1
|
Kumar R, Kumari P, Gaurav N, Kumar R, Singh D, Malhotra P, Singh SK, Bhatta RS, Kumar A, Nagarajan P, Singh S, Dalal N, Roy BG, Bhatt AN, Chandna S. N-acetyl-L-tryptophan provides radioprotection to mouse and primate models by antagonizing the TRPV1 receptor and substance P inhibition. Int J Radiat Biol 2024; 101:118-143. [PMID: 39680789 DOI: 10.1080/09553002.2024.2435330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE The present study was carried out to evaluate the radioprotective activities of N-acetyl-L-tryptophan (L-NAT) using rodent and non-human primate (NHP) models. MATERIALS AND METHODS The antagonistic effect of L-NAT on the Transient receptor potential vanilloid-1 (TRPV1) receptor and substance P inhibition was determined using molecular docking and Elisa assays. The in vivo radioprotective activity of L-NAT was evaluated using whole-body survival assays in mice and NHPs. Radioprotective activity of L-NAT was also determined at the systemic level using quantitative histological analysis of bone marrow, jejunum, and seminiferous tubules of irradiated mice. RESULTS Molecular docking studies revealed a strong binding of L-NAT with TRPV1 receptor at similar binding pockets to which capsaicin, an agonist of the TRPV1 receptor, binds. Further, capsaicin and gamma radiation were found to induce substance P levels in the intestines and serum of the mice, while L-NAT pretreatment was found to inhibit it. Significant whole-body survival (>80%) was observed in irradiated (9.0 Gy) mice that pretreated with L-NAT (150 mg/kg, b.wt. im) compared to 0% survival in irradiated mice that not pretreated with L-NAT. The quantitative histology of the hematopoietic, gastrointestinal, and male reproductive systems demonstrated significant protection against radiation-induced cellular degeneration. Interestingly, 100% survival was observed with irradiated NHPs (6.5 Gy) that pretreated with L-NAT (37.5 mg/kg, b.wt.im). Significant improvement in the hematology profile was observed after days 10-20 post-treatment periods in irradiated (6.5 Gy) NHPs that were pretreated with L-NAT. CONCLUSION L-NAT demonstrated excellent radioprotective activity in the mice and NHP models, probably by antagonizing TRPV1 receptor and subsequently inhibiting substance P expression.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Pratibha Kumari
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Neelanshu Gaurav
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ravi Kumar
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Darshana Singh
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Malhotra
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Shravan Kumar Singh
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | - Anil Kumar
- National Institute of Immunology (NII), Delhi
| | | | | | - Nishu Dalal
- National Institute of Immunology (NII), Delhi
| | - Bal Gangadhar Roy
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Anant Narayan Bhatt
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sudhir Chandna
- Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
2
|
Wang Q, Duan J, Hong J, Ding K, Tai F, Zhu J, Fu H, Zheng X, Ge C. Toll-like Receptor Agonist CBLB502 Protects Against Radiation-induced Intestinal Injury in Mice. In Vivo 2024; 38:1636-1648. [PMID: 38936936 PMCID: PMC11215590 DOI: 10.21873/invivo.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The small intestine is one of the organs most vulnerable to ionizing radiation (IR) damage. However, methods to protect against IR-induced intestinal injury are limited. CBLB502, a Toll-like receptor 5 (TLR5) agonist from Salmonella flagellin, exerts radioprotective effects on various tissues and organs. However, the molecular mechanisms by which CBLB502 protects against IR-induced intestinal injury remain unclear. Thus, this study aimed to elucidate the mechanisms underlying IR-induced intestinal injury and the protective effects of CBLB502 against this condition in mice. MATERIALS AND METHODS Mice were administered 0.2 mg/kg CBLB502 before IR at different doses for different time points, and then the survival rate, body weight, hemogram, and histopathology of the mice were analyzed. RESULTS CBLB502 reduced IR-induced intestinal injury. RNA-seq analysis revealed that different doses and durations of IR induced different regulatory patterns. CBLB502 protected against intestinal injury mainly after IR by reversing the expression of IR-induced genes and regulating immune processes and metabolic pathways. CONCLUSION This study preliminarily describes the regulatory mechanism of IR-induced intestinal injury and the potential molecular protective mechanism of CBLB502, providing a basis for identifying the functional genes and molecular mechanisms that mediate protection against IR-induced injury.
Collapse
Affiliation(s)
- Qiong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Junzhao Duan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Jian Hong
- Eighth Medical Center, PLA General Hospital, Beijing, P.R. China
| | - Kexin Ding
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Fumin Tai
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China;
| | - Changhui Ge
- School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China;
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
3
|
Christy BA, Herzig MC, Wu X, Mohammadipoor A, McDaniel JS, Bynum JA. Cell Therapies for Acute Radiation Syndrome. Int J Mol Sci 2024; 25:6973. [PMID: 39000080 PMCID: PMC11241804 DOI: 10.3390/ijms25136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The risks of severe ionizing radiation exposure are increasing due to the involvement of nuclear powers in combat operations, the increasing use of nuclear power, and the existence of terrorist threats. Exposure to a whole-body radiation dose above about 0.7 Gy results in H-ARS (hematopoietic acute radiation syndrome), which is characterized by damage to the hematopoietic system; higher doses result in further damage to the gastrointestinal and nervous systems. Only a few medical countermeasures for ARS are currently available and approved for use, although others are in development. Cell therapies (cells or products produced by cells) are complex therapeutics that show promise for the treatment of radiation injury and have been shown to reduce mortality and morbidity in animal models. Since clinical trials for ARS cannot be ethically conducted, animal testing is extremely important. Here, we describe cell therapies that have been tested in animal models. Both cells and cell products appear to promote survival and lessen tissue damage after whole-body irradiation, although the mechanisms are not clear. Because radiation exposure often occurs in conjunction with other traumatic injuries, animal models of combined injury involving radiation and future countermeasure testing for these complex medical problems are also discussed.
Collapse
Affiliation(s)
- Barbara A Christy
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maryanne C Herzig
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Xiaowu Wu
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Arezoo Mohammadipoor
- Hemorrhage and Vascular Dysfunction, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - Jennifer S McDaniel
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
| | - James A Bynum
- Blood and Shock Resuscitation, US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, TX 78234, USA
- Department of Surgery, UT Health San Antonio, San Antonio, TX 78229, USA
- Trauma Research and Combat Casualty Care Collaborative, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Gil S, Im KI, Kim N, Lee J, Na H, Min GJ, Cho SG. Mesenchymal stem cells preconditioned with a TLR5 agonist enhanced immunoregulatory effect through M2 macrophage polarization in a murine graft-versus-host disease model. Int J Med Sci 2024; 21:1649-1660. [PMID: 39006841 PMCID: PMC11241100 DOI: 10.7150/ijms.93121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication following hematopoietic stem cell transplantation and can be life-threatening. Mesenchymal stem cells (MSCs), adult stem cells with immunomodulatory properties, have been used as therapeutic agents in a variety of ways and have demonstrated efficacy against acute GVHD (aGVHD); however, variability in MSC pro- and anti-inflammatory properties and the limitation that they only exhibit immunosuppressive effects at high levels of inflammation have prevented their widespread clinical use. The outcomes of GVHD treated with MSCs in the clinic have been variable, and the underlying mechanisms remain unclear. Therefore, the unique biological effects of Toll-like receptor 5 (TLR5) agonists led us to compare and validate the efficacy of MSCs primed with KMRC011, a TLR5 agonist. KMRC011 is a stimulant that induces the secretion of cytokines, which play an important role in immune regulation. In this study, we found that MSCs pretreated with KMRC011 increased the secretion of immunosuppressive cytokines indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX2) and increased the expression of M2 macrophage polarizing cytokines macrophage colony-stimulating factor (M-CSF) and interleukin 10 (IL-10) in vitro. We investigated the immunosuppressive effects of TLR5 agonist (KMRC011)-primed MSCs on lymphocytes and their preventive and therapeutic effects on an in vivo mouse aGVHD model. In vitro experiments showed that KMRC011-primed MSCs had enhanced immunosuppressive effects on lymphocyte proliferation. In vivo experiments showed that KMRC011-primed MSCs ameliorated GVHD severity in a mouse model of induced GVHD disease. Finally, macrophages harvested from the spleens of mice treated with KMRC011-primed MSCs showed a significant increase in the anti-inflammatory M2 phenotype. Overall, the results suggest that KMRC011-primed MSCs attenuated GVHD severity in mice by polarizing macrophages to the M2 phenotype and increasing the proportion of anti-inflammatory cells, opening new horizons for GVHD treatment.
