1
|
El-Beshbishy HA, Waggas DS, Ali RA. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon 2024; 241:107674. [PMID: 38458495 DOI: 10.1016/j.toxicon.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.
Collapse
Affiliation(s)
- Hesham A El-Beshbishy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rabab A Ali
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, 35516, Egypt; Medical Laboratory Technology Dept., College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
2
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
3
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
4
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
5
|
Odland SU, Ravna AW, Smaglyukova N, Dietrichs ES, Sager G. Inhibition of ABCC5-mediated cGMP transport by progesterone, testosterone and their analogues. J Steroid Biochem Mol Biol 2021; 213:105951. [PMID: 34271023 DOI: 10.1016/j.jsbmb.2021.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/18/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
The biodynamics and biokinetics of sex hormones are complex. In addition to the classical steroid receptors (nuclear receptors), these hormones act through several non-genomic mechanisms. Modulation of ABC-transporters by progesterone represents a non-genomic mechanism. In the present study, we employed inside out vesicles from human erythrocytes to characterize high affinity cGMP transport by ABCC5 (member 5 of the ATP-Binding Cassette subfamily C). Progesterone and testosterone inhibited the transport with respective Ki of 1.2 ± 0.3 and 2.0 ± 0.6 μmol/L. We used virtual ligand screening (VLS) to identify analogues to progesterone and testosterone. A large number of substances were screened in silico and the 19 most promising candidates were screened in vitro. Each substance was tested for a concentration of 10 μmol/L. The range of cGMP transport reduction was 21.5% to 86.2% for progesterone analogues and 8.6% to 93.8 % for testosterone analogues. Three of the most potent test compounds (TC) of each analogue class, in addition to progesterone and testosterone, were characterized for concentrations from 1 nanomol/L to 1 mmol/L. The progesterone analogues showed following Ki-values (μmol/L): TC-08: 0.61, TC-16: 0.66 and TC-15: 9.3. The Ki-values (μmol/L) for the testosterone analogues were: TC-18: 0.10, TC-07: 0.67 andTC-05: 2.0. The present study shows that VLS may be a versatile tool in the development of membrane transport modulating agents (MTMAs).
Collapse
Affiliation(s)
- Sondre Ulstein Odland
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; AJ Vaccines A/S Artillerivej 5, 2300, Copenhagen S, Denmark(1)
| | - Aina Westrheim Ravna
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Sveberg Dietrichs
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Centre for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Georg Sager
- Experimental and Clinical Pharmacology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Hau RK, Miller SR, Wright SH, Cherrington NJ. Generation of a hTERT-Immortalized Human Sertoli Cell Model to Study Transporter Dynamics at the Blood-Testis Barrier. Pharmaceutics 2020; 12:pharmaceutics12111005. [PMID: 33105674 PMCID: PMC7690448 DOI: 10.3390/pharmaceutics12111005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-testis barrier (BTB) formed by adjacent Sertoli cells (SCs) limits the entry of many chemicals into seminiferous tubules. Differences in rodent and human substrate-transporter selectivity or kinetics can misrepresent conclusions drawn using rodent in vitro models. Therefore, human in vitro models are preferable when studying transporter dynamics at the BTB. This study describes a hTERT-immortalized human SC line (hT-SerC) with significantly increased replication capacity and minor phenotypic alterations compared to primary human SCs. Notably, hT-SerCs retained similar morphology and minimal changes to mRNA expression of several common SC genes, including AR and FSHR. The mRNA expression of most xenobiotic transporters was within the 2-fold difference threshold in RT-qPCR analysis with some exceptions (OAT3, OCT3, OCTN1, OATP3A1, OATP4A1, ENT1, and ENT2). Functional analysis of the equilibrative nucleoside transporters (ENTs) revealed that primary human SCs and hT-SerCs predominantly express ENT1 with minimal ENT2 expression at the plasma membrane. ENT1-mediated uptake of [3H] uridine was linear over 10 min and inhibited by NBMPR with an IC50 value of 1.35 ± 0.37 nM. These results demonstrate that hT-SerCs can functionally model elements of transport across the human BTB, potentially leading to identification of other transport pathways for xenobiotics, and will guide drug discovery efforts in developing effective BTB-permeable compounds.
Collapse
Affiliation(s)
- Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Siennah R. Miller
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85719, USA
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| |
Collapse
|
7
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
8
|
Drug efflux transporters and metabolic enzymes in human circulating and testicular T-cell subsets: relevance to HIV pharmacotherapy. AIDS 2020; 34:1439-1449. [PMID: 32310902 DOI: 10.1097/qad.0000000000002548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES ATP-binding cassette (ABC) drug efflux transporters and drug metabolic enzymes could reduce antiretroviral concentrations in HIV target cells. The testis has been demonstrated to be a sanctuary site, displaying suboptimal antiretroviral concentrations and persistent HIV infection. Therefore, we compared the expression and function of ABC transporters and metabolic enzymes in CD4 and CD8 T cells isolated from human testis and peripheral blood mononuclear cells (PBMCs), and assessed their expression in circulating naive and memory CD4 T-cell phenotypes. DESIGN Testicular tissue and blood were collected from 15 uninfected donors undergoing gender affirmation surgery. Testicular interstitial cells were isolated by enzymatic digestion, whereas PBMCs were isolated from blood by density gradient centrifugation. The expression and/or function of ABC transporters and metabolic enzymes were examined in blood and testicular T-cell subsets by flow cytometry. RESULTS ABC transporters (P-gp, BCRP, MRP1) and metabolic enzymes (CYP3A4, UGT1A1) were expressed in testicular and circulating CD4 and CD8 T cells, as well as in circulating naive, central, transitional, and effector memory T-cell phenotypes. MRP1 demonstrated lower frequencies in T cells from testis compared with PBMCs, as well as in circulating naive T cells compared with the memory T-cell phenotypes. Functional activity of P-gp and BCRP was detected in T-cell subsets from testis and PBMCs. CONCLUSION Our findings demonstrate for the first time that antiretroviral drug efflux transporters and metabolic enzymes are functionally expressed in T-cell subsets infiltrating the human testis. These transporters and enzymes can reduce antiretroviral intracellular concentrations, potentially contributing to residual HIV replication in the testis, and negatively impact HIV cure strategies.
