1
|
Banshoya K, Machida A, Kawamura S, Yamada T, Okada R, Kawamoto Y, Kimura H, Shibata S, Hieda Y, Kaneo Y, Tanaka T, Ohnishi M. Development of a Water-Soluble Nanomicellar Formulation Loaded with Trans-Resveratrol Using Polyethylene Glycol Monostearate for the Treatment of Intracerebral Hemorrhage. Pharmaceutics 2024; 16:1462. [PMID: 39598585 PMCID: PMC11597214 DOI: 10.3390/pharmaceutics16111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Trans-resveratrol (Res) has been reported to possess many biological activities, including neuroprotective effects, owing to its anti-inflammatory and antioxidant properties. However, Res has very low water solubility, which limits its therapeutic application. In this work, we formulated water-soluble micellar formulations incorporating Res using polyethylene glycol monostearate (stPEG). Methods: These formulations (stPEG/Res) were developed using five types of stPEG containing 10, 25, 40, 55 and 140 PEG repeat units. The formulations were characterized for Res content, water solubility, particle size, zeta potential, precipitation, biodistribution, and efficacy against neuronal and motor dysfunction in intracerebral hemorrhage (ICH). Results: Intravenous administration of stPEG40/Res, which demonstrated particle size, water solubility, and biodistribution properties suitable for intravenous administration, suppressed neurological and motor dysfunction following in a collagenase-induced ICH mouse model. These effects were inhibited by zinc protoporphyrin-9, an inhibitor of the antioxidant enzyme heme oxygenase-1, suggesting that Res contributes to antioxidant enzyme expression and anti-inflammatory activity. Conclusions: The stPEG/Res micellar formulation developed in this study may offer a promising therapeutic approach for ICH treatment.
Collapse
Affiliation(s)
- Kengo Banshoya
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Aoi Machida
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan
| | - Saki Kawamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Tetsuhiro Yamada
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Riko Okada
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Yui Kawamoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Hikaru Kimura
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Pharmacy Department, Yamaguchi University Hospital, Ube 755-8505, Yamaguchi, Japan
| | - Sachi Shibata
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja 719-1197, Okayama, Japan;
| | - Yuhzo Hieda
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Yoshiharu Kaneo
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Tetsuro Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
| | - Masatoshi Ohnishi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan; (A.M.); (S.K.); (T.Y.); (R.O.); (Y.K.); (H.K.); (Y.H.); (Y.K.); (T.T.)
- Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Hiroshima, Japan
| |
Collapse
|
2
|
Soares AR, Picciotto MR. Nicotinic regulation of microglia: potential contributions to addiction. J Neural Transm (Vienna) 2024; 131:425-435. [PMID: 37778006 PMCID: PMC11189589 DOI: 10.1007/s00702-023-02703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street-3rd floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
3
|
Schupper AJ, Khorasanizadeh M, Rossitto CP, Foster LD, Kellner CP, Suarez JI, Qureshi AI, Majidi S. Cigarette Smoking as a Risk Factor for Hematoma Expansion in Primary Intracerebral Hemorrhage: Analysis From a Randomized Clinical Trial. J Am Heart Assoc 2023; 12:e030431. [PMID: 37522176 PMCID: PMC10492975 DOI: 10.1161/jaha.123.030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Background Cigarette smoking is a well-known risk factor for ischemic and hemorrhagic stroke. We evaluated the impact of smoking status on hematoma expansion and clinical outcome in patients with primary intracerebral hemorrhage. Methods and Results This is a post hoc exploratory analysis of the ATACH (Antihypertensive Treatment at Acute Cerebral Hemorrhage)-2 trial. Patients with intracerebral hemorrhage were randomized into intensive blood pressure lowering (systolic blood pressure, <139 mm Hg) versus standard blood pressure lowering (systolic blood pressure, 140-179 mm Hg) in this study. We compared the demographic characteristics; hematoma size, location, and expansion rate; and clinical outcome based on subjects' smoking status. Of a total of 914 patients in the trial with known smoking status, 439 (48%) patients were ever smokers (264 current smokers and 175 former smokers). Current and former smokers were younger and more likely to be men. Baseline Glasgow Coma Scale score and initial hematoma size did not vary based on smoking status. Ever smokers had higher rates of thalamic hemorrhage (42% versus 34%) and intraventricular hemorrhage (29% versus 23%); this rate was highest among former smokers versus current smokers (49% versus 35%, respectively). Ever smokers had a higher rate of hematoma expansion in 24 hours (adjusted relative risk [RR] [95% CI], 1.46 [1.08-1.96]) compared with nonsmokers on multivariate analysis. There was no significant difference in the rate of death and disability at 90 days between the 2 groups (adjusted RR [95% CI], 1.18 [0.998-1.40]). Conclusions Our analysis demonstrates cigarette smoking as an independent predictor for hematoma expansion. There was no significant difference in death and disability based on smoking status.
Collapse
Affiliation(s)
| | | | | | - Lydia D. Foster
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSC
| | | | - Jose I. Suarez
- Department of NeurologyJohns Hopkins HospitalBaltimoreMD
| | - Adnan I. Qureshi
- Zeenat Qureshi Stroke Institute and Department of NeurologyUniversity of MissouriColumbiaMO
| | - Shahram Majidi
- Department of NeurosurgeryMount Sinai Health SystemNew YorkNY
| |
Collapse
|
4
|
Ohnishi M, Machida A, Deguchi M, Takiyama N, Kurose Y, Inoue A. Long-term Stimulation of α7 Nicotinic Acetylcholine Receptor Rescues Hemorrhagic Neuron Loss via Apoptosis of M1 Microglia. J Neuroimmune Pharmacol 2023; 18:160-168. [PMID: 37145341 DOI: 10.1007/s11481-023-10065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
We previously revealed that long-term treatment with nicotine suppresses microglial activation, resulting in a protective effect against thrombin-induced shrinkage of the striatal tissue in organotypic slice cultures. Here, the effect of nicotine on impaired M1 and protective M2 microglial polarization was investigated using the BV-2 microglial cell line in the presence or absence of thrombin. Following nicotine treatment, α7 nicotinic acetylcholine receptor expression transiently increased and then gradually decreased until 14 days. Treatment with nicotine for 14 days slightly polarized M0 microglia to M2b and d subtypes. Co-exposure of thrombin and low concentration of interferon-γ recruited inducible NO synthase (iNOS)- and interleukin-1β-double-positive M1 microglia in a thrombin-concentration-dependent manner. Treatment with nicotine for 14 days significantly decreased the thrombin-induced increase of iNOS mRNA levels and conversely showed a tendency to increase arginase1 mRNA levels. Moreover, treatment with nicotine for 14 days suppressed thrombin-induced phosphorylation of p38 MAPK through the α7 receptor. Repeated intraperitoneal administration of α7 agonist PNU-282987 for 14 days selectively evoked the apoptosis of iNOS-positive M1 microglia at the perihematomal area and showed a neuroprotective effect in an in vivo intracerebral hemorrhage model. These findings revealed that long-term stimulation of α7 receptor causes suppression of thrombin-induced activation of p38 MAPK followed by apoptosis in neuropathic M1 microglia.