Collapse
Affiliation(s)
- Sojin Gil
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyemin Na
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wang S, Zuo Z, Ouyang Z, Liu X, Wang J, Shan Y, Meng R, Zhao Z, Liu X, Liu X, Jin Y, Li Z, Zhang H, Wang L, Cong Y. Sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production. Biochem Biophys Res Commun 2024; 704:149661. [PMID: 38417343 DOI: 10.1016/j.bbrc.2024.149661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.
Collapse
Affiliation(s)
- Shaozheng Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Zongchao Zuo
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China; Faculty of Environment and Life, Beijing University of Technology, No.100, Pingleyuan, Chaoyang, 100124, Beijing, China
| | - Zhangyi Ouyang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Xinyu Liu
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China; College of Life Sciences, Hebei University, No.180 Wusi East Road, 071000, Baoding, China
| | - Junke Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajun Shan
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Ruoxi Meng
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Zhenhu Zhao
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Xiaolan Liu
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yiguang Jin
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, 100191, Beijing, China
| | - Hong Zhang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Limei Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Yuwen Cong
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Taiping Road, Haidian District, 100850, Beijing, China.
| |
Collapse
|
6
|
Singh VK, Seed TM. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug Discov Today 2024; 29:103856. [PMID: 38097137 DOI: 10.1016/j.drudis.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Brickey WJ, Caudell DL, Macintyre AN, Olson JD, Dai Y, Li S, Dugan GO, Bourland JD, O’Donnell LM, Tooze JA, Huang G, Yang S, Guo H, French MN, Schorzman AN, Zamboni WC, Sempowski GD, Li Z, Owzar K, Chao NJ, Cline JM, Ting JPY. The TLR2/TLR6 ligand FSL-1 mitigates radiation-induced hematopoietic injury in mice and nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2122178120. [PMID: 38051771 PMCID: PMC10723152 DOI: 10.1073/pnas.2122178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.
Collapse
Affiliation(s)
- W. June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - David L. Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Yanwan Dai
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory O. Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Lisa M. O’Donnell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Janet A. Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Shuangshuang Yang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew N. French
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Allison N. Schorzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William C. Zamboni
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Nelson J. Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC27705
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Jenny P. Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
8
|
Wang X, Qiu W, Liu H, He M, He W, Li Z, Wu Z, Xu X, Chen P. The inducible secreting TLR5 agonist, CBLB502, enhances the anti-tumor activity of CAR133-NK92 cells in colorectal cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0033. [PMID: 37731205 PMCID: PMC10546094 DOI: 10.20892/j.issn.2095-3941.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE CAR-T/NK cells have had limited success in the treatment of solid tumors, such as colorectal cancer (CRC), in part because of the heterogeneous nature of tumor-associated antigens that lead to antigen-negative relapse after the initial response. This barrier might be overcome by enhancing the recruitment and durability of endogenous immune cells. METHODS Immunohistochemistry and flow cytometry were used to assess the expression of CD133 antigen in tissue microarrays and cell lines, respectively. Retroviral vector transduction was used to generate CBLB502-secreting CAR133-NK92 cells (CAR133-i502-NK92). The tumor killing capacity of CAR133-NK92 cells in vitro and in vivo were quantified via LDH release, the RTCA assay, and the degranulation test, as well as measuring tumor bioluminescence signal intensity in mice xenografts. RESULTS We engineered CAR133-i502-NK92 cells and demonstrated that those cells displayed enhanced proliferation (9.0 × 104 cells vs. 7.0 × 104 cells) and specific anti-tumor activities in vitro and in a xenogeneic mouse model, and were well-tolerated. Notably, CBLB502 secreted by CAR133-i502-NK92 cells effectively activated endogenous immune cells. Furthermore, in hCD133+/hCD133- mixed cancer xenograft models, CAR133-i502-NK92 cells suppressed cancer growth better than the counterparts (n = 5, P = 0.0297). Greater T-cell infiltration was associated with greater anti-tumor potency (P < 0.0001). CONCLUSIONS Armed with a CBLB502 TLR5 agonist, CAR133-NK92 cells were shown to be capable of specifically eliminating CD133-positive colon cancer cells in a CAR133-dependent manner and indirectly eradicating CD133-negative colon cancer cells in a CBLB502-specific endogenous immune response manner. This study describes a novel technique for optimizing CAR-T/NK cells for the treatment of antigenically-diverse solid tumors.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Qiu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Haoyu Liu
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Min He
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei He
- College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhiqiang Wu
- Department of Biotherapeutics, The First Medical Center, Chinese PLA General Hospital, Beijing 100038, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ping Chen
- College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol 2023; 60:101330. [PMID: 37084463 DOI: 10.1016/j.coviro.2023.101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5. D2/D3 domains, located in the central region and exposed to the outside surface of flagellar filament, are heterogeneous across bacterial species and highly immunogenic. Taking advantage of TLR5- and NLRC4-stimulating activities, flagellin has been actively developed as a vaccine adjuvant and immunotherapeutic. Because of its immunogenicity, there exist worries concerning diminished efficacy and possible reactogenicity after repeated administration. Deimmunization of flagellin derivatives while preserving the TLR5/NLRC4-mediated immunomodulatory activity should be the most reasonable option for clinical application. This review describes strategies and current achievements in flagellin deimmunization.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Koemchhoy Khim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
11
|
Perecko T, Hoferova Z, Hofer M, Pereckova J, Falk M. Administration of nitro-oleic acid mitigates radiation-induced hematopoietic injury in mice. Life Sci 2022; 310:121106. [DOI: 10.1016/j.lfs.2022.121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
|
12
|
Rozhdestvensky LM, Bogdanenko NA, Ilchenko EV, Guryev DV, Fedotov YA, Osipov AN. Issues of Organization of the Development of Antiradiation Agents in Russia for Drug Safety during Radiation Incidents. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Singh VK, Seed TM. Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences perspective on space radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:20-29. [PMID: 36336365 DOI: 10.1016/j.lssr.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
There is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure. These radiation-associated health risks can be managed only to a limited extent by physical means, but perhaps they might be more effectively managed biomedically. The Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences has a long history of researching and developing MCMs specifically designed to support terrestrial-based military missions involving a radiation-threat component. The development of MCMs for both low and high doses of radiation are major aims of current research, and as such can provide lessons learned for the development of countermeasures applicable to future space missions and its extraterrestrial radiation environment.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
14
|
Transcriptomes of Wet Skin Biopsies Predict Outcomes after Ionizing Radiation Exposure with Potential Dosimetric Applications in a Mouse Model. Curr Issues Mol Biol 2022; 44:3711-3734. [PMID: 36005150 PMCID: PMC9406351 DOI: 10.3390/cimb44080254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Countermeasures for radiation diagnosis, prognosis, and treatment are trailing behind the proliferation of nuclear energy and weaponry. Radiation injury mechanisms at the systems biology level are not fully understood. Here, mice skin biopsies at h2, d4, d7, d21, and d28 after exposure to 1, 3, 6, or 20 Gy whole-body ionizing radiation were evaluated for the potential application of transcriptional alterations in radiation diagnosis and prognosis. Exposure to 20 Gy was lethal by d7, while mice who received 1, 3, or 6 Gy survived the 28-day time course. A Sammon plot separated samples based on survival and time points (TPs) within lethal (20 Gy) and sublethal doses. The differences in the numbers, regulation mode, and fold change of significantly differentially transcribed genes (SDTGs, p < 0.05 and FC > 2) were identified between lethal and sublethal doses, and down and upregulation dominated transcriptomes during the first post-exposure week, respectively. The numbers of SDTGs and the percentages of upregulated ones revealed stationary downregulation post-lethal dose in contrast to responses to sublethal doses which were dynamic and largely upregulated. Longitudinal up/downregulated SDTGs ratios suggested delayed and extended responses with increasing IR doses in the sublethal range and lethal-like responses in late TPs. This was supported by the distributions of common and unique genes across TPs within each dose. Several genes with potential dosimetric marker applications were identified. Immune, fibrosis, detoxification, hematological, neurological, gastric, cell survival, migration, and proliferation radiation response pathways were identified, with the majority predicted to be activated after sublethal and inactivated after lethal exposures, particularly during the first post-exposure week.