Collapse
|
9
|
Fang Y, Xiang Y, Lu X, Dong X, Zhang J, Zhong S. Epigenetic dysregulation of Mdr1b in the blood-testis barrier contributes to dyszoospermia in mice exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110142. [PMID: 31911389 DOI: 10.1016/j.ecoenv.2019.110142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) has been reported to induce reproductive toxicity. Recent study indicated that aberrant epigenetic regulation of Multidrug resistance 1b (Mdr1b) causes xenobiotic efflux failure at the blood-testis barrier (BTB). However, whether Mdr1b dysregulation is involved in Cd-mediated dyszoospermia and the underlying mechanism remain unknown. In this study, mice were intragastrically administered 0 or 2.5 mg/kg CdCl2 every other day for 2 months to investigate changes in spermatogenesis and epigenetic regulation of Mdr1b. Mouse Leydig cells TM3 were cultured to detect Mdr1b expression localization. We found that the Cd group revealed BTB disruption concomitant with obvious sperm abnormity and dynamic impairment. Hypermethylation and decreased nuclear factor Ya (Nfya) recruitment to the Mdr1b promoter were correlated with low sperm motility in response to Cd. In conclusion, these findings provide in vivo evidence that epigenetic dysregulation of Mdr1b in the BTB is a potential cause of dyszoospermia upon Cd exposure.
Collapse
Affiliation(s)
- Yu Fang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Ying Xiang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, Hubei, China.
| | - Xin Dong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jiexin Zhang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Shan Zhong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei, 430071, China.
| |
Collapse
|
10
|
Miller SR, Cherrington NJ. Transepithelial transport across the blood-testis barrier. Reproduction 2018; 156:R187-R194. [PMID: 30328342 PMCID: PMC6437009 DOI: 10.1530/rep-18-0338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The blood-testis barrier protects developing germ cells by limiting the entry of xenobiotics into the adluminal compartment. There is strong evidence that the male genital tract can serve as a sanctuary site, an area of the body where tumors or viruses are able to survive treatments because most drugs are unable to reach therapeutic concentrations. Recent work has classified the expression and localization of endogenous transporters in the male genital tract as well as the discovery of a transepithelial transport pathway as the molecular mechanism by which nucleoside analogs may be able to circumvent the blood-testis barrier. Designing drug therapies that utilize transepithelial transport pathways may improve drug disposition to this sanctuary site. Strategies that improve disposition into the male genital tract could reduce the rate of testicular relapse, decrease viral load in semen, and improve therapeutic strategies for male fertility.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos 2018; 46:1886-1899. [PMID: 30266733 DOI: 10.1124/dmd.118.083030] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
The widespread expression and polyspecificity of the multidrug ABCG2 efflux transporter make it an important determinant of the pharmacokinetics of a variety of substrate drugs. Null ABCG2 expression has been linked to the Junior blood group. Polymorphisms affecting the expression or function of ABCG2 may have clinically important roles in drug disposition and efficacy. The most well-studied single nucleotide polymorphism (SNP), Q141K (421C>A), is shown to decrease ABCG2 expression and activity, resulting in increased total drug exposure and decreased resistance to various substrates. The effect of Q141K can be rationalized by inspection of the ABCG2 structure, and the effects of this SNP on protein processing may make it a target for pharmacological intervention. The V12M SNP (34G>A) appears to improve outcomes in cancer patients treated with tyrosine kinase inhibitors, but the reasons for this are yet to be established, and this residue's role in the mechanism of the protein is unexplored by current biochemical and structural approaches. Research into the less-common polymorphisms is confined to in vitro studies, with several polymorphisms shown to decrease resistance to anticancer agents such as SN-38 and mitoxantrone. In this review, we present a systematic analysis of the effects of ABCG2 polymorphisms on ABCG2 function and drug pharmacokinetics. Where possible, we use recent structural advances to present a molecular interpretation of the effects of SNPs and indicate where we need further in vitro experiments to fully resolve how SNPs impact ABCG2 function.
Collapse
Affiliation(s)
- Niall Heyes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Parth Kapoor
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
13
|
Agosto MA, Anastassov IA, Robichaux MA, Wensel TG. A Large Endoplasmic Reticulum-Resident Pool of TRPM1 in Retinal ON-Bipolar Cells. eNeuro 2018; 5:ENEURO.0143-18.2018. [PMID: 30027108 PMCID: PMC6051591 DOI: 10.1523/eneuro.0143-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
The chemical signal of light onset, a decrease in glutamate release from rod and cone photoreceptors, is processed by a postsynaptic G protein signaling cascade in ON-bipolar cells (BPCs). The metabotropic glutamate receptor mGluR6, along with other cascade elements, is localized synaptically at the BPC dendritic tips. The effector ion channel protein transient receptor potential melastatin-1 (TRPM1), in contrast, is located not only at the dendritic tips but also in BPC bodies and axons. Little is known about the intracellular localization of TRPM1, or its trafficking route to the dendritic tip plasma membrane. Recombinant TRPM1 expressed in mammalian cells colocalized with endoplasmic reticulum (ER) markers, with little or none detected at the plasma membrane. In mouse retina, somatic TRPM1 was similarly intracellular, and not at the plasma membrane. Labeling of ER membranes by expression of a fluorescent marker showed that in BPCs the ER extends into axons and dendrites, but not dendritic tips. In cell bodies, TRPM1 colocalized with the ER, and not with the Golgi apparatus. Fluorescence protease protection (FPP) assays with TRPM1-GFP fusions in heterologous cells revealed that the N and C termini are both accessible to the cytoplasm, consistent with the transmembrane domain topology of related TRP channels. These results indicate that the majority of TRPM1 is present in the ER, from which it can potentially be transported to the dendritic tips as needed for ON light responses. The excess of ER-resident TRPM1 relative to the amount needed at the dendritic tips suggests a potential new function for TRPM1 in the ER.
Collapse
Affiliation(s)
- Melina A. Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ivan A. Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael A. Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
14
|
Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 2018; 100:335-348. [PMID: 29453043 DOI: 10.1016/j.biopha.2018.02.038] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/27/2023] Open
Abstract
Indeed, multi-drug resistance (MDR) is a significant obstacle to effective chemotherapy. The overexpression of ATP-binding cassette (ABC) membrane transporters is a principal cause of enhanced cytotoxic drug efflux and treatment failure in various types of cancers. At cellular level, the pumps of ABC family regulate the transportation of numerous substances including drugs in and out of the cells. In past, the overexpression of ABC pumps suggested a well-known mechanism of drug resistance in cancers as well as infectious diseases. In oncology, the search for new compounds for the inhibition of these hyperactive ABC pumps either genetically or functionally, growing interest to reverse multi-drug resistance and increase chemotherapeutic effects. Several ABC pump inhibitor/modulators has been explored to address the cancer associated MDR. However, the clinical results are still disappointing and conventional chemotherapies are constantly failed in successful eradication of MDR tumors. In this context, the structural and functional understanding of different ATP pumps is most important. In this concise review, we elaborated basic crystal structure of ABC transporter proteins as well as its critical elements such as different domains, motifs as well as some important amino acids which are responsible for ATP binding and drug efflux as well as demonstrated an ATP-switch model employed by various ABC membrane transporters. Furthermore, we briefly summarized different newly identified MDR inhibitors/modulators, deployed alone or in combination with cytotoxic agents to deal with MDR in different types of cancers.
