1
|
Sharmin D, Rüedi-Bettschen D, Berro LF, Cook JE, Reeves-Darby JA, Pareek T, Mian MY, Rashid F, Golani L, Moreira-Junior EDC, Platt DM, Cook JM, Rowlett JK. Evaluation of the sedative-motor effects of novel GABAkine imidazodiazepines using quantitative observation techniques in rhesus monkeys. J Psychopharmacol 2024; 38:1157-1169. [PMID: 39385515 DOI: 10.1177/02698811241286760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND Benzodiazepines bind to γ-aminobutyric acid type A (GABAA) receptor subtypes identified by different α subunits (i.e., α1GABAA, α2GABAA, α3GABAA, and α5GABAA). Sedative-motor effects of benzodiazepines are thought to involve α1GABAA and α3GABAA subtypes. AIMS We evaluated observable measures of sedative-motor effects and species-typical behaviors in monkeys following acute administration of novel GABAkines (positive allosteric modulators of GABAA receptors), with varying degrees of selective efficacy at different GABAA receptor subtypes. We predicted that the induction of sedative-motor effects would depend on the degree of α1GABAA and α3GABAA efficacy. METHODS Adult female rhesus monkeys (N = 4) were implanted with chronic indwelling i.v. catheters. Quantitative behavioral observation was conducted by trained observers following administration of multiple doses of the conventional benzodiazepine alprazolam and the GABAkines MP-III-80 (preferential efficacy at α2/α3/α5GABAA subtypes), KRM-II-81, MP-III-24 (both with preferential efficacy for α2/α3GABAA subtypes), and MP-III-22 (preferential potency and efficacy for α5GABAA subtypes). RESULTS As with alprazolam, all GABAkines induced significant levels of mild sedation ("rest/sleep posture"). Deep sedation was observed with alprazolam, MP-III-80, and MP-III-22; motoric effects (observable ataxia) were obtained with alprazolam, KRM-II-81, and MP-III-22 only. Surprisingly, the order of potency for rest/sleep posture was significantly associated only with potency at α5GABAA subtypes. CONCLUSIONS GABAkines with preferential efficacy at α2/α3GABAA and/or α5GABAA subtypes engendered sedative-motor effects in monkeys, although only compounds with α5GABAA activity engendered deep sedation. Moreover, the significant relationship between potency obtained with in vitro electrophysiology data and the rest/sleep posture measure suggests a role for the α5GABAA subtype in this milder form of sedation.
Collapse
Affiliation(s)
- Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laís F Berro
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jemma E Cook
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Social Sciences and Public Administration, West Virginia University Institute of Technology, Beckley, WV, USA
| | - Jaren A Reeves-Darby
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Golani
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Eliseu da Cruz Moreira-Junior
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
2
|
Cerne R, Smith JL, Chrzanowska A, Lippa A. Nonsedating anxiolytics. Pharmacol Biochem Behav 2024; 245:173895. [PMID: 39461622 DOI: 10.1016/j.pbb.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric pathology with substantial cost to society, but the existing treatments are often inadequate. This has rekindled the interest in the GABAA-receptor (GABAAR) positive allosteric modulator (PAM) compounds, which have a long history in treatment of anxiety beginning with diazepam, chlordiazepoxide, and alprazolam. While the GABAAR PAMs possess remarkable anxiolytic efficacy, they have fallen out of favor due to a host of adverse effects including sedation, motor impairment, addictive potential and tolerance development. A substantial effort was thus devoted to the design of GABAAR PAMs as anxiolytics with reduced sedative liabilities. Several non-benzodiazepine (BZD) GABAAPAMs progressed to clinical trials (bretazenil, abecarnil, alpidem, and ocinaplon) with alpidem obtaining regulatory approval as anxiolytic, but later withdrawn from market due to hepatotoxicity. Advances in molecular biology gave birth to a host of subtype selective GABAAR-PAMs which suffered from signs of sedation and motor impairment and only three compounds progressed to proof-of-concept studies (TPA-023, AZD7325 and PF-06372865). TPA-023 was terminated due to toxicity in preclinical species while AZD7325 and PF-06372865 did not achieve efficacy endpoints in patients. We highlight a new compound, KRM-II-81, that is an imidazodiazepine selective for GABAAR containing α2/3 and β3 proteins. In preclinical studies KRM-II-81 produced anxiolytic-like effects but with minimal sedation, respiratory depression, and abuse liability. Thus, KRM-II-81 is a newly discovered, non- BZD anxiolytic compound, which targets a selective population of GABAAR for improved therapeutic gain and reduced side effects.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
3
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2024:10.1007/s12035-024-04339-6. [PMID: 38967905 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
4
|
MacLean A, Chappell AS, Kranzler J, Evrard A, Monchal H, Roucard C. BAER-101, a selective potentiator of α2- and α3-containing GABA A receptors, fully suppresses spontaneous cortical spike-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev Res 2024; 85:e22160. [PMID: 38380694 DOI: 10.1002/ddr.22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.