Collapse
Affiliation(s)
- Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Aoi Machida
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Moemi Deguchi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Nami Takiyama
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Yuri Kurose
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Atsuko Inoue
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
5
|
Obara K, Shirai K, Hamada Y, Arakawa N, Hasegawa A, Takaoka N, Aki R, Hoffman RM, Amoh Y. Direct implantation of hair-follicle-associated pluripotent (HAP) stem cells repairs intracerebral hemorrhage and reduces neuroinflammation in mouse model. PLoS One 2023; 18:e0280304. [PMID: 36638123 PMCID: PMC9838830 DOI: 10.1371/journal.pone.0280304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a leading cause of mortality with ineffective treatment. Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into neurons, glial cells and many other types of cells. HAP stem cells have been shown to repair peripheral-nerve and spinal-cord injury in mouse models. In the present study, HAP stem cells from C57BL/6J mice were implanted into the injured brain of C57BL/6J or nude mice with induced ICH. After allo transplantation, HAP stem cells differentiated to neurons, astrocytes, oligodendrocytes, and microglia in the ICH site of nude mice. After autologous transplantation in C57BL/6J mice, HAP stem cells suppressed astrocyte and microglia infiltration in the injured brain. The mRNA expression levels of IL-10 and TGF-β1, measured by quantitative Real-Time RT-PCR, in the brain of C57BL/6J mice with ICH was increased by HAP-stem-cell implantation compared to the non-implanted mice. Quantitative sensorimotor function analysis, with modified limb-placing test and the cylinder test, demonstrated a significant functional improvement in the HAP-stem-cell-implanted C57BL/6J mice, compared to non-implanted mice. HAP stem cells have critical advantages over induced pluripotent stem cells, embryonic stem cells as they do not develop tumors, are autologous, and do not require genetic manipulation. The present study demonstrates future clinical potential of HAP-stem-cell repair of ICH, currently a recalcitrant disease.
Collapse
Affiliation(s)
- Koya Obara
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kyoumi Shirai
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nobuko Arakawa
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayami Hasegawa
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Nanako Takaoka
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryoichi Aki
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, California, United States of America
- Department of Surgery, University of California San Diego, San Diego, California, United States of America
- * E-mail: (YA); (RMH)
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail: (YA); (RMH)
| |
Collapse
|
6
|
A Nurr1 ligand C-DIM12 attenuates brain inflammation and improves functional recovery after intracerebral hemorrhage in mice. Sci Rep 2022; 12:11009. [PMID: 35773404 PMCID: PMC9246855 DOI: 10.1038/s41598-022-15178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another Nurr1 ligand that recognizes a domain of Nurr1 different from the ligand-binding domain. In the present study, mice were treated daily with C-DIM12 (50 or 100 mg/kg, p.o.) or amodiaquine (40 mg/kg, i.p.), or twice daily with 1400 W (20 mg/kg, i.p.), an inducible nitric oxide synthase (iNOS) inhibitor, from 3 h after ICH induction by microinjection of collagenase into the striatum. C-DIM12 improved the recovery of neurological function and prevented neuron loss in the hematoma, while suppressed activation of microglia/macrophages and expression of inflammatory mediators interleukin-6 and CC chemokine ligand 2. In addition, C-DIM12 as well as amodiaquine preserved axonal structures in the internal capsule and axonal transport function. We also found that C-DIM12 and amodiaquine suppressed the increases of iNOS mRNA expression after ICH. Moreover, 1400 W improved neurological function and prevented neuron loss, activation of microglia/macrophages and axonal transport dysfunction. These results suggest that suppression of iNOS induction contributes to several features of the therapeutic effects of Nurr1 ligands.
Collapse
|
7
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Chronic Nicotine Exposure Increases Hematoma Expansion Following Collagenase-Induced Intracerebral Hemorrhage in Rats. Biomolecules 2022; 12:biom12050621. [PMID: 35625548 PMCID: PMC9138464 DOI: 10.3390/biom12050621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Spontaneous intracerebral hemorrhage (sICH) is a deadly stroke subtype, and tobacco use increases sICH risk. However epidemiological studies show that, there are no confirmatory studies showing the effect of tobacco use on sICH outcome. Therefore, we evaluated the effect of chronic nicotine exposure (as a surrogate for tobacco use) on outcomes following sICH. Young male and female rats were randomly assigned to either nicotine (4.5 mg/kg b.w. per day) or vehicle (saline) treatment (2–3 weeks) groups. sICH was induced by injecting collagenase into the right striatum. Neurological score and hematoma volume were determined 24 h post-sICH. The hematoma volumes in nicotine-treated male and female rats were significantly higher by 42% and 48% when compared to vehicle-treated male and female rats, respectively. Neurological deficits measured in terms of neurological score for the nicotine-treated male and female groups were significantly higher when compared to the respective vehicle-treated male and female groups. Our results show that chronic nicotine exposure increases hematoma volume post-sICH in rats of both sexes. Identifying the mechanism of nicotine-dependent increase in hematoma growth post-sICH will be crucial to understanding the detrimental effect of tobacco use on the severity of bleeding following intracerebral hemorrhage.