Collapse
|
15
|
Ko J, Kim J, Choi YK, Nahm SS, Kim J, Seo SM, Seo JS, Lee W, Chung WK, Eom K. Clinical evaluation of toll-like receptor-5 agonist for radiation-induced oral mucositis in beagle dogs. Front Vet Sci 2022; 9:839467. [PMID: 36032288 PMCID: PMC9412099 DOI: 10.3389/fvets.2022.839467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the clinical safety and validate the radiomitigative effect of KMRC011, against radiation-induced oral mucositis in beagle dogs. Clinical safety was evaluated by assessing tolerability, complete blood tests, and plasma biochemistry after drug administration. The radiomitigative effect of KMRC011 was evaluated macropathologically and histopathologically after inducing oral mucositis iatrogenically using 20 Gy irradiation. The plasma concentration of interleukin-6 was measured via enzyme-linked immunosorbent assay, as a biomarker of KMRC011 bioreactivity. Decreased tolerability, increased neutrophil count, hepatic enzyme concentration, C-reactive protein concentration, and interleukin-6 concentration after the administration was observed and ceased within 24 h without additional treatment. Although all animals included in the present study developed severe mucositis in the late course of the study, animals administered KMRC011 showed less erythema, ulcer, inflammatory infiltration. These results suggest that KMRC011 may be used as an adjuvant for radiotherapy without severe adverse effects, especially during short-term radiotherapy, such as hypofractionated radiotherapy or stereotactic radiotherapy.
Collapse
Affiliation(s)
- Jaeeun Ko
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jayon Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jin-Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
- Weon Kuu Chung
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- *Correspondence: Kidong Eom
| |
Collapse
|
16
|
Tripathi AM, Khan S, Chaudhury NK. Radiomitigation by Melatonin in C57BL/6 Mice: Possible Implications as Adjuvant in Radiotherapy and Chemotherapy. In Vivo 2022; 36:1203-1221. [PMID: 35478105 DOI: 10.21873/invivo.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Melatonin (N-acetyl-5-methoxytryptamine), a chief secretory molecule of the pineal gland, has multiple properties, and numerous clinical investigations regarding its actions are in progress. This study investigated the radiomitigative role of melatonin in C57BL/6 mice. MATERIALS AND METHODS Melatonin (100 mg/kg) was orally administered once daily starting at 1 h on day 1 and subsequently every 24 h until day 7 after whole-body irradiation (WBI) and survival was monitored for 30 days. The bone marrow, spleen, and intestine were studied to evaluate the mitigative potential of melatonin after radiation-induced damage. RESULTS Melatonin significantly improved the survival upto 60% and 90% after 9 Gy (lethal) and 7.5 Gy (sub-lethal) WBI, respectively. Melatonin alleviated WBI-induced myelosuppression and pancytopenia, and increased white blood cell, red blood cell, platelet, and lymphocyte (CD4+ and CD8+) counts in peripheral blood. Bone marrow and spleen cellularity were restored through enhanced haematopoiesis. Melatonin ameliorated the damage in the small intestine, and promoted recovery of villi length, crypts number, and goblet cell count. CONCLUSION Melatonin mitigates the radiation-induced injury in the gastrointestinal and haematopoietic systems. The observed radiomitigative properties of melatonin can also be useful in the context of adjuvant therapy for cancer and radiotherapy.
Collapse
Affiliation(s)
- Akanchha Mani Tripathi
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| |
Collapse
|
17
|
Gamma-tocotrienol, a radiation countermeasure, reverses proteomic changes in serum following total-body gamma irradiation in mice. Sci Rep 2022; 12:3387. [PMID: 35233005 PMCID: PMC8888544 DOI: 10.1038/s41598-022-07266-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Radiological incidents or terrorist attacks would likely expose civilians and military personnel to high doses of ionizing radiation, leading to the development of acute radiation syndrome. We examined the effectiveness of prophylactic administration of a developmental radiation countermeasure, γ-tocotrienol (GT3), in a total-body irradiation (TBI) mouse model. CD2F1 mice received GT3 24 h prior to 11 Gy cobalt-60 gamma-irradiation. This dose of radiation induces severe hematopoietic acute radiation syndrome and moderate gastrointestinal injury. GT3 provided 100% protection, while the vehicle control group had 100% mortality. Two-dimensional differential in-gel electrophoresis was followed by mass spectrometry and Ingenuity Pathway Analysis (IPA). Analysis revealed a change in expression of 18 proteins in response to TBI, and these changes were reversed with prophylactic treatment of GT3. IPA revealed a network of associated proteins involved in cellular movement, immune cell trafficking, and inflammatory response. Of particular interest, significant expression changes in beta-2-glycoprotein 1, alpha-1-acid glycoprotein 1, alpha-2-macroglobulin, complement C3, mannose-binding protein C, and major urinary protein 6 were noted after TBI and reversed with GT3 treatment. This study reports the untargeted approach, the network, and specific serum proteins which could be translated as biomarkers of both radiation injury and protection by countermeasures.
Collapse
|
18
|
Kumar A, Choudhary S, Kumar S, Adhikari JS, Kapoor S, Chaudhury NK. Role of melatonin mediated G-CSF induction in hematopoietic system of gamma-irradiated mice. Life Sci 2022; 289:120190. [PMID: 34883100 DOI: 10.1016/j.lfs.2021.120190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
AIMS Hematopoietic acute radiation syndrome (H-ARS) can cause lethality, and therefore, the necessity of a safe radioprotector. The present study was focused on investigating the role of melatonin in granulocytes colony-stimulating factor (G-CSF) and related mechanisms underlying the reduction of DNA damage in hematopoietic system of irradiated mice. MAIN METHODS C57BL/6 male mice were exposed to 2, 5, and 7.5Gy of whole-body irradiation (WBI), 30 min after intra-peritoneal administration of melatonin with different doses. Mice were sacrificed at different time intervals after WBI, and bone marrow, splenocytes, and peripheral blood lymphocytes were isolated for studying various parameters including micronuclei (MN), cell cycle, comet, γ-H2AX, gene expression, amino acid profiling, and hematology. KEY FINDINGS Melatonin100mg/kg ameliorated radiation (7.5Gy and 5Gy) induced MN frequency and cell death in bone marrow without mortality. At 24 h of post-WBI (2Gy), the frequency of micronucleated polychromatic erythrocytes (mnPCE) with different melatonin doses revealed 20 mg/kg as optimal i.p. dose for protecting the hematopoietic system against radiation injury. In comet assay, a significant reduction in radiation-induced % DNA tail (p ≤ 0.05) was observed at this dose. Melatonin reduced γ-H2AX foci/cell and eventually reached to the control level. Melatonin also decreased blood arginine levels in mice after 24 h of WBI. The gene expression of G-CSF, Bcl-2-associated X protein (BAX), and Bcl2 indicated the role of melatonin in G-CSF regulation and downstream pro-survival pathways along with anti-apoptotic activity. SIGNIFICANCE The results revealed that melatonin recovers the hematopoietic system of irradiated mice by inducing G-CSF mediated radioprotection.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Hamdard University, Hamdard nagar, New Delhi 110062, India
| | - Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated Lok Nayak Hospital, Delhi 110002, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated Lok Nayak Hospital, Delhi 110002, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences (INMAS)-Defence Research and Development Organisation (DRDO), Brig. SK Mazumdar Marg, Timarpur, Delhi 110054, India.