Collapse
|
5
|
Reeves-Darby JA, Berro LF, Platt DM, Rüedi-Bettschen D, Shaffery JP, Rowlett JK. Pharmaco-EEG analysis of ligands varying in selectivity for α1 subunit-containing GABA A receptors during the active phase in rats. Psychopharmacology (Berl) 2023; 240:2561-2571. [PMID: 37608193 PMCID: PMC10795493 DOI: 10.1007/s00213-023-06450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
RATIONALE Benzodiazepines are known to evoke changes in cortical electrophysiological activity that can be correlated with action at distinct γ-aminobutyric acid type A (GABAA) receptor subtypes. OBJECTIVES We used electroencephalography (EEG) paired with electromyography (EMG) to evaluate the role of α1 subunit-containing GABAA receptors (α1GABAARs) in benzodiazepine-induced sedation and changes in EEG band frequencies during the active phase of the light/dark cycle. METHODS Male Sprague-Dawley rats (N = 4/drug) were surgically instrumented with EEG/EMG electrodes. The rats were injected i.p. with zolpidem, an α1GABAAR-preferring compound, or L-838,417, which has selective efficacy for α2/3/5 subunit-containing GABAARs (i.e., α1GABAAR-sparing compound), in comparison with the non-selective benzodiazepine, triazolam. RESULTS All ligands evaluated induced changes in sleep-wake states during the active phase consistent with an increase in slow-wave sleep (SWS). The degree of SWS increase appeared to be related to the magnitude of delta power band changes induced by the ligands, with the strongest effects engendered by the α1GABAAR-preferring drug zolpidem and the weakest effects by the α1GABAAR-sparing compound, L-838,417. Consistent with other research, a selective increase in beta band power was observed with L-838,417, which may be associated with α2GABAAR-mediated anxiolysis. CONCLUSIONS Overall, these findings support the establishment of pharmaco-EEG "signatures" for identifying subtype-selective GABAA modulators in vivo.
Collapse
Affiliation(s)
- Jaren A Reeves-Darby
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
6
|
Huskinson SL, Platt DM, Smith ZR, Doyle WS, Zamarripa CA, Dunaway K, Prisinzano TE, Freeman KB. Quantification of observable behaviors following oral administration of oxycodone and nalfurafine in male rhesus monkeys. Drug Alcohol Depend 2023; 252:110953. [PMID: 37734282 PMCID: PMC10615792 DOI: 10.1016/j.drugalcdep.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Recent preclinical studies have investigated the atypical kappa-opioid receptor (KOR) agonist, nalfurafine, as a co-formulary with mu-opioid receptor (MOR) agonists as a potential deterrent for misuse. However, no study has investigated effects of nalfurafine combined with a MOR agonist using an oral route of administration. The objective of the current study was to measure behavioral effects of orally administered oxycodone and nalfurafine, alone and combined, in rhesus monkeys using a quantitative behavioral observation procedure. METHODS Adult male rhesus monkeys (N=5) were orally administered vehicle, oxycodone (0.56-1.8mg/kg), nalfurafine (0.001-0.0056mg/kg), or mixtures (1.0mg/kg oxycodone/0.001-0.0056mg/kg nalfurafine) in a Jell-O vehicle at multiple timepoints (10-320min). Species-typical and drug-induced behaviors were recorded by observers blinded to conditions. RESULTS Oxycodone alone significantly increased scratch and face-rub behaviors without affecting other behaviors. Nalfurafine decreased baseline levels of scratch without affecting other behaviors, and oxycodone-nalfurafine combinations resulted in reduced oxycodone-induced scratching at a dose (0.001mg/kg) that did not produce sedation-like effects. Oxycodone combined with larger nalfurafine doses (0.0032-0.0056mg/kg) also reduced oxycodone induced scratch that were accompanied with sedation-like effects (i.e., increased lip droop). CONCLUSIONS Nalfurafine was orally active in rhesus monkeys, and it reduced oxycodone-induced pruritus at a dose that did not produce sedation-like effects that are commonly observed with prototypical KOR agonists. Combinations of low doses of nalfurafine with MOR agonists such as oxycodone may be well-tolerated by humans who are prescribed MOR agonists for the treatment of pain.