Collapse
|
9
|
Wang X, Zhang Y, Jia L, Li T, You C, Fang F. Effects of Smoking on Short-Term and Long-Term Mortality after Aneurysmal Subarachnoid Hemorrhage. Cerebrovasc Dis 2021; 51:214-224. [PMID: 34518447 DOI: 10.1159/000518730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The relationship between smoking and clinical outcomes after aneurysmal subarachnoid hemorrhage (aSAH) is poorly clarified, and current pieces of evidence are inconsistent. The purpose of this multicenter cohort study is therefore to explore the relationship between smoking and mortality as well as several complications after aSAH. METHODS Databases of patient records were from 4 tertiary hospitals. We assessed the impact of tobacco use and tobacco dose (categorized based on smoking index [SI]) on several complication and overall outcome variables. The primary outcome was mortality within the longest follow-up. Logistic models were used to investigate univariate and multivariate relationships between predictors and outcomes. We also developed a propensity score matching for smoking status by using all known confounders. RESULTS A total of 6,578 patients with aSAH were analyzed. Current smoking and former smoking did not show association with mortality within the longest follow-up (odds ratio [OR], 0.95, 95% confidence interval [CI]: 0.69-1.30, p = 0.726; OR, 0.66, 95% CI: 0.38-1.15, p = 0.139, respectively). In addition, patients who were current smokers showed an independent association with the decreased occurrence of hydrocephalus (OR, 0.60; 95% CI: 0.41-0.88; p = 0.009) after matching all known confounders. We also found moderate smoking (SI between 384 and 625) was associated with reduced mortality in hospital. CONCLUSIONS Our results indicated that in patients with aSAH, current smoking or former smoking was not associated with all-cause mortality up to 7-year follow-up.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China,
| | - Yu Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Tiangui Li
- Department of Neurosurgery, West China Longquan Hospital Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 35:862-886. [PMID: 34341912 DOI: 10.1007/s12028-021-01311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood-brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.
Collapse
|
11
|
Cho S, Rehni AK, Dave KR. Tobacco Use: A Major Risk Factor of Intracerebral Hemorrhage. J Stroke 2021; 23:37-50. [PMID: 33600701 PMCID: PMC7900392 DOI: 10.5853/jos.2020.04770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (sICH) is one of the deadliest subtypes of stroke, and no treatment is currently available. One of the major risk factors is tobacco use. In this article, we review literature on how tobacco use affects the risk of sICH and also summarize the known effects of tobacco use on outcomes following sICH. Several studies demonstrate that the risk of sICH is higher in current cigarette smokers compared to non-smokers. The literature also establishes that cigarette smoking not only increases the risk of sICH but also increases hematoma growth, results in worse outcomes, and increases the risk of death from sICH. This review also discusses potential mechanisms activated by tobacco use which result in an increase in risk and severity of sICH. Exploring the underlying mechanisms may help alleviate the risk of sICH in tobacco users as well as may help better manage tobacco user sICH patients.
Collapse
Affiliation(s)
- Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Wu E, Marthi S, Asaad WF. Predictors of Mortality in Traumatic Intracranial Hemorrhage: A National Trauma Data Bank Study. Front Neurol 2020; 11:587587. [PMID: 33281725 PMCID: PMC7705094 DOI: 10.3389/fneur.2020.587587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Traumatic intracranial hemorrhage (tICH) accounts for significant trauma morbidity and mortality. Several studies have developed prognostic models for tICH outcomes, but previous models face limitations, including poor generalizability and limited accuracy. The objective was to develop a prognostic model and determine predictors of mortality using the largest trauma database in the U.S., applying rigorous analytical methodology with true hold-out-set model validation. Methods: We identified 248,536 patients in the National Trauma Data Bank (NTDB) from 2012 to 2016 with a diagnosis code associated with tICH. For each admission, we collected demographic information, systolic blood pressure, blood alcohol level (BAL), Glasgow Coma Score (GCS), Injury Severity Score (ISS), presence of epidural/subdural/subarachnoid/intraparenchymal hemorrhage, comorbidities, complications, trauma center level, and trauma center region. Our final study population was 212,666 patients following exclusion of records with missing data. The dependent variable was patient death. Linear support vector machine (SVM) classification was carried out with recursive feature selection. Model performance was assessed using holdout 10-fold cross-validation. Results: Cross-validation demonstrated a mean accuracy of 0.792 (95% CI 0.783–0.799). Accuracy, precision, recall, and AUC were 0.827, 0.309, 0.750, and 0.791, respectively. In the final model, high ISS, advanced age, subdural hemorrhage, and subarachnoid hemorrhage were associated with increased mortality, while high GCS verbal and motor subscores, current smoker, BAL beyond the legal limit, and level 1 trauma center were associated with decreased mortality. Conclusions: A linear SVM model was developed for tICH, with nine features selected as predictors of mortality. These findings are applicable to multiple hemorrhage subtypes and may benefit the triage of high risk patients upon admission. While many studies have attempted to create models to predict mortality in TBI, we sought to confirm those predictors using modern modeling approaches, machine learning, and true hold-out test sets, using the largest available TBI database in the U.S. We find that while the predictors we identify are consistent with prior reports, overall prediction accuracy is somewhat lower than prior reports when assessed more rigorously.
Collapse
Affiliation(s)
- Esther Wu
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Siddharth Marthi
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Neuroscience, Brown University, Providence, RI, United States.,Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, United States.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
13
|
Hijioka M. [A Research on Drug Discovery for Intracerebral Hemorrhage Focusing on Leukotriene B 4 and Its Receptor]. YAKUGAKU ZASSHI 2020; 140:1323-1327. [PMID: 33132267 DOI: 10.1248/yakushi.20-00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebral hemorrhage (ICH) results from blood vessels rupture in the brain, forming a blood clot in the brain parenchyma. Leakage of blood constituents causes detrimental tissue damages, ensuing long-lasting neurological deficits; however, effective therapeutic approaches are not yet developed to date. In this study, leukotriene B4 (LTB4) and its receptor leukotriene B4 receptor 1 (BLT1) are proposed as novel therapeutic targets for ICH therapy. After the onset of ICH, the LTB4 content in the brain transiently elevated. Microglia are considered as the source of LTB4 production. Thrombin, a blood constituent, activated the BV-2 microglia and increased the LTB4 secretion from the BV-2 cells. Microglia-released LTB4 promoted its own microglial activation and neutrophil-like differentiated HL-60 cell migration activity. LTB4 receptors comprised of two types: BLT1 and BLT2, with BLT1 known to be a high-affinity receptor associated with chemotaxis. BLT1 knockout mice showed decreased neutrophil invasion, attenuating sensorimotor dysfunction after ICH. Furthermore, therapeutic administration of ONO-4057, an orally active LTB4 receptor antagonist, attenuated neutrophil invasion, microglial activation, axonal fragmentation, and sensorimotor deficits induced by ICH. These results suggest that LTB4 and its receptor BLT1 can be potential promising therapeutic targets that prevent tissue damages following ICH.