Collapse
|
15
|
Whyte-Allman SK, Hoque MT, Jenabian MA, Routy JP, Bendayan R. Xenobiotic Nuclear Receptors Pregnane X Receptor and Constitutive Androstane Receptor Regulate Antiretroviral Drug Efflux Transporters at the Blood-Testis Barrier. J Pharmacol Exp Ther 2017; 363:324-335. [DOI: 10.1124/jpet.117.243584] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/14/2017] [Indexed: 01/06/2023] Open
|
16
|
Ogedengbe OO, Naidu ECS, Azu OO. Antiretroviral Therapy and Alcohol Interactions: X-raying Testicular and Seminal Parameters Under the HAART Era. Eur J Drug Metab Pharmacokinet 2017; 43:121-135. [DOI: 10.1007/s13318-017-0438-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
BCRP expression in schwannoma, plexiform neurofibroma and MPNST. Oncotarget 2017; 8:88751-88759. [PMID: 29179472 PMCID: PMC5687642 DOI: 10.18632/oncotarget.21075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/17/2017] [Indexed: 01/10/2023] Open
Abstract
Background peripheral nerve sheath tumors comprise a broad spectrum of neoplasms. Vestibular schwannomas and plexiform neurofibromas are symptomatic albeit benign, but a subset of the latter pre-malignant lesions will transform to malignant peripheral nerve sheath tumors (MPNST). Surgery and radiotherapy are the primary strategies to treat these tumors. Intrinsic resistance to drug therapy characterizes all three tumor subtypes. The breast cancer resistance protein BCRP is a transmembrane efflux transporter considered to play a key role in various biological barriers such as the blood brain barrier. At the same time it is associated with drug resistance in various tumors. Its potential role in drug resistant tumors of the peripheral nervous system is largely unknown. Objective to assess if BCRP is expressed in vestibular schwannomas, plexiform neurofibromas and MPNST. Material and methods immunohistochemical staining for BCRP was performed on a tissue microarray composed out of 22 vestibular schwannomas, 10 plexiform neurofibromas and 18 MPNSTs. Results sixteen out of twenty-two vestibular schwannomas (73%), nine out of ten plexiform neurofibromas (90%) and six out of eighteen MPNST (33%) expressed BCRP in the vasculature. Tumor cells were negative. Conclusion BCRP is present in the vasculature of vestibular schwannomas, plexiform neurofibromas and MPSNT. Therefore, it may reduce the drug exposure of underlying tumor tissues and potentially cause failure of drug therapy.
Collapse
|
18
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Thompson CG, Gay CL, Kashuba AD. HIV Persistence in Gut-Associated Lymphoid Tissues: Pharmacological Challenges and Opportunities. AIDS Res Hum Retroviruses 2017; 33:513-523. [PMID: 28398774 PMCID: PMC5467125 DOI: 10.1089/aid.2016.0253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An increasing amount of evidence suggests that HIV replication persists in gut-associated lymphoid tissues (GALT), despite treatment with combination antiretroviral therapy (cART). Residual replication in this compartment may propagate infection at other sites in the body and contribute to sustained immune dysregulation and delayed immune recovery. Therefore, it is important to focus efforts on eliminating residual replication at this site. There are several challenges to accomplishing this goal, including low antiretroviral (ARV) exposure at specific tissue locations within GALT, which might be overcome by using the tools of clinical pharmacology. Here, we summarize the evidence for GALT as a site of residual HIV replication, highlight the consequences of persistent infection in tissues, identify current pharmacologic knowledge of drug exposure in GALT, define the challenges that hinder eradication from this site, and propose several avenues for pharmacologic intervention.
Collapse
Affiliation(s)
- Corbin G. Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Cynthia L. Gay
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Angela D.M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
21
|
Tenofovir Disoproxil Fumarate Is a New Substrate of ATP-Binding Cassette Subfamily C Member 11. Antimicrob Agents Chemother 2017; 61:AAC.01725-16. [PMID: 28167562 DOI: 10.1128/aac.01725-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/27/2017] [Indexed: 01/03/2023] Open
Abstract
Tenofovir disoproxil fumarate (TDF), a nucleotide reverse transcriptase inhibitor, after conversion to tenofovir (TFV), is mainly eliminated by glomerular filtration and active tubular secretion. The major adverse effect of tenofovir is nephrotoxicity; however, the exact mechanism remains poorly understood. In this study, the ATP-binding cassette subfamily C member 11 (ABCC11; multidrug resistance protein 8 [MRP8]) transporter, which is abundant in proximal tubular cells, was demonstrated to act as an efflux transporter of tenofovir. Real-time PCR (RT-PCR) and indirect immunofluorescence assays were used to determine MRP8 overexpression in a continuous cell line. Tenofovir accumulations were assessed by cytotoxicity, cellular transport, and vesicular uptake assays. Substrate specificity was confirmed using MK-571, an MRP-specific inhibitor, and methotrexate, which served as a known substrate. Intracellular and intravesicular concentrations of tenofovir were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The 50% cytotoxic concentration (CC50) of TDF in MRP8-overexpressing cells was 4.78 times higher than that of parental cells. Transport assays also showed that the intracellular accumulation of tenofovir in MRP8-overexpressing cells was 55 times lower than that in parental cells and was partly reversed by MK-571. Similarly, an "inside-out" vesicular uptake assay, using Sf9 inverted membrane vesicles to allow measuring of accumulation of the substrates into the vesicles, demonstrated a higher intravesicular concentration of tenofovir in MRP8-overexpressing vesicles than in Sf9 insect control vesicles. These effects were effectively reversed by increasing concentrations of the specific inhibitor MK-571. In conclusion, tenofovir is a new substrate of the MRP8 transporter. An alteration in the activity of this efflux pump may increase the intracellular accumulation of tenofovir in proximal renal tubular cells.