Collapse
Affiliation(s)
- Sally L Huskinson
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216.
| | - Donna M Platt
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| | - Zachary R Smith
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William S Doyle
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| | - C Austin Zamarripa
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Kristen Dunaway
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
7
|
Cook JE, Platt DM, Rüedi-Bettschen D, Rowlett JK. Behavioral effects of triazolam and pregnanolone combinations: reinforcing and sedative-motor effects in female rhesus monkeys. Front Psychiatry 2023; 14:1142531. [PMID: 37252149 PMCID: PMC10213563 DOI: 10.3389/fpsyt.2023.1142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Benzodiazepines (BZs) are prescribed as anxiolytics, but their use is limited by side effects including abuse liability and daytime drowsiness. Neuroactive steroids are compounds that, like BZs, modulate the effects of GABA at the GABAA receptor. In a previous study, combinations of the BZ triazolam and neuroactive steroid pregnanolone produced supra-additive (i.e., greater than expected effects based on the drugs alone) anxiolytic effects but infra-additive (i.e., lower than expected effects based on the drugs alone) reinforcing effects in male rhesus monkeys, suggestive of an improved therapeutic window. Methods Female rhesus monkeys (n=4) self-administered triazolam, pregnanolone, and triazolam-pregnanolone combinations intravenously under a progressive-ratio schedule. In order to assess characteristic sedative-motor effects of BZ-neuroactive steroid combinations, female rhesus monkeys (n=4) were administered triazolam, pregnanolone, and triazolam-pregnanolone combinations. Trained observers, blinded to condition, scored the occurrence of species-typical and drug-induced behaviors. Results In contrast to our previous study with males, triazolam-pregnanolone combinations had primarily supra-additive reinforcing effects in three monkeys but infra-additive reinforcing effects in one monkey. Scores for deep sedation (i.e., defined as atypical loose-limbed posture, eyes closed, does not respond to external stimuli) and observable ataxia (any slip, trip, fall, or loss of balance) were significantly increased by both triazolam and pregnanolone. When combined, triazolam-pregnanolone combinations had supra-additive effects for inducing deep sedation, whereas observable ataxia was attenuated, likely due to the occurrence of robust sedative effects. Discussion These results suggest that significant sex differences exist in self-administration of BZ-neuroactive steroid combinations, with females likely to show enhanced sensitivity to reinforcing effects compared with males. Moreover, supra-additive sedative effects occurred for females, demonstrating a higher likelihood of this adverse effect when these drug classes are combined.
Collapse
Affiliation(s)
| | | | | | - James K. Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
8
|
Huskinson SL, Platt DM, Zamarripa CA, Dunaway K, Brasfield M, Prisinzano TE, Blough BE, Freeman KB. The G-protein biased kappa opioid agonists, triazole 1.1 and nalfurafine, produce non-uniform behavioral effects in male rhesus monkeys. Pharmacol Biochem Behav 2022; 217:173394. [DOI: 10.1016/j.pbb.2022.173394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
|
9
|
Tolerance and dependence following chronic alprazolam treatment in rhesus monkeys: Role of GABA A receptor subtypes. Drug Alcohol Depend 2021; 228:108985. [PMID: 34500240 PMCID: PMC8595788 DOI: 10.1016/j.drugalcdep.2021.108985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND To assess GABAA receptor subtypes involved in benzodiazepine tolerance and dependence, we evaluated the ability of subtype-selective and non-selective ligands to substitute for (i.e., produce "cross-tolerance") or precipitate withdrawal during chronic alprazolam treatment. METHODS Four female rhesus monkeys (Macaca mulatta) were implanted with chronic intravenous catheters and administered alprazolam (1.0 mg/kg every 4 h). Following 14+ days of chronic alprazolam, acute administration of selected doses of non-selective and subtype-selective ligands were substituted for, or administered with, alprazolam, followed by quantitative behavioral observations. The ligands included alprazolam and midazolam (positive modulators, non-selective), zolpidem (positive modulator, preferential affinity for α1-containing GABAA receptors), HZ-166 (positive modulator, preferential efficacy at α2- and α3-containing GABAA receptors), and βCCT (antagonist, preferential affinity for α1-containing GABAA receptors). RESULTS Acutely, alprazolam and midazolam both induced observable ataxia along with a mild form of sedation referred to as "rest/sleep posture" at a lower dose (0.1 mg/kg, i.v.), whereas at a higher dose (1.0 mg/kg, i.v.), induced deep sedation and observable ataxia. With chronic alprazolam treatment, observable ataxia and deep sedation were reduced significantly, whereas rest/sleep posture was unchanged or emerged. Zolpidem showed a similar pattern of effects, whereas no behaviors engendered by HZ-166 were changed by chronic alprazolam. Administration of βCCT, but not HZ-166, resulted in significant withdrawal signs. CONCLUSIONS These results are consistent with a role for α1-containing GABAA receptor subtypes in tolerance and dependence observed with chronic alprazolam, although other receptors may be involved in the withdrawal syndrome.