Collapse
Affiliation(s)
- Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
14
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
15
|
Matsumoto K, Kinoshita K, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Masuda T, Ohtsuki S, Katsuki H. Nicotine promotes angiogenesis in mouse brain after intracerebral hemorrhage. Neurosci Res 2020; 170:284-294. [PMID: 32673702 DOI: 10.1016/j.neures.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 11/26/2022]
Abstract
Here we examined the effect of nicotine on angiogenesis in the brain after intracerebral hemorrhage (ICH), as angiogenesis is considered to provide beneficial effects on brain tissues during recovery from injury after stroke. Nicotine was administered to C57BL/6 mice suffering from collagenase-induced ICH in the striatum, either by inclusion in drinking water or by daily intraperitoneal injection. Nicotine administration by both routes enhanced angiogenesis within the hematoma-affected regions, as revealed by increased CD31-immunopositive area at 7 and 14 d after ICH. Double immunofluorescence histochemistry against CD31 and proliferating cell nuclear antigen revealed that nicotine increased the number of newly generated vascular endothelial cells within the hematoma. In spite of enhanced angiogenesis, nicotine did not worsen vascular permeability after ICH, as assessed by Evans Blue extravasation. These effects of nicotine were accompanied by an increased number of surviving neurons in the hematoma at 7 d after ICH. Unexpectedly, nicotine did not increase expression of vascular endothelial growth factor mRNA in the brain and did not enhance recruitment of endothelial progenitor cells from the bone marrow. These results suggest that nicotine enhances angiogenesis in the brain after ICH, via mechanisms distinct from those involved in its action on angiogenesis in peripheral tissues.
Collapse
Affiliation(s)
- Kosei Matsumoto
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
16
|
Ohnishi M, Kai T, Shimizu Y, Yano Y, Urabe Y, Tasaka S, Akagi M, Yamaguchi Y, Inoue A. Gadolinium causes M1 and M2 microglial apoptosis after intracerebral haemorrhage and exerts acute neuroprotective effects. ACTA ACUST UNITED AC 2020; 72:709-718. [PMID: 32037551 DOI: 10.1111/jphp.13235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Gadolinium (Gd) affects microglial polarization during remyelination. We previously reported that the suppression of proinflammatory microglia was neuroprotective in intracerebral haemorrhage (ICH). The objective of the present study was to investigate the effects of Gd on microglial polarization and neuronal injury after ICH. METHODS Gadolinium was intraperitoneally administered to ICH mice prepared by an intrastriatal microinjection of collagenase type VII. The polarization of M1, 2a, b and c microglia was evaluated by real-time PCR using the respective markers. Changes in representative mRNAs were also confirmed by immunological methods. Neuroprotective effects were evaluated by counting NeuN-positive cells and a behavioural analysis. KEY FINDINGS One day after ICH, the mRNA levels of proinflammatory M1 microglial markers, such as inducible nitric oxide synthase (iNOS), and anti-inflammatory M2 microglial markers, such as arginase1 (M2a, c), Ym1 (M2a), and transforming growth factor-β (M2c), increased, while those of chemokine CCL1 (M2b) only increased after 3 days. Gd decreased the levels of all M1 and M2 markers. Arginase1 and iNOS protein levels also increased, and Gd reduced them due to apoptotic cell death. Gadolinium attenuated oedema, neuron loss, neurological deficits and the mortality rate without affecting haematoma sizes. CONCLUSIONS Gadolinium induced M1 and M2 microglial apoptosis and exerted acute neuroprotective effects after ICH.
Collapse
Affiliation(s)
- Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan.,Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Takao Kai
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Yuki Shimizu
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Yukino Yano
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Yuui Urabe
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Shunpei Tasaka
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Marina Akagi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Yasunori Yamaguchi
- Laboratory of Animal Cell Technology, Faculty of Life Science and Technology, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Atsuko Inoue
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan.,Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
17
|
Han J, Mao W, Ni J, Wu Y, Liu J, Bai L, Shi M, Tu J, Ning X, Wang J. Rate and Determinants of Recurrence at 1 Year and 5 Years After Stroke in a Low-Income Population in Rural China. Front Neurol 2020; 11:2. [PMID: 32038470 PMCID: PMC6989474 DOI: 10.3389/fneur.2020.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Recurrent stroke is becoming an increasingly important public health issue owing to the increased risk of disability and death. However, population-based studies investigating the rate of recurrent stroke in China are rare. We explored the rate and determinants of recurrent stroke within 1 and 5 years after the initial stroke in a rural population in China. Data for stroke events were obtained from the Tianjin Brain Study, conducted between 1992 and 2016. The age-standardized rates of recurrent stroke within the first year and the first 5 years after the initial stroke were calculated for this period. Determinants of recurrent stroke were assessed using Cox regression analyses. The overall age-standardized rate of recurrent stroke within 1 year was 5.7% (men, 6.9%; women, 4.6%); within 5 years, the overall recurrent stroke rate was 22.5% (men, 24.0%; women, 20.2%). The recurrence rate increased with advancing age and decreased with increased educational attainment. Age ≥65 years and a history of alcohol consumption were independent risk factors for recurrent stroke within 1 year after the incident stroke, after adjusting for age, sex, education, hypertension, diabetes, smoking, and alcohol consumption. However, the risk of recurrent stroke within 5 years after the incident stroke was positively associated with male sex, age ≥65 years, a lower level of education, known diabetes, and alcohol consumption, after adjusting for the previously indicated covariates. These findings suggest a crucial need to address risk factor management among stroke patients to reduce the burden of stroke, especially among low-income populations. Furthermore, a multicenter, large sample, nationwide study is urgently needed.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjing Mao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jingxian Ni
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yanan Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jie Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Lingling Bai
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Min Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
18
|