| |
Collapse
|
19
|
Brackett CM, Greene KF, Aldrich AR, Trageser NH, Pal S, Molodtsov I, Kandar BM, Burdelya LG, Abrams SI, Gudkov AV. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov 2021; 7:266. [PMID: 34584068 PMCID: PMC8478872 DOI: 10.1038/s41420-021-00642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Kellee F Greene
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Alyssa R Aldrich
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nicholas H Trageser
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ivan Molodtsov
- I.V. Davydovsky Clinical City Hospital, Moscow Department of Healthcare, Moscow, Russian Federation
| | - Bojidar M Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
20
|
Shi T, Jiang J, Gao M, Ma R, Chen X, Zhang R, Xu J, Wang W, Xu S, Liu X, Zheng H, Wang C, Li L, Li R. Editing flagellin derivatives for exploration of potent radioprotective agents. Eur J Pharmacol 2021; 907:174259. [PMID: 34153338 DOI: 10.1016/j.ejphar.2021.174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Exploration of medical radiation countermeasures (MRCs) has great implications in protection of mammals from radiation damages. While flagellin has been recently reported to show radioprotective effects, the relationships between flagellin structure and radioprotective activity are rarely explored. Herein, we deliberately edited the amino acid sequence of flagellin in its binding domain with toll-like receptor 5 (TLR5) for exploration of potent flagellin derivatives (Fds). An in vitro screening paradigm was developed to examine the radioprotective effects of six engineered Fds. Notably, mutation of 103 threonine on flagellin into asparagine resulted in a potent MRC candidate (Fd-T103N) displaying 1.28-fold increment of interactions with TLR5. Fd-T103N was able to further activate NF-κB pathway, induce immune protective cytokine (e.g. G-CSF) release, and significantly ameliorate γ-irradiation induced cell death. The protection effects of Fd-T103N were further validated in mice exposed to 10 Gy γ-irradiations. Compared to parent flagellin, Fd-T103N treatment showed higher G-CSF release in mouse blood, lower intestine damages, and 13% increments of mouse survival rates. In short, the established predictive paradigm could greatly reduce the labor-, time- and animal-costs in exploration of MRC candidates. Fd-T103N is a promising candidate of investigational new drug for radioprotection.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
21
|
Yang E, Choi H, Park JS, Noh YW, Choi CM, Lee WJ, Ko JW, Kim J. A first-in-human study of KMRC011, a potential treatment for acute radiation syndrome, to explore tolerability, pharmacokinetics, and pharmacodynamics. Clin Transl Sci 2021; 14:2161-2170. [PMID: 34080313 PMCID: PMC8604209 DOI: 10.1111/cts.13073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022] Open
Abstract
KMRC011 is a novel Toll-like receptor 5 agonist under development as a treatment for acute radiation syndrome (ARS). The aim of this first-in-human study was to investigate the tolerability, pharmacokinetics, and pharmacodynamics of a single intramuscular dose of KMRC011 in healthy subjects. A randomized, single-blind, placebo-controlled, single dose-escalation study was conducted with the starting dose of 5 μg. Eight (4 only for 5 μg cohort) subjects per cohort were randomly assigned to KMRC011 or placebo in a 3:1 ratio. Dose-limiting toxicity (DLT) was assessed throughout the study. Serum concentrations of KMRC011, granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6) were measured up to 48 h postdose. Based on safety review, the dose of KMRC011 escalated up to 20 μg, and consequently, a total of 4 dose levels (5, 10, 15, and 20 μg) were explored. The most common adverse event was injection site reaction, showing no dose-related trend. Three DLTs (2 cases of hepatic enzyme increased and 1 of pyrexia) were observed; 1 in the 15 μg cohort and 2 in the 20 μg cohort. A developed method could not detect any KMRC011 in serum. KMRC011 15 μg and 20 μg showed significant increases of G-CSF, IL-6, and absolute neutrophil counts, compared with the placebo. A single intramuscular administration of KMRC011 ranging from 5 to 15 μg was tolerated in healthy subjects. Doses of KMRC011 equal to or greater than 15 μg exerted TLR5 agonist-like activities by increasing serum G-CSF and IL-6. It suggests that KMRC011 has the potential for a treatment for ARS.
Collapse
Affiliation(s)
- Eunsol Yang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Hyejung Choi
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, Korea
| | - Jin-Sol Park
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, Korea
| | - Young-Woock Noh
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Korea
| | | | - Woo-Jong Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon-si, Korea
| | - Jae-Wook Ko
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, Korea
| | - Jungryul Kim
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
22
|
Bensemmane L, Squiban C, Demarquay C, Mathieu N, Benderitter M, Le Guen B, Milliat F, Linard C. The stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome in mice. Stem Cell Res Ther 2021; 12:309. [PMID: 34051871 PMCID: PMC8164266 DOI: 10.1186/s13287-021-02373-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
Background The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties. We studied the therapeutic impact of SVF and its action on the intestinal stem cell compartment. Methods Mice exposed to the abdominal radiation (18 Gy) received a single intravenous injection of stromal vascular fraction (SVF) (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Mortality was evaluated as well as intestinal regeneration by histological analyses and absorption function. Results The SVF treatment limited the weight loss of the mice and inhibited the intestinal permeability and mortality after abdominal irradiation. Histological analyses showed that SVF treatment stimulated the regeneration of the epithelium by promoting numerous enlarged hyperproliferative zones. SVF restored CD24+/lysozyme− and Paneth cell populations in the ISC compartment with the presence of Paneth Ki67+ cells. SVF has an anti-inflammatory effect by repressing pro-inflammatory cytokines, increasing M2 macrophages in the ileum and anti-inflammatory monocyte subtypes CD11b+Ly6clowCX3CR1high in the spleen. Conclusions Through the pleiotropic effects that contribute to limiting radiation-induced lethality, SVF opens up attractive prospects for the treatment of emergency GIS. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02373-y.