Collapse
|
22
|
Population Pharmacokinetic Modeling of Tenofovir in the Genital Tract of Male HIV-Infected Patients. Antimicrob Agents Chemother 2017; 61:AAC.02062-16. [PMID: 27956420 DOI: 10.1128/aac.02062-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/03/2016] [Indexed: 11/20/2022] Open
Abstract
The aims of this study were to describe the blood plasma (BP) and seminal plasma (SP) pharmacokinetics of tenofovir (TFV) in HIV-1-infected men, to assess the role of genetic polymorphism in the variability of TFV transfer into the male genital tract, and to evaluate the impact of TFV SP exposure on seminal plasma HIV load (spVL). Men from the Evarist-ANRS EP 49 study treated with TFV as part of their antiretroviral therapy were included in the study. A total of 248 and 217 TFV BP and SP concentrations from 129 men were available for the analysis. For pharmacogenetic assessment, a total of 121 single nucleotide polymorphisms (SNP) were genotyped. Data were analyzed using a nonlinear mixed-effects modeling approach. TFV pharmacokinetics were best described by a two-compartment model for BP and by an effect compartment with different input and output constants for SP. TFV exposures (area under the concentration-time curve from 0 to 24 h [AUC0-24]) were higher in SP than in BP (median AUC0-24, 7.01 versus 2.97 mg · liter-1 · h, respectively). The median (range) SP-to-BP AUC0-24 ratio was 2.24 (0.53 to 34.13). After correction for multiple testing, none of the SNPs were significantly associated with the TFV transfer rate constant. The impact of the TFV SP AUC0-24 or TFV SP-to-BP AUC0-24 ratio on spVL was not significant (P = 0.808 and 0.768, respectively). This is the first population model describing TFV pharmacokinetics in the male genital tract. TFV SP concentrations were higher than BP concentrations. Despite TFV SP exposures being higher than BP exposures, an spVL was detectable for 12.2% of the men.
Collapse
|
23
|
Current insights into the sulfatase pathway in human testis and cultured Sertoli cells. Histochem Cell Biol 2016; 146:737-748. [DOI: 10.1007/s00418-016-1503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
24
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
25
|
Huang Y, Hoque MT, Jenabian MA, Vyboh K, Whyte SK, Sheehan NL, Brassard P, Bélanger M, Chomont N, Fletcher CV, Routy JP, Bendayan R. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother 2016; 71:1954-65. [PMID: 27076103 DOI: 10.1093/jac/dkw046] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The testes are a potential viral sanctuary site for HIV-1 infection. Our study aims to provide insight into the expression and localization of key drug transporters and metabolic enzymes relevant to ART in this tissue compartment. METHODS We characterized gene and protein expression of 12 representative drug transporters and two metabolic enzymes in testicular tissue samples obtained from uninfected (n = 8) and virally suppressed HIV-1-infected subjects on ART (n = 5) and quantified antiretroviral drug concentrations in plasma and testicular tissues using LC/MS/MS from HIV-1-infected subjects. RESULTS Our data demonstrate that key ABC drug transporters (permeability glycoprotein, multidrug-resistance protein 1, 2 and 4, and breast cancer resistance protein), solute carrier transporters (organic anion transporting polypeptides 1B1 and 2B1, organic anion transporter 1, concentrative nucleoside transporter 1, equilibrative nucleoside transporter 2) and cytochrome P450 metabolic enzymes (CYP3A4 and CYP2D6) previously shown to interact with many commonly used antiretroviral drugs are expressed at the mRNA and protein level in the testes of both subject groups and localize primarily at the blood-testis barrier, with no significant differences between the two groups. Furthermore, we observed that PIs known to be substrates for ATP-binding cassette membrane transporters, displayed variable testicular tissue penetration, with darunavir concentrations falling below therapeutic values. In contrast, the NRTIs emtricitabine, lamivudine and tenofovir displayed favourable tissue penetration, reaching concentrations comparable to plasma levels. We also demonstrated that nuclear receptors, peroxisome proliferator-activated receptors α and γ exhibited higher gene expression in the testicular tissue compared with pregnane X receptor and constitutive androstane receptor, suggesting a potential regulatory pathway governing drug transporter and metabolic enzyme expression in this tissue compartment. CONCLUSIONS Our data suggest the testes are a complex pharmacological compartment that can restrict the distribution of certain antiretroviral drugs and potentially contribute to HIV-1 persistence.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Sana-Kay Whyte
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Nancy L Sheehan
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | | | - Maud Bélanger
- Metropolitan Centre of Plastic Surgery, Montréal, Canada
| | - Nicolas Chomont
- University of Montréal Hospital Research Centre, Montréal, Canada
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| |
Collapse
|
26
|
Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 2015; 1628:298-316. [PMID: 26187753 PMCID: PMC4681613 DOI: 10.1016/j.brainres.2015.07.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The strength of the blood-brain barrier (BBB) in providing protection to the central nervous system from exposure to circulating chemicals is maintained by tight junctions between endothelial cells and by a broad range of transporter proteins that regulate exchange between CNS and blood. The most important transporters that restrict the permeability of large number of toxins as well as therapeutic agents are the ABC transporters. Among them, P-gp, BCRP, MRP1 and MRP2 are the utmost studied. These efflux transporters are neuroprotective, limiting the brain entry of neurotoxins; however, they could also restrict the entry of many therapeutics and contribute to CNS pharmacoresistance. Characterization of several regulatory pathways that govern expression and activity of ABC efflux transporters in the endothelium of brain capillaries have led to an emerging consensus that these processes are complex and contain several cellular and molecular elements. Alterations in ABC efflux transporters expression and/or activity occur in several neurological diseases. Here, we review the signaling pathways that regulate expression and transport activity of P-gp, BCRP, MRP1 and MRP2 as well as how their expression/activity changes in neurological diseases. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Hisham Qosa
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| | - David S Miller
- Laboratory of Signal Transduction, NIH/NIEHS, Research Triangle Park, NC 27709, USA
| | - Piera Pasinelli
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Weinberg Unit for ALS Research, Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut street, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
28
|
Jones S, Boisvert A, Francois S, Zhang L, Culty M. In utero exposure to di-(2-ethylhexyl) phthalate induces testicular effects in neonatal rats that are antagonized by genistein cotreatment. Biol Reprod 2015; 93:92. [PMID: 26316063 DOI: 10.1095/biolreprod.115.129098] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Fetal exposure to endocrine disruptors (EDs) is believed to predispose males to reproductive abnormalities. Although males are exposed to combinations of chemicals, few studies have evaluated the effects of ED mixtures at environmentally relevant doses. Our previous work showed that fetal exposure to a mixture of the phytoestrogen genistein (GEN) and the plasticizer di-(2-ethylhexyl) phthalate (DEHP) induced unique alterations in adult testis. In this follow-up study, we examined Postnatal Day 3 (PND3) and PND6 male offspring exposed from Gestational Day 14 to parturition to corn oil, 10mg/kg GEN, DEHP, or their combination, to gain insight into the early molecular events driving long-term alterations. DEHP stimulated the mRNA and protein expression of the steroidogenic enzyme HSD3B, uniquely at PND3. DEHP also increased the mRNA expression of Nestin, a Leydig progenitor/Sertoli cell marker, and markers of Sertoli cell (Wt1), gonocyte (Plzf, Foxo1), and proliferation (Pcna) at PND3, while these genes were unchanged by the mixture. Redox (Nqo1, Sod2, Sod3, Trx, Gst, Cat) and xenobiotic transporter (Abcb1b, Abcg2) gene expression was also increased by DEHP at PND3, while attenuated when combined with GEN, suggesting the involvement of cellular stress in short-term DEHP effects and a protective effect of GEN. The direct effects of GEN and mono-(2-ethylhexyl) phthalate, the principal bioactive metabolite of DEHP, on testis were investigated in PND3 organ cultures, showing a stimulatory effect of 10 μM mono-(2-ethylhexyl) phthalate on basal testosterone production that was normalized by GEN. These effects contrasted with previous reports of androgen suppression and decreased gene expression in perinatal rat testis by high DEHP doses, implying that neonatal effects are not predictive of adult effects. We propose that GEN, through an antioxidant action, normalizes reactive oxygen species-induced neonatal effects of DEHP. The notion that these EDs do not follow classical dose-response effects and involve different mechanisms of toxicity from perinatal ages to adulthood highlights the importance of assessing impacts across a range of doses and ages.