Zhao R, Zhao K, Su H, Zhang P, Zhao N. Resveratrol ameliorates brain injury via the TGF-β-mediated ERK signaling pathway in a rat model of cerebral hemorrhage. Exp Ther Med 2019; 18:3397-3404. [PMID: 31602214 PMCID: PMC6777318 DOI: 10.3892/etm.2019.7939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/02/2018] [Indexed: 01/20/2023] Open
Abstract
Brain injury is the most common intracranial injury in human cerebrovascular disease, which may lead to ischemic stroke. Resveratrol induces ameliorative effects in the treatment of certain human diseases by regulating different signaling pathways. The present study assessed the therapeutic effects of resveratrol and its potential mechanism of action in the neurons from rats with ischemia/reperfusion-induced cerebral hemorrhage. The rat model of cerebral hemorrhage was established and reverse transcription-quantitative polymerase chain reaction, western blotting, immunohistochemistry and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays were subsequently performed to assess the therapeutic effects of resveratrol. The results demonstrated that treatment with resveratrol (10 mg/kg/day) decreased cerebral water content, hippocampal cell apoptosis and cerebral infarct volume compared with the PBS-treated group. Resveratrol treatment also increased neuronal cell viability, improved neurological function and blood brain barrier disruption compared with the PBS group following 21 days of treatment. The administration of resveratrol was demonstrated to decrease the levels of certain inflammatory factors, including ionized calcium binding adaptor molecule 1 and myeloperoxidase, in rats with cerebral hemorrhage. The results revealed that treatment with resveratrol regulated neuronal apoptosis by downregulating the transforming growth factor-β (TGF-β)-mediated extracellular signal-regulated kinase (ERK) signaling pathway. In conclusion, these results indicate that resveratrol decreases ischemia/reperfusion-induced neuronal apoptosis by downregulating the TGF-β-mediated ERK pathway in a rat model of cerebral hemorrhage and may serve as a potential agent for the treatment of cerebral hemorrhage.
Collapse
Affiliation(s)
- Riguang Zhao
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Kun Zhao
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Hongjun Su
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Peng Zhang
- College of Basic Medicine, Shanghai Jiao Tong University, Shanghai 240001, P.R. China
| | - Na Zhao
- Baodi Clinical College of Tianjin Medical University, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
19
|
Ironside N, Chen CJ, Pucci J, Connolly ES. Effect of Cigarette Smoking on Functional Outcomes in Patients with Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2019; 28:2496-2505. [PMID: 31279697 DOI: 10.1016/j.jstrokecerebrovasdis.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 06/08/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Nicotine may have neuroprotective effects on the injured brain through modulation of the cholinergic anti-inflammatory pathway. AIMS This study aimed to evaluate the relationship between cigarette smoking and outcomes in patients with spontaneous intracerebral hemorrhage (ICH). METHODS This was a retrospective review of consecutive ICH patients enrolled in the ICH Outcomes Project from 2009 to 2017. Patients with age ≥18 years and baseline modified Rankin Scale (mRS) score 0-2 were included. Smoking patterns were categorized as recent smoker (≤30 days prior to ICH) and not recent smoker (>30 days prior to ICH). Not recent smokers were further categorized into former smokers and nonsmokers. The primary outcome was good outcome (90-day mRS ≤ 2). Secondary outcomes were excellent outcome (90-day mRS 0-1), 90-day Barthel Index, and in-hospital and 90-day mortality. RESULTS The study cohort comprised 545 patients, including 60 recent smokers and 485 not recent smokers. Recent smokers had higher rates of good (35% versus 23%; odds ratio [OR] = 1.787, P = .047) and excellent (25% versus 13%; OR = 2.220, P = .015) outcomes compared to not recent smokers. These differences were not significant after baseline adjustments. Recent smokers had higher rates of good (36% versus 24%; OR = 1.732, P = .063) and excellent (25% versus 13%; OR = 2.203, P = .018) outcomes compared to nonsmokers. These differences were not significant after baseline adjustments. A 90-day Barthel Index, in-hospital, and 90-day mortality were comparable between recent and not recent smokers, recent and nonsmokers, and former and nonsmokers. CONCLUSIONS Despite potential neuroprotective effects of nicotine found in cigarettes, these may be outweighed by the detrimental effects of cigarette smoking on health outcomes.
Collapse
Affiliation(s)
- Natasha Ironside
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York.
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Josephine Pucci
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Edward Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
20
|
Chen CJ, Ding D, Ironside N, Buell TJ, Southerland AM, Koch S, Flaherty M, Woo D, Worrall BB. Cigarette Smoking History and Functional Outcomes After Spontaneous Intracerebral Hemorrhage. Stroke 2019; 50:588-594. [PMID: 30732556 PMCID: PMC6389405 DOI: 10.1161/strokeaha.118.023580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Background and Purpose- Although cigarette use may be a risk for intracerebral hemorrhage (ICH), animal models suggest that nicotine has a potential neuroprotective effect. The aim of this multicenter study is to determine the effect of smoking history on outcome in ICH patients. Methods- We analyzed prospectively collected data from the Ethnic/Racial Variations of Intracerebral Hemorrhage study and included patients with smoking status data in the analysis. Patients were dichotomized into nonsmokers versus ever-smokers, and the latter group was further categorized as former (>30 days before ICH) or current (≤30 days before ICH) smokers. The primary outcome was 90-day modified Rankin Scale score shift analysis. Secondary outcomes were in-hospital mortality and mortality, Barthel Index, and self-reported health status measures at 90 days. Results- The overall study cohort comprised 1509 nonsmokers and 1423 ever-smokers (841 former, 577 current, 5 unknown). No difference in primary outcome was observed between nonsmokers versus ever-smokers (adjusted odds ratio [aOR], 1.041; 95% CI, 0.904-1.199; P=0.577). No differences in primary outcome were observed between former (aOR, 0.932; 95% CI, 0.791-1.178; P=0.399) or current smokers (aOR, 1.178; 95% CI, 0.970-1.431; P=0.098) versus nonsmokers. Subgroup analyses by race/ethnicity demonstrated no differences in primary outcome when former and current smokers were compared with nonsmokers. Former, but not current, smokers had a lower in-hospital mortality rate (aOR, 0.695; 95% CI, 0.500-0.968; P=0.031), which was only observed in Hispanics (aOR, 0.533; 95% CI, 0.309-0.921; P=0.024). Differences in self-reported health status measures were only observed in whites. Conclusions- Cigarette smoking history does not seem to provide a beneficial effect on 90-day functional outcome in patients with ICH.