Collapse
|
10
|
Berro LF, Overton JS, Reeves-Darby JA, Rowlett JK. Alprazolam-induced EEG spectral power changes in rhesus monkeys: a translational model for the evaluation of the behavioral effects of benzodiazepines. Psychopharmacology (Berl) 2021; 238:1373-1386. [PMID: 33594504 PMCID: PMC8177744 DOI: 10.1007/s00213-021-05793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
RATIONALE Benzodiazepines induce electroencephalography (EEG) changes in rodents and humans that are associated with distinct behavioral effects and have been proposed as quantitative biomarkers for GABAA receptor modulation. Specifically, central EEG beta and occipital EEG delta activity have been associated with anxiolysis and sedation, respectively. The extent to which nonhuman primates show the same dose- and topography-dependent effects remained unknown. OBJECTIVES We aimed at establishing a nonhuman primate model for the evaluation of benzodiazepine EEG pharmacology. METHODS Four adult male rhesus monkeys were prepared with fully implantable telemetry devices that monitored activity, peripheral body temperature, and contained two EEG (central and occipital), one electromyography (EMG), and one electrooculography channel. We investigated daytime alprazolam-induced changes in EEG spectral power, sleep-wake states, EMG activity, locomotor activity, and body temperature. Alprazolam (0.01-1.8 mg/kg, i.m.) or vehicle was administered acutely, and telemetry recording was conducted for 1 h. RESULTS Daytime alprazolam dose-dependently increased central EEG power (including beta activity), increased occipital EEG delta power, and decreased occipital EEG alpha, theta, and sigma power. There was an ~8-fold difference in the potency of alprazolam to increase central EEG beta vs. occipital EEG delta activity (based on relative EEG power). The highest dose, which increased both central EEG beta and occipital EEG delta relative power, induced sedative effects (increased time spent in N1 and N2 sleep stages) and decreased peripheral body temperature and locomotor activity. CONCLUSIONS Alprazolam induces dose- and topography-dependent EEG changes in rhesus monkeys and provides a valuable model for studying benzodiazepine pharmacology.