Collapse
Affiliation(s)
- Lydia Bensemmane
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Claire Squiban
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | | | - Fabien Milliat
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France.
| |
Collapse
|
23
|
Patterson AM, Wu T, Chua HL, Sampson CH, Fisher A, Singh P, Guise TA, Feng H, Muldoon J, Wright L, Plett PA, Pelus LM, Orschell CM. Optimizing and Profiling Prostaglandin E2 as a Medical Countermeasure for the Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 195:115-127. [PMID: 33302300 DOI: 10.1667/rade-20-00181.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
Identification of medical countermeasures (MCM) to mitigate radiation damage and/or protect first responders is a compelling unmet medical need. The prostaglandin E2 (PGE2) analog, 16,16 dimethyl-PGE2 (dmPGE2), has shown efficacy as a radioprotectant and radiomitigator that can enhance hematopoiesis and ameliorate intestinal mucosal cell damage. In this study, we optimized the time of administration of dmPGE2 for protection and mitigation against mortality from the hematopoietic acute radiation syndrome (H-ARS) in young adult mice, evaluated its activity in pediatric and geriatric populations, and investigated potential mechanisms of action. Windows of 30-day survival efficacy for single administration of dmPGE2 were defined as within 3 h prior to and 6-30 h after total-body γ irradiation (TBI). Radioprotective and radio-mitigating efficacy was also observed in 2-year-old geriatric mice and 6-week-old pediatric mice. PGE2 receptor agonist studies suggest that signaling through EP4 is primarily responsible for the radioprotective effects. DmPGE2 administration prior to TBI attenuated the drop in red blood cells and platelets, accelerated recovery of all peripheral blood cell types, and resulted in higher hematopoietic and mesenchymal stem cells in survivor bone marrow. Multiplex analysis of bone marrow cytokines together with RNA sequencing of hematopoietic stem cells indicated a pro-hematopoiesis cytokine milieu induced by dmPGE2, with IL-6 and G-CSF strongly implicated in dmPGE2-mediated radioprotective activity. In summary, we have identified windows of administration for significant radio-mitigation and radioprotection by dmPGE2 in H-ARS, demonstrated survival efficacy in special populations, and gained insight into radioprotective mechanisms, information useful towards development of dmPGE2 as a MCM for first responders, military personnel, and civilians facing radiation threats.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tong Wu
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Lin Chua
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Carol H Sampson
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Alexa Fisher
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Pratibha Singh
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theresa A Guise
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hailin Feng
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jessica Muldoon
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Laura Wright
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - P Artur Plett
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Louis M Pelus
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christie M Orschell
- Department of a Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
24
|
Mett V, Kurnasov OV, Bespalov IA, Molodtsov I, Brackett CM, Burdelya LG, Purmal AA, Gleiberman AS, Toshkov IA, Burkhart CA, Kogan YN, Andrianova EL, Gudkov AV, Osterman AL. A deimmunized and pharmacologically optimized Toll-like receptor 5 agonist for therapeutic applications. Commun Biol 2021; 4:466. [PMID: 33846531 PMCID: PMC8041767 DOI: 10.1038/s42003-021-01978-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532. GP532 induces TLR5-dependent NF-κB activation like entolimod but is smaller and has mutations eliminating an inflammasome-activating domain and key B- and T-cell epitopes. GP532 is resistant to human entolimod-neutralizing antibodies and shows reduced de novo immunogenicity. GP532 also has improved bioavailability, a stronger effect on key cytokine biomarkers, and a longer-lasting effect on NF-κB. Like entolimod, GP532 demonstrated potent prophylactic and therapeutic efficacy in mouse models of radiation-induced death and tissue damage. These results establish GP532 as an optimized TLR5 agonist suitable for multi-dose therapies and for patients with high titers of preexisting flagellin-neutralizing antibodies.
Collapse
Affiliation(s)
| | - Oleg V Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Ivan Molodtsov
- Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Andrei V Gudkov
- Genome Protection, Inc., Buffalo, NY, USA. .,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
25
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
26
|
Singh VK, Seed TM. BIO 300: a promising radiation countermeasure under advanced development for acute radiation syndrome and the delayed effects of acute radiation exposure. Expert Opin Investig Drugs 2021; 29:429-441. [PMID: 32450051 DOI: 10.1080/13543784.2020.1757648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION There are no radioprotectors currently approved by the United States Food and Drug Administration (US FDA) for either the hematopoietic acute radiation syndrome (H-ARS) or for the acute radiation gastrointestinal syndrome (GI-ARS). There are currently, however, three US FDA-approved medicinals that serve to mitigate acute irradiation-associated hematopoietic injury. AREA COVERED We present the current status of a promising radiation countermeasure, BIO 300 (a genistein-based agent), that has been extensively investigated in murine models of H-ARS and models of the delayed effects of acute radiation exposure (DEARE) and is currently being evaluated in large animal models. It is also being developed for the prevention of radiation-induced toxicities associated with solid tumor radiotherapy and is the subject of two active Investigational New Drug (IND) applications. We have included a listing and brief review of significant investigations of this promising medical countermeasure. EXPERT OPINION BIO 300 is a leading radioprotector under advanced development for H-ARS and DEARE, as well as for select oncologic indication(s). Efficacy following oral administration (po), lack of clinical side effects, storage at ambient temperature, and intended dual use makes BIO 300 an ideal candidate for military and civilian use as well as for storage in the Strategic National Stockpile.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | | |
Collapse
|
27
|
Lisina NI, Shchegoleva RA, Shlyakova TG, Zorin VV, Shkayev AE, Rozhdestvensky LM. Evaluation of the Antiradiation Efficiency of Flagellin in Experiments on Mice. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Shukla SK, Sharma AK, Bajaj S, Yashavarddhan MH. Radiation proteome: a clue to protection, carcinogenesis, and drug development. Drug Discov Today 2020; 26:525-531. [PMID: 33137481 DOI: 10.1016/j.drudis.2020.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sandeep Kumar Shukla
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India.
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| |
Collapse
|
29
|
Ge C, Su F, Fu H, Wang Y, Tian B, Liu B, Zhu J, Ding Y, Zheng X. RNA Profiling Reveals a Common Mechanism of Histone Gene Downregulation and Complementary Effects for Radioprotectants in Response to Ionizing Radiation. Dose Response 2020; 18:1559325820968433. [PMID: 33117095 PMCID: PMC7573744 DOI: 10.1177/1559325820968433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
High-dose ionizing radiation (IR) alters the expression levels of non-coding RNAs (ncRNAs). However, the roles of ncRNAs and mRNAs in mediating radiation protection by radioprotectants remain unknown. Microarrays were used to determine microRNA (miRNA), long ncRNA (lncRNA), and mRNA expression profiles in the bone marrow of irradiated mice pretreated with amifostine, CBLB502, and nilestriol. Differentially expressed mRNAs were functionally annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Some histone cluster genes were validated by real-time PCR, and the effects of radioprotectant combinations were monitored by survival analysis. We found that these radioprotectants increased the induction of lncRNAs and mRNAs. miRNA, lncRNA, and mRNA expression patterns were similar with amifostine and CBLB502, but not nilestriol. The radioprotectants exhibited mostly opposite effects against IR-induced miRNAs, lncRNAs, and mRNAs while inducing a common histone gene downregulation following IR, mainly via nucleosome assembly and related signaling pathways. Notably, the effects of nilestriol significantly complemented those of amisfostine or CBLB502; low-dose drug combinations resulted in better radioprotective effects in pretreated mice. Thus, we present histone gene downregulation by radioprotectants, together with the biological functions of miRNA, lncRNA, and mRNA, to explain the mechanism underlying radioprotection.