Collapse
Affiliation(s)
- Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Dale Ding
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky
| | - Natasha Ironside
- Department of Neurosurgery, NewYork-Presbyterian/Columbia University Medical Center, New York, New York
| | - Thomas J. Buell
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Andrew M. Southerland
- Department of Neurology and Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sebastian Koch
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Matthew Flaherty
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Bradford B. Worrall
- Department of Neurology and Public Health Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
21
|
Chen Z, Xiang Y, Bao B, Wu X, Xia Z, You J, Nie H. Simvastatin improves cerebrovascular injury caused by ischemia‑reperfusion through NF‑κB‑mediated apoptosis via MyD88/TRIF signaling. Mol Med Rep 2018; 18:3177-3184. [PMID: 30066928 PMCID: PMC6102662 DOI: 10.3892/mmr.2018.9337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 05/02/2018] [Indexed: 01/26/2023] Open
Abstract
Cerebrovascular injury is the most prevalent human cerebrovascular disease and frequently results in ischemic stroke. Simvastatin may be a potential therapeutic agent for the treatment of patients with cerebrovascular injury. The present study aimed to investigate the efficacy of and the potential mechanisms regulated by simvastatin in a rat model of ischemia-reperfusion (I/R)-induced cerebrovascular injury. Cerebrovascular injury model rats were established and were subsequently treated with simvastatin or a vehicle control following I/R injury. Cell damage, neurological functions and neuronal apoptosis were examined, as well as the nuclear factor (NF)-κB-mediated myeloid differentiation primary response protein 88 (MyD88)/toll-interleukin-1 receptor domain-containing adapter molecule 1 (TRIF) signaling pathway following simvastatin treatment. The results of the present study demonstrated that simvastatin treatment led to a reduction in cell damage, improvement of neurological functions and decreased neuronal apoptosis compared with vehicle-treated I/R model rats, 14 days post-treatment. In addition, simvastatin treatment reduced cerebral water content and blood-brain barrier disruption in cerebrovascular injury induced by I/R. The results also revealed that simvastatin treatment inhibited neuronal apoptosis via the NF-κB-mediated MyD88/TRIF signaling pathway. In conclusion, simvastatin treatment may reduce I/R-induced neuronal apoptosis via inhibition of the NF-κB-mediated MyD88/TRIF signaling pathway.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Yuanyuan Xiang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Bing Bao
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiangbin Wu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Zhongbin Xia
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Jianyou You
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Hongbing Nie
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
22
|
Colás L, Domercq M, Ramos-Cabrer P, Palma A, Gómez-Vallejo V, Padro D, Plaza-García S, Pulagam KR, Higuchi M, Matute C, Llop J, Martín A. In vivo imaging of Α7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia 2018. [PMID: 29528142 DOI: 10.1002/glia.23326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In vivo positron emission tomography (PET) imaging of nicotinic acetylcholine receptors (nAChRs) is a promising tool for the imaging evaluation of neurologic and neurodegenerative diseases. However, the role of α7 nAChRs after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. In vivo and ex vivo evaluation of α7 nAChRs expression after transient middle cerebral artery occlusion (MCAO) was carried out using PET imaging with [11 C]NS14492 and immunohistochemistry (IHC). Pharmacological activation of α7 receptors was evaluated with magnetic resonance imaging (MRI), [18 F]DPA-714 PET, IHC, real time polymerase chain reaction (qPCR) and neurofunctional studies. In the ischemic territory, [11 C]NS14492 signal and IHC showed an expression increase of α7 receptors in microglia and astrocytes after cerebral ischemia. The role played by α7 receptors on neuroinflammation was supported by the decrease of [18 F]DPA-714 binding in ischemic rats treated with the α7 agonist PHA 568487 at day 7 after MCAO. Moreover, compared with non-treated MCAO rats, PHA-treated ischemic rats showed a significant reduction of the cerebral infarct volumes and an improvement of the neurologic outcome. PHA treatment significantly reduced the expression of leukocyte infiltration molecules in MCAO rats and in endothelial cells after in vitro ischemia. Despite that, the activation of α7 nAChR had no influence to the blood brain barrier (BBB) permeability measured by MRI. Taken together, these results suggest that the nicotinic α7 nAChRs play a key role in the inflammatory reaction and the leukocyte recruitment following cerebral ischemia in rats.
