic acid (DHA) derived epoxydocosapentaenoic acids (EpDPEs) and eicosapentaenoic acid (EPA) derived epoxyeicosatetraenoic acids (EpETEs) are natural signaling molecules. The tight regulation of these metabolites speaks to their importance in regulating biological functions. In the past several years work on EFAs in regard to their activities in the nervous system evolved to demonstrate that these molecules are anti-inflammatory and anti-nociceptive. Here we focus on the recent advances in understanding the effects of sEH inhibition and increased EFAs on the nociceptive system and their ability to reduce pain. Evidence of their role in modulating pain signaling is given by their direct application and by inhibiting their degradation in various models of pain. Moreover, there is mounting evidence of EFAs role in the crosstalk between major nociceptive and anti-nociceptive systems which is reviewed herein. Overall the fundamental knowledge generated within the past decade indicates that orally bioavailable small molecule inhibitors of sEH may find a place in the treatment of a number of diverse painful conditions including inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Karen Wagner
- Department of Entomology and UC Davis Cancer Center, University of California Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
50
|
Oguro A, Sakamoto K, Funae Y, Imaoka S. Overexpression of CYP3A4, but not of CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug Metab Pharmacokinet 2011; 26:407-15. [PMID: 21566342 DOI: 10.2133/dmpk.dmpk-11-rg-017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450s (P450s) contribute to carcinogenesis by activating procarcinogens and also metabolize anti-cancer drugs. The activity and protein levels of P450s are important in cancer risk and in cancer therapy. In this study, we found that overexpression of CYP3A4 induced growth of a human hepatoma cell line, Hep3B. Overexpression of CYP2D6, by comparison, decreased cell growth. An inhibitor of CYP3A4, ketoconazole, significantly suppressed the growth of Hep3B cells overexpressing CYP3A4, but an inhibitor of CYP2D6, quinidine, did not restore Hep3B cell growth to baseline levels. Overexpression of CYP3A4 increased the production of reactive oxygen species, but this was not the cause of the CYP3A4-induced growth. Previously, we showed that CYP3A4 can produce epoxyeicosatrienoic acids (EETs) from arachidonic acid. The CYP3A4-enhanced cell growth was attenuated by a putative EET receptor antagonist, 14,15-EEZE. CYP3A4 promoted progression of the cell cycle from the G1 to the S phase. CYP3A4 also induced a hypoxic response of Hep3B cells, detected as enhanced erythropoietin gene expression (a typical hypoxic response). The cell growth promoted by CYP3A4 was inhibited by PI3K inhibitor LY294002. These results suggest that CYP3A4 plays an important role in tumor progression, independent of the activation of carcinogens and metabolism of anti-cancer drugs.
Collapse
Affiliation(s)
- Ami Oguro
- Research Center for Environmental Bioscience and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | | | | | | |
Collapse
|