Collapse
Affiliation(s)
- Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Baolei Tian
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bin Liu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Ding
- 5th Medical Center, The General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
30
|
Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2020; 26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
31
|
Bandekar M, Maurya DK, Sharma D, Checker R, Gota V, Mishra N, Sandur SK. Xenogeneic transplantation of human WJ-MSCs rescues mice from acute radiation syndrome via Nrf-2-dependent regeneration of damaged tissues. Am J Transplant 2020; 20:2044-2057. [PMID: 32040239 DOI: 10.1111/ajt.15819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/25/2023]
Abstract
There is an unmet medical need for radiation countermeasures that can be deployed for treatment of exposed individuals during ionizing radiation (IR) accidents or terrorism. Wharton's jelly mesenchymal stem cells (WJ-MSCs) from human umbilical cord have been shown to avoid allorecognition and induce a tissue-regenerating microenvironment, which makes them an attractive candidate for mitigating IR injury. We found that WJ-MSCs protected mice from a lethal dose of IR even when transplanted up to 24 hours after irradiation, and a combination of WJ-MSCs and antibiotic (tetracycline) could further expand the window of protection offered by WJ-MSCs. This combinatorial approach mitigated IR-induced damage to the hematopoietic and gastrointestinal system. WJ-MSCs increased the serum concentration of the cytoprotective cytokines granulocyte colony-stimulating factor (G-CSF) and IL-6 in mice. Knockdown of G-CSF and IL-6 in WJ-MSCs before injection to lethally irradiated mice or transplantation of WJ-MSCs to lethally irradiated Nrf-2 knockout mice significantly nullified the therapeutic protective efficacy. Hence, WJ-MSCs could be a potential cell-based therapy for individuals accidentally exposed to radiation.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,University of Mumbai, Kalina, Mumbai, India
| | - Dharmendra K Maurya
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Vikram Gota
- Clinical Pharmacology, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | | | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
32
|
Chen F, Zhang Y, Hu S, Shi X, Wang Z, Deng Z, Lin L, Zhang J, Pan Y, Bai Y, Liu F, Zhang H, Shao C. TIGAR/AP-1 axis accelerates the division of Lgr5 - reserve intestinal stem cells to reestablish intestinal architecture after lethal radiation. Cell Death Dis 2020; 11:501. [PMID: 32632140 PMCID: PMC7338449 DOI: 10.1038/s41419-020-2715-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
During radiologic or nuclear accidents, high-dose ionizing radiation (IR) can cause gastrointestinal syndrome (GIS), a deadly disorder that urgently needs effective therapy. Unfortunately, current treatments based on natural products and antioxidants have shown very limited effects in alleviating deadly GIS. Reserve intestinal stem cells (ISCs) and secretory progenitor cells are both reported to replenish damaged cells and contribute to crypt regeneration. However, the suppressed β-catenin/c-MYC axis within these slow-cycling cells leads to limited regenerative response to restore intestinal integrity during fatal accidental injury. Current study demonstrates that post-IR overexpression of TIGAR, a critical downstream target of c-MYC in mouse intestine, mounts a hyperplastic response in Bmi1-creERT+ reserve ISCs, and thus rescues mice from lethal IR exposure. Critically, by eliminating damaging reactive oxygen species (ROS) yet retaining the proliferative ROS signals, TIGAR-overexpression enhances the activity of activator protein 1, which is indispensable for initiating reserve-ISC division after lethal radiation. In addition, it is identified that TIGAR-induction exclusively gears the Lgr5− subpopulation of reserve ISCs to regenerate crypts, and intestinal TIGAR-overexpression displays equivalent intestinal reconstruction to reserve-ISC-restricted TIGAR-induction. Our findings imply that precise administrations toward Lgr5− reserve ISCs are promising strategies for unpredictable lethal injury, and TIGAR can be employed as a therapeutic target for unexpected radiation-induced GIS.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Yushuo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Songling Hu
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaolin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Interventional Radiology, The Third Affiliated Hospital of the Medical College of Shihezi University, Xinjiang, 832008, China
| | - Zicheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Longxin Lin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Yang Bai
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China
| | - Fenju Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China
| | - Haowen Zhang
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Suzhou, 215123, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Grebenyuk AN, Gladkikh VD. Modern Condition and Prospects for the Development of Medicines towards Prevention and Early Treatment of Radiation Damage. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019110141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Haderski GJ, Kandar BM, Brackett CM, Toshkov IM, Johnson CP, Paszkiewicz GM, Natarajan V, Gleiberman AS, Gudkov AV, Burdelya LG. TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects. PLoS One 2020; 15:e0227940. [PMID: 32027657 PMCID: PMC7004342 DOI: 10.1371/journal.pone.0227940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5–48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.
Collapse
Affiliation(s)
- Gary J. Haderski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Bojidar M. Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Ilia M. Toshkov
- Genome Protection, Inc., Buffalo, New York, United States of America
| | - Christopher P. Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Geraldine M. Paszkiewicz
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Venkatesh Natarajan
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | | | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| |
Collapse
|
35
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Lai L, Yang G, Yao X, Wang L, Zhan Y, Yu M, Yin R, Li C, Yang X, Ge C. NLRC4 Mutation in flagellin-derived peptide CBLB502 ligand-binding domain reduces the inflammatory response but not radioprotective activity. JOURNAL OF RADIATION RESEARCH 2019; 60:780-785. [PMID: 31599956 PMCID: PMC6873615 DOI: 10.1093/jrr/rrz062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Bacterial flagellin is a pathogen-associated molecular pattern recognized by surface-localized Toll-like receptor 5 (TLR5) and cytosolic NOD-like receptor protein 4 (NLRC4). CBLB502, derived from Salmonella flagellin, exhibits high radioprotective efficacy in mice and primates by regulating TLR5 and the nuclear factor kappa B (NF-κB) signaling pathway. In this study, we examined the effects of CBLB502 and mutations in its NLRC4- and TLR5-binding domains on radioprotective efficacy and the immune inflammatory response. The results showed that CBLB502 mutation with I213A in the TLR5-binding domain significantly reduced NF-κB activity and radioprotective activity, whereas CBLB502 mutation with L292A in NLRC4-binding domain did not. Additionally, CBLB502 with both mutations greatly reduced NF-κB activity and eliminated radioprotection in mice. In contrast, NLRC4-binding domain mutation reduced the secretion of inflammatory interleukin-1β and interleukin-18. CBLB502 exerts its radioprotective effects through both the TLR5 and NLRC4 pathways. Additionally, deletion in the NLRC4-binding domain did not reduce radioprotective activity but reduced the inflammatory response.
Collapse
Affiliation(s)
- Lili Lai
- Graduate School of Anhui Medical University, Hefei 230032, China
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ganggang Yang
- College of Life Science, Henan Normal University; Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang 453731, China
| | - Xuelian Yao
- Graduate School of Anhui Medical University, Hefei 230032, China
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changhui Ge
- Graduate School of Anhui Medical University, Hefei 230032, China
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
37
|
Kim JY, Park JH, Seo SM, Park JI, Jeon HY, Lee HK, Yoo RJ, Lee YJ, Woo SK, Lee WJ, Choi CM, Choi YK. Radioprotective effect of newly synthesized toll-like receptor 5 agonist, KMRC011, in mice exposed to total-body irradiation. JOURNAL OF RADIATION RESEARCH 2019; 60:432-441. [PMID: 31165150 PMCID: PMC6640901 DOI: 10.1093/jrr/rrz024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Indexed: 05/18/2023]
Abstract
Exposure to ionizing radiation leads to severe damages in radiosensitive organs and induces acute radiation syndrome, including effects on the hematopoietic system and gastrointestinal system. In this study, the radioprotective ability of KMRC011, a novel toll-like receptor 5 (TLR5) agonist, was investigated in C57BL6/N mice exposed to lethal total-body gamma-irradiation. In a 30-day survival study, KMRC011-treated mice had a significantly improved survival rate compared with control after 11 Gy total-body irradiation (TBI), and it was found that the radioprotective activity of KMRC011 depended on its dosage and repeated treatment. In a 5-day short-term study, we demonstrated that KMRC011 treatment stimulated cell proliferation and had an anti-apoptotic effect. Furthermore, KMRC011 increased the expressions of genes related to DNA repair, such as Rad21, Gadd45b, Sod2 and Irg1, in the small intestine of lethally irradiated mice. Interestingly, downregulation of NF-κB p65 in the mouse intestine by KMRC011 treatment was observed. This data indicated that KMRC011 exerted a radioprotective activity partially by regulating NF-κB signaling. Finally, peak expression levels of G-CSF, IL-6, IFN-γ, TNF-α and IP-10 induced by KMRC011 treatment were different depending on the route of administration and type of cytokine. These cytokines could be used as candidate biomarkers for the evaluation of KMRC011 clinical efficacy. Our data indicated that KMRC011 has radioprotective activity in lethally irradiated mice and may be developed as a therapeutic agent for radioprotection.