Collapse
Affiliation(s)
- Steven Jones
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Annie Boisvert
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Sade Francois
- Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Liandong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Martine Culty
- Division of Experimental Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada Department of Pharmacology & Therapeutics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Emtricitabine seminal plasma and blood plasma population pharmacokinetics in HIV-infected men in the EVARIST ANRS-EP 49 study. Antimicrob Agents Chemother 2015; 59:6800-6. [PMID: 26282407 DOI: 10.1128/aac.01517-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/08/2015] [Indexed: 11/20/2022] Open
Abstract
We aimed to describe blood plasma (BP) and seminal plasma (SP) pharmacokinetics of emtricitabine (FTC) in HIV-1-infected men, assess its penetration in the male genital tract, and evaluate its impact on seminal plasma HIV load (spVL) detection. Men from the EVARIST ANRS EP49 study receiving combined antiretroviral therapy with FTC and with suppressed BP viral load were included in the study. A total of 236 and 209 FTC BP and SP concentrations, respectively, were available. A population pharmacokinetic model was developed with Monolix 4.1.4. The impact of FTC seminal exposure on spVL detection was explored by receiver operating characteristic (ROC) curves and mixed-effects logistic regressions. FTC BP pharmacokinetics was described by a two-compartment model. The addition of an effect compartment with different input and output constants best described FTC SP pharmacokinetics. No covariates were found to explain the variability in SP. FTC exposures (area under the concentration-time curve from 0 to 24 h [AUC0-24]) were higher in SP than in BP (median AUC0-24, 38.04 and 12.95 mg · liter(-1) · h, respectively). The median (range) SP-to-BP AUC0-24 ratio was 2.91 (0.84 to 10.08). Less than 1% of FTC AUC0-24 ratios were lower than 1. The impact of FTC SP AUC0-24 or FTC SP-to-BP AUC0-24 ratio on spVL detection was not significant (P = 0.943 or 0.893, respectively). This is the first population model describing FTC pharmacokinetics simultaneously in both BP and SP. FTC distributes well in the male genital tract with higher FTC concentrations in SP than in BP. FTC seminal plasma exposures were considered efficient in the majority of men.
Collapse
|
30
|
Detection of Simian Immunodeficiency Virus in Semen, Urethra, and Male Reproductive Organs during Efficient Highly Active Antiretroviral Therapy. J Virol 2015; 89:5772-87. [PMID: 25833047 DOI: 10.1128/jvi.03628-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/22/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED A number of men receiving prolonged suppressive highly active antiretroviral therapy (HAART) still shed human immunodeficiency virus (HIV) in semen. To investigate whether this seminal shedding may be due to poor drug penetration and/or viral production by long-lived cells within male genital tissues, we analyzed semen and reproductive tissues from macaques chronically infected with simian immunodeficiency virus mac251 (SIVmac251) who were treated for 4 months with HAART, which was intensified over the last 7 weeks with an integrase inhibitor. We showed that a subset of treated animals continued shedding SIV in semen despite efficient HAART. This shedding was not associated with low antiretroviral drug concentrations in semen or in testis, epididymis, seminal vesicles, and prostate. HAART had no significant impact on SIV RNA in the urethra, whereas it drastically reduced SIV RNA levels in the prostate and vas deferens and to a lesser extent in the epididymis and seminal vesicle. The only detectable SIV RNA-positive cells within the male genital tract after HAART were urethral macrophages. SIV DNA levels in genital tissues were not decreased by HAART, suggesting the presence throughout the male genital tract of nonproductively infected cells. In conclusion, our results demonstrate that 4 months of HAART induced variable and limited control of viral infection in the male reproductive organs, particularly in the urethra, and suggest that infected long-lived cells in the male genital tract may be involved in persistent seminal shedding during HAART. These results pave the way for further investigations of male genital organ infection in long-term-treated infected individuals. IMPORTANCE A substantial subset of men receiving prolonged HAART suppressing viral loads in the blood still harbor HIV in semen, and cases of sexual transmission have been reported. To understand the origin of this persistence, we analyzed the semen and male reproductive tissues from SIV-infected macaques treated with HAART. We demonstrated that persistent seminal shedding was not linked to poor drug penetration in semen or semen-producing prostate, seminal vesicle, epididymis, and testis. We revealed that HAART decreased SIV RNA to various extents in all male genital organs, with the exception of the urethra, in which SIV RNA(+) macrophages were observed despite HAART. Importantly, HAART did not impact SIV DNA levels in the male genital organs. These results suggest that infection of male genital organs, and particularly the urethra, could be involved in the release of virus in semen during HAART.
Collapse
|
31
|
Li Z, Wang H, Huang S, Zhou L, Wang L, Du C, Wang C. Establishment of stable MRP1 knockdown by lentivirus-delivered shRNA in the mouse testis Sertoli TM4 cell line. Toxicol Mech Methods 2015; 25:81-90. [DOI: 10.3109/15376516.2014.989350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters. Antimicrob Agents Chemother 2015; 59:2572-82. [PMID: 25691630 DOI: 10.1128/aac.04594-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/08/2015] [Indexed: 12/30/2022] Open
Abstract
The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [(3)H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-L-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [(3)H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [(3)H]raltegravir efflux ratios. In rat intestinal segments, [(3)H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 μM) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([(3)H]mitoxantrone), or MRP1 [2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing cells, respectively. Our data suggest that raltegravir is a substrate but not an inhibitor of the drug efflux transporters P-gp and BCRP. These transporters might play a role in the restriction of raltegravir permeability across the blood-brain, blood-testicular, and blood-intestinal barriers, potentially contributing to its low tissue concentrations and/or low oral bioavailability observed in the clinic setting.