Collapse
Affiliation(s)
- Lorena Colás
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Maria Domercq
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Pedro Ramos-Cabrer
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana Palma
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Krishna R Pulagam
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Makoto Higuchi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country, Barrio Sarriena s/n, 48940 Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170 Zamudio, Spain and Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, 48940, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| |
Collapse
|
23
|
Katsuki H, Hijioka M. Intracerebral Hemorrhage as an Axonal Tract Injury Disorder with Inflammatory Reactions. Biol Pharm Bull 2018; 40:564-568. [PMID: 28458342 DOI: 10.1248/bpb.b16-01013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a neurological disorder frequently accompanied by severe dysfunction. Critical pathogenic events leading to poor prognosis should be identified for the development of novel effective therapies for ICH. Here we focus on the injury of the axonal tract, particularly of the internal capsule, with reference to its contribution to ICH pathology and potential therapeutic interventions in addition to its cellular mechanisms. Studies on human ICH patients and rodent models of ICH suggest that invasion of hematoma into the internal capsule greatly worsens the severity of post-ICH symptoms. A blood-derived protease thrombin may play an important role in the acute phase of axonal tract injury in the internal capsule that includes compromised axonal transport and fragmentation of axonal structures. Several agents such as clioquinol, melatonin and Am80 (a retinoic acid receptor agonist) have been shown to produce therapeutic effects on rodent models of ICH associated with injury of the internal capsule. In the course of examinations on the effect of Am80, we obtained evidence for the involvement of CXCL2, a neutrophil chemotactic factor, in the pathogenesis of ICH. Accordingly, we also refer to the potential roles of infiltrating neutrophils and inflammatory responses in axonal tract injury and resultant neurological dysfunction in ICH.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
24
|
Li C, Sun H, Xu G, McCarter KD, Li J, Mayhan WG. Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. J Appl Physiol (1985) 2018; 125:49-57. [PMID: 29420160 DOI: 10.1152/japplphysiol.01084.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nicotine may contribute to the pathogenesis of cerebrovascular disease via the generation of reactive oxygen species (ROS). Overproduction of ROS leads to brain damage by intensifying postischemic inflammation. Our goal was to determine the effect of Mito-Tempo, a mitochondria-targeted antioxidant, on ischemic brain damage and postischemic inflammation during chronic exposure to nicotine. Male Sprague-Dawley rats were divided into four groups: control, nicotine, Mito-Tempo-treated control, and Mito-Tempo-treated nicotine. Nicotine (2 mg·kg-1·day-1) was administered via an osmotic minipump for 4 wk. Mito-Tempo (0.7 mg·kg-1·day-1 ip) was given for 7 days before cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of the middle cerebral artery for 2 h. Brain damage and inflammation were evaluated after 24 h of reperfusion by measuring infarct volume, expression of adhesion molecules, activity of matrix metalloproteinase, brain edema, microglial activation, and neutrophil infiltration. Nicotine exacerbated infarct volume and worsened neurological deficits. Nicotine did not alter baseline ICAM-1 expression, matrix metallopeptidase-2 activity, microglia activation, or neutrophil infiltration but increased these parameters after cerebral ischemia. Mito-Tempo did not have an effect in control rats but prevented the chronic nicotine-induced augmentation of ischemic brain damage and postischemic inflammation. We suggest that nicotine increases brain damage following cerebral ischemia via an increase in mitochondrial oxidative stress, which, in turn, contributes to postischemic inflammation. NEW & NOTEWORTHY Our findings have important implications for the understanding of mechanisms contributing to increased susceptibility of the brain to damage in smokers and users of nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Chun Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Guodong Xu
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana.,Department of Neurology, Hebei General Hospital , Shijiazhuang, Hebei , China
| | - Kimberly D McCarter
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Jiyu Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
25
|
Gu C, Wu Y, Fan Z, Han W. Simvastatin improves intracerebral hemorrhage through NF-κB-mediated apoptosis via the MyD88/TRIF signaling pathway. Exp Ther Med 2017; 15:377-382. [PMID: 29375693 DOI: 10.3892/etm.2017.5349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022] Open
Abstract
The aim was to investigate the neuroprotective effects and potential mechanism mediated by simvastatin in a mouse model of intracerebral hemorrhage. CD-1 mice were subjected to infusion of collagenase type IV into the left striatum in order to induce intracerebral hemorrhage. Western blot analysis, the TUNEL assay and the modified neurological severity score were used in the present study to analyze the efficacy of simvastatin for intracerebral hemorrhage. The results demonstrated that simvastatin treatment improved the cerebral water content and blood-brain barrier disruption in the intracerebral hemorrhage animals. Intracerebral hemorrhage-induced neuronal cell death was downregulated by simvastatin treatment compared with the vehicle-treated model group. In addition, the expression levels of aquaporin-4, matrix metallopeptidase 9 and caspase-3 were downregulated and B-cell lymphoma-2 was upregulated by simvastatin treatment compared with the vehicle-treated model. Simvastatin treatment also significantly reduced the Evans blue leakage into the injured hemispheres and improved motor function. Mechanism analysis further indicated that simvastatin treatment downregulated nuclear factor (NF)-κB expression, and upregulated the myeloid differentiation primary response 88 (MyD88) and TIR domain-containing adaptor protein inducing interferon-β (TRIF) expression levels in neuronal cells in experimental mice. Furthermore, the results revealed that NF-κB overexpression abolished the simvastatin-downregulated MyD88 and TRIF expression levels, as well as the apoptosis of neuronal cells. In conclusion, these results indicated that simvastatin was able to attenuate brain edema and reduce cellular apoptosis by suppressing the NF-κB-mediated MyD88/TRIF signaling pathway subsequent to the induction of intracerebral hemorrhage in mice.
Collapse
Affiliation(s)
- Chengyao Gu
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yunqin Wu
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Zhenyi Fan
- Department of Neurology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Weiwei Han
- Department of Rehabilitation, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
26
|
Han B, Li X, Hao J. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases. Neurosci Biobehav Rev 2017; 77:358-368. [PMID: 28392244 DOI: 10.1016/j.neubiorev.2017.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein.
Collapse
Affiliation(s)
- Bin Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xiuping Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Junwei Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
27
|
Anan J, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine. J Neurosci Res 2017; 95:1838-1849. [DOI: 10.1002/jnr.24016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/26/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Anan
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence; Kumamoto University; Kumamoto Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program,”; Kumamoto University; Kumamoto Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
28
|
Hijioka M, Anan J, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T, Koga T, Yokomizo T, Shimizu T, Katsuki H. Inhibition of Leukotriene B4 Action Mitigates Intracerebral Hemorrhage-Associated Pathological Events in Mice. J Pharmacol Exp Ther 2016; 360:399-408. [DOI: 10.1124/jpet.116.238824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
|
29
|
Mouse model of intracerebellar haemorrhage. Behav Brain Res 2016; 312:374-84. [DOI: 10.1016/j.bbr.2016.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/12/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
|
30
|
Bao J, Liu Y, Yang J, Gao Q, Shi SQ, Garfield RE, Liu H. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta. Placenta 2016; 39:77-83. [DOI: 10.1016/j.placenta.2016.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022]
|
31
|
Hijioka M, Anan J, Matsushita H, Ishibashi H, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Axonal dysfunction in internal capsule is closely associated with early motor deficits after intracerebral hemorrhage in mice. Neurosci Res 2015; 106:38-46. [PMID: 26511923 DOI: 10.1016/j.neures.2015.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
Abstract
Previously we showed that expansion of intracerebral hemorrhage (ICH) into the internal capsule greatly aggravated neurological symptoms in mice. Here we examined ICH-associated events in the internal capsule with relation to neurological dysfunction. Corticospinal axons labeled by biotinylated dextran amine exhibited fragmented appearance after ICH induced by local injection of collagenase into the internal capsule. Fragmentation of axonal structures was confirmed by neurofilament-H immunostaining, which was evident from 6h after induction of ICH. We also observed accumulation of amyloid precursor protein, which indicated compromised axonal transport, from 3h after induction of ICH. The early defect in axonal transport was accompanied by a robust decline in motor performance. Local application of an axonal transport inhibitor colchicine to the internal capsule induced a prompt decline in motor performance, suggesting that compromised axonal transport is closely associated with early neurological dysfunction in ICH. Arrest of axonal transport and fragmentation of axonal structures were also induced by local injection of thrombin, but not by thrombin receptor activator peptide-6, a protease-activated receptor-1 agonist. These results suggest that receptor-independent actions of thrombin mediate disruption of structure and function of axons by hemorrhage expansion into the internal capsule, which leads to severe neurological dysfunction.