Collapse
Affiliation(s)
- Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Jong-Hyung Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- ViroMed Co., Ltd, 1, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Jin-Il Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- ViroMed Co., Ltd, 1, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee-Yeon Jeon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul, Republic of Korea
| | - Han-Kyul Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Ran-Ji Yoo
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Yong-Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Sang-Keun Woo
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Woo-Jong Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, 59, Yangho-gil, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Chi-Min Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, 59, Yangho-gil, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- Corresponding author. Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Tel: +82-2-2049-6113; Fax: +82-2-450-3037;
| |
Collapse
|
38
|
Singh VK, Seed TM, Olabisi AO. Drug discovery strategies for acute radiation syndrome. Expert Opin Drug Discov 2019; 14:701-715. [PMID: 31008662 DOI: 10.1080/17460441.2019.1604674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: There are at the minimum two major, quite different approaches to advance drug discovery. The first being the target-based drug discovery (TBDD) approach that is commonly referred to as the molecular approach. The second approach is the phenotype-based drug discovery (PBDD), also known as physiology-based drug discovery or empirical approach. Area covered: The authors discuss, herein, the need for developing radiation countermeasure agents for various sub-syndromes of acute radiation syndromes (ARS) following TBDD and PBDD approaches. With time and continuous advances in radiation countermeasure drug development research, the expectation is to have multiple radiation countermeasure agents for each sub-syndrome made available to radiation exposed victims. Expert opinion: The majority of the countermeasures currently being developed for ARS employ the PBDD approach, while the TBDD approach is clearly under-utilized. In the future, an improved drug development strategy might be a 'hybrid' strategy that is more reliant on TBDD for the initial drug discovery via large-scale screening of potential candidate agents, while utilizing PBDD for secondary screening of those candidates, followed by tertiary analytics phase in order to pinpoint efficacious candidates that target the specific sub-syndromes of ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | | - Ayodele O Olabisi
- b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
39
|
The protective effects of 1,2-propanediol against radiation-induced hematopoietic injury in mice. Biomed Pharmacother 2019; 114:108806. [PMID: 30928804 DOI: 10.1016/j.biopha.2019.108806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Agents that provide protection against irradiation-induced hematopoietic injury are urgently needed for radiotherapy. We examined the effects of the small molecule, 1,2-propanediol (PPD), on total body irradiation (TBI)-induced hematopoietic injury in C57BL/6 mice. PPD administration 1 h before TBI significantly increased hematopoietic parameters such as white blood cell, platelet, red blood cell, and lymphocyte counts in vivo and enhanced the survival of mice exposed to TBI (7.0 and 7.5 Gy). PPD administration 1 h before TBI improved bone marrow (BM) and spleen recovery after TBI, with increases in both BM cellularity and spleen index. The number of colony-forming-units in bone marrow mononuclear cells (BMNCs) in vitro also increased significantly. PPD pretreatment increased the numbers of hematopoietic stem cells and hematopoietic progenitor cells in BM. Importantly, PPD also maintained endogenous antioxidant status by decreasing levels of malondialdehyde and increasing the expression of reduced glutathione, superoxide dismutase and catalase in the serum of irradiated mice. PPD alleviated the levels of apoptosis in HSCs induced by TBI, thus increasing the proportion of dividing BMNCs. These results suggest that PPD protects against TBI-induced hematopoietic injury through the increased activities of antioxidant enzymes and the inhibition of apoptosis in HSCs. PPD increased the serum levels of granulocyte-colony stimulating factor and interleukin-6 irrespective of TBI. In conclusion, these data suggest that PPD acts as a radioprotector against radiation-induced hematopoietic injury.
Collapse
|
40
|
Abstract
Radiotherapy is one of the most efficient ways to treat cancer. However, deleterious effects, such as acute and chronic toxicities that reduce the quality of life, may result. Naturally occurring compounds have been shown to be non-toxic over wide dose ranges and are inexpensive and effective. Additionally, pharmacological strategies have been developed that use radioprotectors to inhibit radiation-induced toxicities. Currently available radioprotectors have several limitations, including toxicity. In this review, we present the mechanisms of proven radioprotectors, ranging from free radical scavenging (the best-known mechanism of radioprotection) to molecular-based radioprotection (e.g., upregulating expression of heat shock proteins). Finally, we discuss naturally occurring compounds with radioprotective properties in the context of these mechanisms.
Collapse
|
41
|
Singh VK, Simas M, Pollard H. Biomarkers for acute radiation syndrome: challenges for developing radiation countermeasures following animal rule. Expert Rev Mol Diagn 2018; 18:921-924. [DOI: 10.1080/14737159.2018.1533404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Madison Simas
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Harvey Pollard
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
42
|
Bai H, Sun F, Yang G, Wang L, Zhang Q, Zhang Q, Zhan Y, Chen J, Yu M, Li C, Yin R, Yang X, Ge C. CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice†. Biol Reprod 2018; 100:281-291. [DOI: 10.1093/biolre/ioy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/26/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Bai
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feifei Sun
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Ganggang Yang
- College of Life Science, Henan Normal University, Xinxiang, China
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Lei Wang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Quanyi Zhang
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Quanhai Zhang
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiaojiao Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
- Graduate School of Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Goggs R, Letendre JA. High Mobility Group Box-1 and Pro-inflammatory Cytokines Are Increased in Dogs After Trauma but Do Not Predict Survival. Front Vet Sci 2018; 5:179. [PMID: 30105229 PMCID: PMC6077187 DOI: 10.3389/fvets.2018.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Trauma is common in dogs and causes significant morbidity and mortality, but it remains challenging to predict the prognosis of dogs with traumatic injuries. This study aimed to quantify plasma high-mobility group box-1 (HMGB-1) and cytokine concentrations in dogs with moderate-to-severe trauma, and to evaluate the association between these biomarkers and the injury severity and survival to discharge. Using a prospective, observational case-control study design, 49 dogs with an animal trauma triage (ATT) score ≥3 were consecutively enrolled from 07/2015 to 10/2017 and followed to hospital discharge. Dogs <3 kg and those with pre-existing coagulopathies were excluded. Thirty three healthy control dogs were also enrolled. Illness and injury severity scores including the acute patient physiologic and laboratory evaluation (APPLE) were calculated using at-presentation data. Plasma HMGB-1 concentrations were measured by ELISA; concentrations of 13 cytokines were measured using multiplex bead-based assays and separately concentrations of 4 cytokines were measured using a multiplex canine-specific ELISA. All biomarkers were measured in duplicate. Mann-Whitney U tests were used to compare biomarker concentrations between groups and between survivors and non-survivors. Associations between biomarkers were evaluated using Spearman's correlation coefficients. Independent predictors of survival were identified using multivariable logistic regression. Alpha was set at 0.05. Plasma concentrations of HMGB-1, interleukin-6, C-X-C motif chemokine-8, keratinocyte chemoattractant-like, and C-C chemokine ligand-2 were significantly greater in injured dogs vs. controls (all P ≤ 0.011). In univariate analyses, HMGB-1 was significantly greater in non-survivors 46.67 ng/mL (8.94-84.73) compared to survivors 6.03 ng/mL (3.30-15.75), (P = 0.003). Neither HMGB-1 or the cytokines were associated with survival independent of illness severity as measured by the APPLE score, however.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
44
|
Ye B, Shen W, Shi M, Zhang Y, Xu C, Zhao Z. Intein-mediated backbone cyclization of entolimod confers enhanced radioprotective activity in mouse models. PeerJ 2018; 6:e5043. [PMID: 29938138 PMCID: PMC6011820 DOI: 10.7717/peerj.5043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/03/2022] Open
Abstract
Background Entolimod is a Salmonella enterica flagellin derivate. Previous work has demonstrated that entolimod effectively protects mice and non-human primates from ionizing radiation. However, it caused a “flu-like” syndrome after radioprotective and anticancer clinical application, indicating some type of immunogenicity and toxicity. Cyclization is commonly used to improve the in vivo stability and activity of peptides and proteins. Methods We designed and constructed cyclic entolimod using split Nostoc punctiforme DnaE intein with almost 100% cyclization efficiency. We adopted different strategies to purify the linear and circular entolimod due to their different topologies. Both of linear and circular entolimod were first purified by Ni-chelating affinity chromatography, and then the linear and circular entolimod were purified by size-exclusion and ion-exchange chromatography, respectively. Results The circular entolimod showed significantly increased both the in vitro NF-κB signaling and in vivo radioprotective activity in mice. Conclusion Our data indicates that circular entolimod might be a good candidate for further clinical investigation.