Collapse
|
33
|
(125)I-Labelled 2-Iodoestrone-3-sulfate: synthesis, characterization and OATP mediated transport studies in hormone dependent and independent breast cancer cells. Nucl Med Biol 2014; 42:274-82. [PMID: 25542669 DOI: 10.1016/j.nucmedbio.2014.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Organic Anion Transporting Polypeptides (OATP) are a family of membrane associated transporters that facilitate estrone-3-sulphate (E3S) uptake by hormone dependent, post-menopausal breast cancers. We have established E3S as a potential ligand for targeting hormone dependent breast cancer cells, and in this study sought to prepare and investigate radioiodinated E3S as a tool to study the OATP system. METHODS 2- and 4-Iodoestrone-3-sulfates were prepared from estrone via aromatic iodination followed by a rapid and high yielding sulfation procedure. The resulting isomers were separated by preparative HPLC and verified by (1)H NMR and analytical HPLC. Transport studies of 2- and 4-[(125)I]-E3S were conducted in hormone dependent (i.e. MCF-7) and hormone independent (i.e. MDA-MB-231) breast cancer cells in the presence or absence of the specific transport inhibitor, bromosulfophthalein (BSP). Cellular localization of OATP1A2, OATP2B1, OATP3A1 and OATP4A1 were determined by immunofluorescence analysis using anti-Na(+)/K(+) ATPase-α (1:100 dilution) and DAPI as plasma membrane and nuclear markers, respectively. RESULTS Significantly (p<0.01) higher total accumulation of 2-[(125)I]-E3S was observed in hormone dependent MCF-7 as compared to hormone independent MDA-MB-231 breast cancer cells. In contrast 4-[(125)I]-E3S did not show cellular accumulation in either case. The efficiency of 2-[(125)I]-E3S transport (expressed as a ratio of Vmax/Km) was 2.4 times greater in the MCF-7 as compared to the MDA-MB-231 breast cancer cells. OATP1A2, OATP3A1 and OATP4A1 expression was localized in plasma membranes of MCF-7 and MDA-MB-231 cells confirming the functional role of these transporters in radioiodinated E3S cellular uptake. CONCLUSION An efficient method for the preparation of 2- and 4-[(125)I]-E3S was developed and where the former demonstrated potential as an in vitro probe for the OATP system. The new E3S probe can be used to study the OATP system and as a platform to create radiopharmaceuticals for imaging breast cancer.
Collapse
|
34
|
Su L, Mruk DD, Cheng CY. Regulation of drug transporters in the testis by environmental toxicant cadmium, steroids and cytokines. SPERMATOGENESIS 2014; 2:285-293. [PMID: 23248770 PMCID: PMC3521751 DOI: 10.4161/spmg.22536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The blood-testis barrier (BTB) provides an efficient barrier to restrict paracellular and transcellular transport of substances, such as toxicants and drugs, limiting their entry to the testis to cause injury. This is achieved by the coordinated actions of efflux and influx transporters at the BTB, which are integral membrane proteins that interact with their substrates, such as drugs and toxicants. An efflux transporter (e.g., P-glycoprotein) can either restrict the entry of drugs/toxicants into the testis or actively pump drugs/toxicants out of Sertoli and/or germ cells if they have entered the seminiferous epithelium via influx pumps. This thus provides an effective mechanism to safeguard spermatogenesis. Using Sertoli cells cultured in vitro with an established tight junction (TJ)-permeability barrier which mimicked the BTB in vivo and treated with cadmium chloride (CdCl2), and also in adult rats (~300 g b.w.) treated with CdCl2 (3 mg/kg b.w., via i.p.) to induce testicular injury, cadmium was found to significantly downregulate the expression of efflux (e.g., P-glycoprotein, Mrp1, Abcg1) and influx (e.g., Oatp3, Slc15a1, Scl39a8) transporters. For instance, treatment of Sertoli cells with cadmium induced significant loss of P-glycoprotein and Oatp-3 at the cell-cell interface, which likely facilitated cadmium entry into the Sertoli cell. These findings illustrate that one of the mechanisms by which cadmium enters the testis is mediated by downregulating the expression of drug transporters at the BTB. Furthermore, cytokines and steroids were found to have differential effects in regulating the expression of drug transporters. Summary, the expression of drug transporters in the testis is regulated by toxicants, steroids and cytokines.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | | | | |
Collapse
|
35
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS JOURNAL 2014; 17:65-82. [PMID: 25236865 DOI: 10.1208/s12248-014-9668-6] [Citation(s) in RCA: 419] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
The human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter. It was so named because it was initially cloned from a multidrug-resistant breast cancer cell line where it was found to confer resistance to chemotherapeutic agents such as mitoxantrone and topotecan. Since its discovery in 1998, the substrates of BCRP have been rapidly expanding to include not only therapeutic agents but also physiological substances such as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide) and uric acid. Likewise, at least hundreds of BCRP inhibitors have been identified. Among normal human tissues, BCRP is highly expressed on the apical membranes of the placental syncytiotrophoblasts, the intestinal epithelium, the liver hepatocytes, the endothelial cells of brain microvessels, and the renal proximal tubular cells, contributing to the absorption, distribution, and elimination of drugs and endogenous compounds as well as tissue protection against xenobiotic exposure. As a result, BCRP has now been recognized by the FDA to be one of the key drug transporters involved in clinically relevant drug disposition. We published a highly-accessed review article on BCRP in 2005, and much progress has been made since then. In this review, we provide an update of current knowledge on basic biochemistry and pharmacological functions of BCRP as well as its relevance to drug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington, 98195-7610, USA,
| | | |
Collapse
|
36
|
El-Sheikh AAK, Koenderink JB, Wouterse AC, van den Broek PHH, Verweij VGM, Masereeuw R, Russel FGM. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res 2014; 164:46-56. [PMID: 24486136 DOI: 10.1016/j.trsl.2014.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alfons C Wouterse
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Vivienne G M Verweij
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Klein DM, Cherrington NJ. Organic and inorganic transporters of the testis: A review. SPERMATOGENESIS 2014; 4:e979653. [PMID: 26413398 PMCID: PMC4581056 DOI: 10.4161/21565562.2014.979653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
Transporters have a huge impact on the toxicology and pharmacological effects of xenobiotics in addition to being implicated in several diseases. While these important proteins have been well studied in organs such as the kidney or liver, characterization of transporters in the testis is still in the early stages. Knowledge of transporter function may greatly advance the field's understanding of the physiological and toxicological processes that occur in the testis. Several foundational studies involving both organic and inorganic transporters have been critical in furthering our understanding of how the testis interacts with endogenous and xenobiotic compounds. This review provides an overview of how transporters function, their clinical significance, and highlights what is known for many of the important transporters in the testis.