Collapse
Affiliation(s)
- Lais F. Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216,Corresponding Author: Lais F. Berro, Ph.D., Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216,
| | - John S. Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| | - Jaren A. Reeves-Darby
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| | - James K. Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, USA, 39216
| |
Collapse
|
11
|
Golani LK, Platt DM, Rüedi-Bettschen D, Edwanker C, Huang S, Poe MM, Furtmüller R, Sieghart W, Cook JM, Rowlett JK. 8-Substituted Triazolobenzodiazepines: In Vitro and In Vivo Pharmacology in Relation to Structural Docking at the α1 Subunit-Containing GABA A Receptor. Front Pharmacol 2021; 12:625233. [PMID: 33959005 PMCID: PMC8094182 DOI: 10.3389/fphar.2021.625233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
In order to develop improved anxiolytic drugs, 8-substituted analogs of triazolam were synthesized in an effort to discover compounds with selectivity for α2/α3 subunit-containing GABAA subtypes. Two compounds in this series, XLi-JY-DMH (6-(2-chlorophenyl)-8-ethynyl-1-methyl-4H-benzo [f][1,2,4]triazolo[4,3-a][1,4]diazepine) and SH-TRI-108 [(E)-8-ethynyl-1-methyl-6-(pyridin-2-yl)-4H-benzo [f][1,2,4]triazolo[4,3-a][1,4]diazepine], were evaluated for in vitro and in vivo properties associated with GABAA subtype-selective ligands. In radioligand binding assays conducted in transfected HEK cells containing rat αXβ3γ2 subtypes (X = 1,2,3,5), no evidence of selectivity was obtained, although differences in potency relative to triazolam were observed overall (triazolam > XLi-JY-DMH > SH-TRI-108). In studies with rat αXβ3γ2 subtypes (X = 1,2,3,5) using patch-clamp electrophysiology, no differences in maximal potentiation of GABA-mediated Cl- current was obtained across subtypes for any compound. However, SH-TRI-108 demonstrated a 25-fold difference in functional potency between α1β3γ2 vs. α2β3γ2 subtypes. We evaluated the extent to which this potency difference translated into behavioral pharmacological differences in monkeys. In a rhesus monkey conflict model of anxiolytic-like effects, triazolam, XLi-JY-DMH, and SH-TR-108 increased rates of responding attenuated by shock (anti-conflict effect) but also attenuated non-suppressed responding. In a squirrel monkey observation procedure, both analogs engendered a profile of sedative-motor effects similar to that reported previously for triazolam. In molecular docking studies, we found that the interactions of the 8-ethynyl triazolobenzodiazepines with the C-loop of the α1GABAA site was stronger than that of imidazodiazepines XHe-II-053 and HZ-166, which may account for the non-sedating yet anxiolytic profile of these latter compounds when evaluated in previous studies.
Collapse
Affiliation(s)
- Lalit K. Golani
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Donna M. Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| | - Chitra Edwanker
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Shenming Huang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Michael M. Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | - Werner Sieghart
- Brain Research Institute, Medical University, Vienna, Austria
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James K. Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Harvard Medical School, New England Primate Research Center, Southborough, MA, United States
| |
Collapse
|
12
|
Huskinson SL, Platt DM, Brasfield M, Follett ME, Prisinzano TE, Blough BE, Freeman KB. Quantification of observable behaviors induced by typical and atypical kappa-opioid receptor agonists in male rhesus monkeys. Psychopharmacology (Berl) 2020; 237:2075-2087. [PMID: 32372348 PMCID: PMC7308209 DOI: 10.1007/s00213-020-05519-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists are antinociceptive but have side effects that limit their therapeutic utility. New KOR agonists have been developed that are fully efficacious at the KOR but may produce fewer or reduced side effects that are typical of KOR agonists. OBJECTIVES We determined behavioral profiles for typical and atypical KOR agonists purported to differ in intracellular-signaling profiles as well as a mu-opioid receptor (MOR) agonist, oxycodone, using a behavioral scoring system based on Novak et al. (Am J Primatol 28:124-138, 1992, Am J Primatol 46:213-227, 1998) and modified to quantify drug-induced effects (e.g., Duke et al. J Pharmacol Exp Ther 366:145-157, 2018). METHODS Six adult male rhesus monkeys were administered a range of doses of the typical KOR agonists, U50-488H (0.0032-0.1 mg/kg) and salvinorin A (0.00032-0.01 mg/kg); the atypical KOR agonists, nalfurafine (0.0001-0.001 mg/kg) and triazole 1.1 (0.01-0.32 mg/kg); the MOR agonist, oxycodone (0.0032-0.32 mg/kg); and as controls, cocaine (0.032-0.32 mg/kg) and ketamine (0.32-10 mg/kg). For time-course determinations, the largest dose of each KOR agonist or MOR agonist was administered across timepoints (10-320 min). In mixture conditions, oxycodone (0.1 mg/kg) was followed by KOR-agonist administration. RESULTS Typical KOR agonists produced sedative-like and motor-impairing effects. Nalfurafine was similar to typical KOR agonists on most outcomes, and triazole 1.1 produced no effects on its own except for reducing scratch during time-course determinations. In the mixture, all KOR agonists reduced oxycodone-induced scratching, U50-488H and nalfurafine reduced species-typical activity, and U50-488H increased rest/sleep posture. CONCLUSIONS Atypical "biased" KOR agonists produce side-effect profiles that are relatively benign (triazole 1.1) or reduced (nalfurafine) compared to typical KOR agonists.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Macaca mulatta