Collapse
Affiliation(s)
- Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Junpei Anan
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hideaki Matsushita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hayato Ishibashi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
32
|
In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia. J Neurosci 2015; 35:5998-6009. [PMID: 25878273 DOI: 10.1523/jneurosci.3670-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4β2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 showed a progressive binding increase from days 3-7, followed by a progressive decrease from days 14-28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4β2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4β2 receptors in both microglia/macrophages and astrocytes from days 7-28 after experimental ischemic stroke. Likewise, the role played by α4β2 receptors on neuroinflammation was supported by the increase of [(11)C]PK11195 binding in ischemic rats treated with the α4β2 antagonist dihydro-β-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21-28 after experimental stroke. Together, these results suggest that the nicotinic α4β2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.
Collapse
|
33
|
Kathirvelu B, Carmichael ST. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metab Brain Dis 2015; 30:449-59. [PMID: 24810632 PMCID: PMC4226812 DOI: 10.1007/s11011-014-9559-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model.
Collapse
Affiliation(s)
- Balachandar Kathirvelu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
34
|
Yang Z, Zhong S, Liu Y, Shen H, Yuan B. Scavenger receptor SRA attenuates microglia activation and protects neuroinflammatory injury in intracerebral hemorrhage. J Neuroimmunol 2015; 278:232-8. [DOI: 10.1016/j.jneuroim.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/24/2022]
|
35
|
Ohnishi M, Monda A, Takemoto R, Matsuoka Y, Kitamura C, Ohashi K, Shibuya H, Inoue A. Sesamin suppresses activation of microglia and p44/42 MAPK pathway, which confers neuroprotection in rat intracerebral hemorrhage. Neuroscience 2012; 232:45-52. [PMID: 23228810 DOI: 10.1016/j.neuroscience.2012.11.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/31/2023]
Abstract
Thrombin plays important roles in the pathology of intracerebral hemorrhage (ICH). The recruitment of activated microglia, accompanied by thrombin-induced phosphorylation of the mitogen-activated protein kinase (MAPK) family, contributes to ICH-associated neuron loss. Here we investigated the possibility that sesamin, a lignan of sesame seed oil, is a natural candidate as an inhibitor of microglial activation and MAPK pathways under ICH insults. Sesamin (30-100 μM) suppressed thrombin-induced nitric oxide (NO) production by primary-cultured rat microglia via inhibition of inducible NO synthase (iNOS) protein expression, independently of the antioxidative effect. Sesamin selectively inhibited p44/42 MAPK phosphorylation in the MAPK family (p38 and p44/42) involved in iNOS protein expression in primary-cultured rat microglia. An in vivo rat ICH model was prepared by intrastriatal injection of 0.20U collagenase type IV unilaterally. ICH evoked the phosphorylation of p44/42 MAPK, microglial proliferation with morphological change into the activated ameboid form, and neuron loss. The phosphorylation of p44/42 MAPK was inhibited by intracerebroventricular administration of 30-nmol sesamin. Sesamin prevented ICH-induced increase of microglial cells in the perihematomal area. Notably, ramified microglia, the resting morphology, were observed in brain sections of the animals administrated sesamin. Sesamin furthermore achieved neuroprotection in the perihematomal area but not in the hematomal center. These results suggest that sesamin is a promising natural product as a novel therapeutic strategy based on the regulation of microglial activities accompanied by the activated p44/42 MAPK pathway in ICH.
Collapse
Affiliation(s)
- M Ohnishi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan.
| | - A Monda
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - R Takemoto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Y Matsuoka
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - C Kitamura
- Department of Natural Product Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - K Ohashi
- Department of Natural Product Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - H Shibuya
- Department of Natural Product Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - A Inoue
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
36
|
Hijioka M, Matsushita H, Ishibashi H, Hisatsune A, Isohama Y, Katsuki H. α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience 2012; 222:10-9. [DOI: 10.1016/j.neuroscience.2012.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
37
|
Bimpis A, Papalois A, Tsakiris S, Zarros A, Kalafatakis K, Botis J, Stolakis V, Zissis KM, Liapi C. Activation of acetylcholinesterase after U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2012; 27:221-5. [PMID: 22476954 DOI: 10.1007/s11011-012-9301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. Despite high incidence, morbidity and mortality, the precise pathophysiology of spontaneous ICH is not fully understood, while there is little data concerning the mechanisms that follow the primary insult of the hematoma formation. The cholinergic system, apart from its colossal importance as a neurotransmission system, seems to also play an important role in brain injury recovery. It has been recently suggested that the brain possesses a cholinergic anti-inflammatory pathway that counteracts the inflammatory responses after ICH, thereby limiting damage to the brain itself. We, herein, report the findings of our study concerning the role of acetylcholinesterase (AChE; a crucial membrane-bound enzyme involved in cholinergic neurotransmission) in a porcine model of spontaneous ICH, with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates the activation of AChE activity following U-74389G administration. The lazaroid U-74389G seems to be an established neuroprotectant and this is the first report of its supporting role in the enhancement of cholinergic response to the induction of ICH.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|