Collapse
Affiliation(s)
- David M Klein
- University of Arizona; Department of Pharmacology and Toxicology; Tucson, AZ, US
| | - Nathan J Cherrington
- University of Arizona; Department of Pharmacology and Toxicology; Tucson, AZ, US
| |
Collapse
|
38
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
39
|
Disruption of vitellogenesis and spermatogenesis by triclabendazole (TCBZ) in a TCBZ-resistant isolate of Fasciola hepatica following incubation in vitro with a P-glycoprotein inhibitor. Parasitology 2014; 141:1064-79. [DOI: 10.1017/s0031182014000377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYA study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Sligo TCBZ-resistant fluke isolate was used for these experiments and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. In the first experiment, flukes were initially incubated for 2 h in R(+)-VPL (100 μm), then incubated in R(+)-VPL+triclabendazole sulphoxide (TCBZ.SO) (50 μg mL−1, or 133·1 μm) until flukes ceased movement (at 9 h post-treatment). In a second experiment, flukes were incubated in TCBZ.SO alone and removed from the incubation medium following cessation of motility (after 15 h). In the third experiment, flukes were incubated for 24 h in R(+)-VPL on its own. Changes to the testis tubules and vitelline follicles following drug treatment and following Pgp inhibition were assessed by means of light microscope histology and transmission electron microscopy. Incubation of the Sligo isolate in either R(+)-VPL or TCBZ.SO on their own had a limited impact on the morphology of the two tissues. Greater disruption was observed when the drugs were combined, in terms of the block in development of the spermatogenic and vitelline cells and the apoptotic breakdown of the remaining cells. Sperm formation was severely affected and abnormal. Large spaces appeared in the vitelline follicles and synthesis of shell protein was disrupted. The results of this study support the concept of altered drug efflux in TCBZ-resistant flukes and indicate that drug transporters may play a role in the development of drug resistance.
Collapse
|
40
|
Huang S, Ye J, Yu J, Chen L, Zhou L, Wang H, Li Z, Wang C. The accumulation and efflux of lead partly depend on ATP-dependent efflux pump-multidrug resistance protein 1 and glutathione in testis Sertoli cells. Toxicol Lett 2014; 226:277-84. [PMID: 24598511 DOI: 10.1016/j.toxlet.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
Abstract
Since lead accumulation is toxic to cells, its excretion is crucial for organisms to survive the toxicity. In this study, mouse testis sertoli (TM4) and Mrp1 lower-expression TM4-sh cells were used to explore the lead accumulation characteristics, and the role of ATP-dependent efflux pump-multidrug resistance protein 1 (Mrp1) in lead excretion. TM4 cells possess Mrp-like transport activity. The expression levels of mrp1 mRNA and Mrp1 increased after lead treatments at first and then decreased. The maximum difference of relative mRNA expression reached 10 times. In the presence of lead acetate, the amount of cumulative lead in TM4-sh was much higher than that in TM4. After the treatment with lead acetate at 10-40 μM for 12h or 24h, the differences were about 2-8 times. After with the switch to lead-free medium, the cellular lead content in TM4-sh remains higher than that in TM4 cells at 1,3, 6, and 9h time points (P<0.01). Energy inhibitor sodium azide, Mrp inhibitors MK571 and glutathione (GSH) biosynthesis inhibitor BSO could block lead efflux from TM4 cells significantly. These results indicate that lead excretion may be mediated by Mrp1 and GSH in TM4 cells. Mrp1 could be one of the important intervention points for lead detoxification.
Collapse
Affiliation(s)
- Shaoxin Huang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jingping Ye
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China; Renmin hospital of Wuhan University, Wuhan 430060, PR China
| | - Jun Yu
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Li Chen
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Langhuan Zhou
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhen Li
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan 430071, PR China; Global Health Institute, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
41
|
El-Sheikh AAK, Morsy MA, Mahmoud MM, Rifaai RA. Protective mechanisms of coenzyme-Q10 may involve up-regulation of testicular P-glycoprotein in doxorubicin-induced toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:772-781. [PMID: 24632013 DOI: 10.1016/j.etap.2014.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
The anticancer drug; doxorubicin (DOX), causes testicular toxicity as an adverse effect. P-glycoprotein (P-gp) is a multidrug resistance efflux transporter expressed in blood-testis barrier, which extrudes DOX from the testis. We investigated whether DOX-induced gonadal injury could be prevented by the use of antioxidant; coenzyme-Q10 (CoQ10). The involvement of P-gp expression, as a possible protective mechanism, was also investigated. CoQ10 was administered orally for 8 days, and DOX toxicity was induced via a single i.p. dose of 15 mg/kg at day 4. Concomitant administration of CoQ10 with DOX significantly restored testicular oxidative stress parameters and the distorted histopathological picture, reduced the up-regulation of caspase 3 caused by DOX, and increased P-gp expression. We show for the first time that CoQ10 up-regulates P-gp as a novel mechanism for gonadal protection. In conclusion, CoQ10 protects against DOX-induced testicular toxicity in rats via ameliorating oxidative stress, reducing apoptosis and up-regulating testicular P-gp.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt.
| | - Marwa M Mahmoud
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Rehab A Rifaai
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
42
|
Zhao X, Guo Y, Yue W, Zhang L, Gu M, Wang Y. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. Onco Targets Ther 2014; 7:343-51. [PMID: 24591841 PMCID: PMC3937249 DOI: 10.2147/ott.s56029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Multidrug resistance protein 4 (MRP4), also known as ATP-cassette binding protein 4 (ABCC4), is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. METHODS ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. RESULTS ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. CONCLUSION ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yinan Guo
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 2014; 42:623-31. [PMID: 24492893 DOI: 10.1124/dmd.113.056176] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.