Collapse
Affiliation(s)
- Bingyu Ye
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China.,Beijing Institute of Biotechnology, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Minglei Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, China.,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
45
|
Janec KJ, Yuan H, Norton JE, Kelner RH, Hirt CK, Betensky RA, Guinan EC. rBPI 21 (Opebacan) Promotes Rapid Trilineage Hematopoietic Recovery in a Murine Model of High-Dose Total Body Irradiation. Am J Hematol 2018; 93:10.1002/ajh.25136. [PMID: 29752735 PMCID: PMC6230507 DOI: 10.1002/ajh.25136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022]
Abstract
The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenneth J. Janec
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Huaiping Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - James E. Norton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rowan H. Kelner
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Christian K. Hirt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rebecca A. Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA
| | - Eva C. Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Radiation Oncology, Harvard Medical School, Boston MA
| |
Collapse
|
46
|
Wu D, Han R, Deng S, Liu T, Zhang T, Xie H, Xu Y. Protective Effects of Flagellin A N/C Against Radiation-Induced NLR Pyrin Domain Containing 3 Inflammasome-Dependent Pyroptosis in Intestinal Cells. Int J Radiat Oncol Biol Phys 2018; 101:107-117. [DOI: 10.1016/j.ijrobp.2018.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023]
|
47
|
Shi T, Li L, Zhou G, Wang C, Chen X, Zhang R, Xu J, Lu X, Jiang H, Chen J. Toll-like receptor 5 agonist CBLB502 induces radioprotective effects in vitro. Acta Biochim Biophys Sin (Shanghai) 2018; 49:487-495. [PMID: 28407032 DOI: 10.1093/abbs/gmx034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
CBLB502 derived from Salmonella flagellin is a novel agonist of Toll-like receptor 5 (TLR5). It has been shown that CBLB502 can exert high radioprotective efficacy on mice and primates from both GI and hematopoietic syndromes during whole-body irradiation with low toxicity and immunogenicity. However, no effective system has been used to investigate the protective effect of CBLB502 against irradiation and the related mechanism in vitro. In this study, we investigated the radioprotective properties of CBLB502 in HEK293-N-T cells constitutively expressing human TLR5 and NF-κB-dependent luciferase. HEK293-N-T cells were treated with different doses of CBLB502 prior to 60Co-γ ray irradiation. After irradiation, cell viability was real-time measured for 4 days by using the real-time cell analysis system. We found that CBLB502 was capable of efficiently maintaining the survival rate of irradiated HEK293-N-T cells. Then apoptotic cell death and cell cycle were detected by flow cytometry. The results showed that CBLB502 pre-treatment could reduce the apoptosis and promote the recovery of irradiated HEK293-N-T cells from G2-phase arrest in a dose-dependent manner. Our data indicated that CBLB502 has a direct radioprotective effect in vitro via anti-apoptosis and promotes cell cycle recovery. The method developed here could be an effective in vitro system to screen other TLR5-target radioprotectants like CBLB502.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | | | - Guochao Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaojing Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
48
|
Bykov VN, Drachev IS, Kraev SY, Maydin MA, Gubareva EA, Pigarev SE, Anisimov VN, Baldueva IA, Fedoros EI, Panchenko AV. Radioprotective and radiomitigative effects of BP-C2, a novel lignin-derived polyphenolic composition with ammonium molybdate, in two mouse strains exposed to total body irradiation. Int J Radiat Biol 2017; 94:114-123. [DOI: 10.1080/09553002.2018.1416204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vladimir N. Bykov
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Igor S. Drachev
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Sergey Yu. Kraev
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Mikhail A. Maydin
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Ekaterina A. Gubareva
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Irina A. Baldueva
- Department of Oncoimmunology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - Elena I. Fedoros
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
- Meabco A/S, Copenhagen, Denmark
| | - Andrey V. Panchenko
- Department of Carcinogenesis and Oncogerontology, N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
49
|
Kurkjian CJ, Guo H, Montgomery ND, Cheng N, Yuan H, Merrill JR, Sempowski GD, Brickey WJ, Ting JPY. The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci Rep 2017; 7:17355. [PMID: 29230065 PMCID: PMC5725477 DOI: 10.1038/s41598-017-17729-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2017] [Indexed: 02/03/2023] Open
Abstract
Risks of radiation exposure from nuclear incidents and cancer radiotherapy are undeniable realities. These dangers urgently compel the development of agents for ameliorating radiation–induced injuries. Biologic pathways mediated by myeloid differentiation primary response gene 88 (MyD88), the common adaptor for toll–like receptor (TLR) and Interleukin–1 receptor signaling, are critical for radioprotection. Treating with agonists prior to radiation enhances survival by activating TLR signaling, whereas radiomitigating TLR–activating therapeutics given after exposure are less defined. We examine the radiomitigation capability of TLR agonists and identify one that is superior for its efficacy and reduced toxic consequences compared to other tested agonists. We demonstrate that the synthetic TLR2/6 ligand Fibroblast–stimulating lipopeptide (FSL–1) substantially prolongs survival in both male and female mice when administered 24 hours after radiation and shows MyD88–dependent function. FSL–1 treatment results in accelerated hematopoiesis in bone marrow, spleen and periphery, and augments systemic levels of hematopoiesis–stimulating factors. The ability of FSL–1 to stimulate hematopoiesis is critical, as hematopoietic dysfunction results from a range of ionizing radiation doses. The efficacy of a single FSL–1 dose for alleviating radiation injury while protecting against adverse effects reveals a viable radiation countermeasures agent.
Collapse
Affiliation(s)
- Cathryn J Kurkjian
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nathan D Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ning Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Oral Biology Curriculum, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph R Merrill
- Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - W June Brickey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Pharmacologically induced reversible hypometabolic state mitigates radiation induced lethality in mice. Sci Rep 2017; 7:14900. [PMID: 29097738 PMCID: PMC5668348 DOI: 10.1038/s41598-017-15002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023] Open
Abstract
Therapeutic hypothermia has proven benefits in critical care of a number of diseased states, where inflammation and oxidative stress are the key players. Here, we report that adenosine monophosphate (AMP) triggered hypometabolic state (HMS), 1–3 hours after lethal total body irradiation (TBI) for a duration of 6 hours, rescue mice from radiation-induced lethality and this effect is mediated by the persistent hypothermia. Studies with caffeine and 6N-cyclohexyladenosine, a non-selective antagonist and a selective agonist of adenosine A1 receptor (A1AR) respectively, indicated the involvement of adenosine receptor (AR) signaling. Intracerebroventricular injection of AMP also suggested possible involvement of central activation of AR signaling. AMP, induced HMS in a strain and age independent fashion and did not affect the behavioural and reproductive capacities. AMP induced HMS, mitigated radiation-induced oxidative DNA damage and loss of HSPCs. The increase in IL-6 and IL-10 levels and a shift towards anti-inflammatory milieu during the first 3–4 hours seems to be responsible for the augmented survival of HSPCs. The syngeneic bone marrow transplantation (BMT) studies further supported the role of radiation-induced inflammation in loss of bone marrow cellularity after TBI. We also showed that the clinically plausible mild hypothermia effectively mitigates TBI induced lethality in mice.
Collapse
|