Collapse
Affiliation(s)
- Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology, College of Medicine, Biology & Environment, The Australian National University, Canberra, New South Wales, Australia (R.C.); and School of Pharmacy, Graduate School of Health, The University of Technology, Sydney, New South Wales, Australia (F.L., M.B.)
| | | | | |
Collapse
|
44
|
Robillard KR, Hoque MT, Bendayan R. Expression of ATP-binding cassette membrane transporters in a HIV-1 transgenic rat model. Biochem Biophys Res Commun 2014; 444:531-6. [DOI: 10.1016/j.bbrc.2014.01.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
|
45
|
Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother 2013; 58:1713-22. [PMID: 24379203 DOI: 10.1128/aac.02031-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The blood-testis barrier and blood-brain barrier are responsible for protecting the male genital tract and central nervous system from xenobiotic exposure. In HIV-infected patients, low concentrations of antiretroviral drugs in cerebrospinal fluid and seminal fluid have been reported. One mechanism that may contribute to reduced concentrations is the expression of ATP-binding cassette drug efflux transporters, such as P-glycoprotein (P-gp). The objective of this study was to investigate in vivo the tissue distribution of the HIV protease inhibitor atazanavir in wild-type (WT) mice, P-gp/breast cancer resistance protein (Bcrp)-knockout (Mdr1a-/-, Mdr1b-/-, and Abcg2-/- triple-knockout [TKO]) mice, and Cyp3a-/- (Cyp) mice. WT mice and Cyp mice were pretreated with a P-gp/Bcrp inhibitor, elacridar (5 mg/kg of body weight), and the HIV protease inhibitor and boosting agent ritonavir (2 mg/kg intravenously [i.v.]), respectively. Atazanavir (10 mg/kg) was administered i.v. Atazanavir concentrations in plasma (Cplasma), brain (Cbrain), and testes (Ctestes) were quantified at various times by liquid chromatography-tandem mass spectrometry. In TKO mice, we demonstrated a significant increase in atazanavir Cbrain/Cplasma (5.4-fold) and Ctestes/Cplasma (4.6-fold) ratios compared to those in WT mice (P<0.05). Elacridar-treated WT mice showed a significant increase in atazanavir Cbrain/Cplasma (12.3-fold) and Ctestes/Cplasma (13.5-fold) ratios compared to those in vehicle-treated WT mice. In Cyp mice pretreated with ritonavir, significant (P<0.05) increases in atazanavir Cbrain/Cplasma (1.8-fold) and Ctestes/Cplasma (9.5-fold) ratios compared to those in vehicle-treated WT mice were observed. These data suggest that drug efflux transporters, i.e., P-gp, are involved in limiting the ability of atazanavir to permeate the rodent brain and genital tract. Since these transporters are known to be expressed in humans, they could contribute to the low cerebrospinal and seminal fluid antiretroviral concentrations reported in the clinic.
Collapse
|
46
|
Bcrp1 transcription in mouse testis is controlled by a promoter upstream of a novel first exon (E1U) regulated by steroidogenic factor-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1288-99. [PMID: 24189494 DOI: 10.1016/j.bbagrm.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/07/2013] [Accepted: 10/28/2013] [Indexed: 01/06/2023]
Abstract
Alternative promoter usage is typically associated with mRNAs with differing first exons that contain or consist entirely of a 5' untranslated region. The murine Bcrp1 (Abcg2) transporter has three alternative promoters associated with mRNAs containing alternative untranslated first exons designated as E1A, E1B, and E1C. The E1B promoter regulates Bcrp1 transcription in mouse intestine. Here, we report the identification and characterization of a novel Bcrp1 promoter and first exon, E1U, located upstream from the other Bcrp1 promoters/first exons, which is the predominant alternative promoter utilized in murine testis. Using in silico analysis we identified a putative steroidogenic factor-1 (SF-1) response element that was unique to the Bcrp1 E1U alternative promoter. Overexpression of SF-1 in murine TM4 Sertoli cells enhanced Bcrp1 E1U mRNA expression and increased Bcrp1 E1U alternative promoter activity in a reporter assay, whereas mutation of the SF-1 binding site totally eliminated Bcrp1 E1U alternative promoter activity. Moreover, expression of Bcrp1 E1U and total mRNA and Bcrp1 protein was markedly diminished in the testes from adult Sertoli cell-specific SF-1 knockout mice, in comparison to the testes from wild-type mice. Binding of SF-1 to the SF-1 response element in the E1U promoter was demonstrated by chromatin immunoprecipitation assays. In conclusion, nuclear transcription factor SF-1 is involved with the regulation of a novel promoter of Bcrp1 that governs transcription of the E1U mRNA isoform in mice. The present study furthers understanding of the complex regulation of Bcrp1 expression in specific tissues of a mammalian model.
Collapse
|
47
|
Sosnik A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review. Adv Drug Deliv Rev 2013; 65:1828-51. [PMID: 24055628 DOI: 10.1016/j.addr.2013.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022]
Abstract
Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Argentina; Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
48
|
Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: Physiological principles and nanomedical solutions. Adv Drug Deliv Rev 2013; 65:1852-1865. [PMID: 24120954 DOI: 10.1016/j.addr.2013.09.018] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance (MDR) is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies.
Collapse
Affiliation(s)
- Sijumon Kunjachan
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Gert Storm
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
49
|
Dankers ACA, Roelofs MJE, Piersma AH, Sweep FCGJ, Russel FGM, van den Berg M, van Duursen MBM, Masereeuw R. Endocrine Disruptors Differentially Target ATP-Binding Cassette Transporters in the Blood-Testis Barrier and Affect Leydig Cell Testosterone Secretion In Vitro. Toxicol Sci 2013; 136:382-91. [DOI: 10.1093/toxsci/kft198] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
50
|
Abstract
In mammalian testes, the blood-testis barrier (BTB), created by specialized junctions between Sertoli cells near the basement membrane of the seminiferous epithelium, provides an indispensable immune-privileged microenvironment for spermatid development. However, the BTB must experience restructuring during the epithelial cycle to facilitate the transit of preleptotene spermatocytes upon the testosterone-induced new TJ fibrils forming behind these cells, which is intimately related to the extensive dynamics of junction protein complexes between Sertoli cells. As key regulators of protein traffic, Rab GTPases participate in delivery of proteins between distinct cellular sites and cross talk with proteins that constitute tight junction and adherens junction. Using primarily cultured Sertoli cells in vitro with an established tight junction permeability barrier that mimics the BTB in vivo, RAB13 was shown to decrease during the testosterone-induced TJ integrity enhancement, accompanied with an increment in protein kinase A (PKA) activity. Furthermore, knockdown of Rab13 was found to resemble the effect of testosterone on Sertoli cell TJ permeability by reinforcing filamentous actin and occludin distribution at the cell-cell interface and promoting the direct interaction between ZO-1 and occludin. Interestingly, the effects of testosterone and Rab13 knockdown on Sertoli cell epithelium were revealed to be antagonized by PKA activity inhibition. In summary, RAB13 serves as a regulatory component in the assembly and restructuring of the TJ fibrils between adjacent Sertoli cells.
Collapse
Affiliation(s)
- Wenhui Su
- Department of Biochemistry and Molecular Biology, Basic Medical College.
| | | |
Collapse
|