- Male
- Morphinans/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Oxycodone/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Spiro Compounds/pharmacology
Collapse
Affiliation(s)
- S L Huskinson
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - D M Platt
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M Brasfield
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M E Follett
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - T E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - B E Blough
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - K B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
13
|
Duke AN, Platt DM, Rowlett JK. Tolerance and dependence following chronic alprazolam treatment: quantitative observation studies in female rhesus monkeys. Psychopharmacology (Berl) 2020; 237:1183-1194. [PMID: 31927603 PMCID: PMC7988478 DOI: 10.1007/s00213-019-05447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022]
Abstract
RATIONALE In order to understand mechanisms underlying tolerance and dependence following chronic benzodiazepine treatments, quantitative and reproducible behavioral models of these phenomena are required. OBJECTIVES This research evaluated the ability of chronic treatment with a commonly prescribed benzodiazepine, alprazolam, to induce tolerance to sedative effects and physical dependence using a novel set of behavioral measurements in rhesus monkeys. METHODS Four female rhesus monkeys (Macaca mulatta) were implanted with chronic intravenous catheters and administered i.v. alprazolam (1.0 mg/kg every 4 h, 38 days total). Quantitative observation measures were obtained during the 38 days of treatment. Acute administration of the benzodiazepine receptor antagonist flumazenil (0.1, 0.3 mg/kg, i.v.) was given to assess precipitated withdrawal. On day 39, saline was substituted for alprazolam and withdrawal signs were assessed for 7 days. RESULTS Maximal sedation ("deep sedation") was evident on day 1 but was not significantly different from baseline levels by day 4 and was absent for the remainder of the 38 days of treatment. A milder form of sedation, "rest/sleep posture," emerged by day 3 and did not decline over 38 days. Cessation of alprazolam treatment resulted in significant withdrawal signs (nose rub, vomit, procumbent posture, tremor/jerk, rigid posture) that dissipated by day 3. These signs also were observed with flumazenil (0.3 mg/kg). CONCLUSIONS Chronic alprazolam treatment resulted in rapid tolerance to some behaviors (e.g., deep sedation) but no tolerance to others (e.g., rest/sleep posture). Physical dependence was observed via both spontaneous and precipitated withdrawal. Based on previous research, these phenomena may reflect differential plasticity at GABAA receptor subtypes.
Collapse
Affiliation(s)
- Angela N Duke
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA, 01772, USA
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA, 01772, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA, 01772, USA.
| |
Collapse
|
14
|
Meng Z, Berro LF, Sawyer EK, Rüedi-Bettschen D, Cook JE, Li G, Platt DM, Cook JM, Rowlett JK. Evaluation of the anti-conflict, reinforcing, and sedative effects of YT-III-31, a ligand functionally selective for α3 subunit-containing GABA A receptors. J Psychopharmacol 2020; 34:348-357. [PMID: 31670615 PMCID: PMC8011597 DOI: 10.1177/0269881119882803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In recent years, pharmacological strategies have implicated α3 subunit-containing GABAA (α3GABAA) receptor subtypes in the anxiety-reducing effects of benzodiazepines, whereas transgenic mouse approaches have implicated α2 or α5 subunit-containing GABAA receptors. AIMS We investigated the role of α3GABAA subtypes in benzodiazepine-induced behaviors by evaluating the anti-conflict, reinforcing, and sedative-motor effects of the novel compound YT-III-31, which has functional selectivity for α3GABAA receptors. METHODS Female and male rhesus monkeys were trained under a conflict procedure (n = 3), and a progressive-ratio schedule of reinforcement with midazolam as the training drug (n = 4). Sedative-like behavior was assessed using a quantitative behavioral observation procedure (n = 4). A range of doses of YT-III-31 was administered in all tests using the i.v. route of administration. RESULTS In the conflict procedure, increasing doses of YT-III-31 resulted only in dose-dependent attenuation of non-suppressed responding. In the progressive-ratio model of self-administration, YT-III-31 maintained average injections/session above vehicle levels at 0.1 and 0.18 mg/kg/injection. In quantitative observation procedures, YT-III-31 engendered mild sedative effects ("rest/sleep posture"), and deep sedation at the highest dose tested (5.6 mg/kg, i.v.), along with a suppression of tactile/oral exploration and increased observable ataxia. In contrast to other benzodiazepine-like ligands, YT-III-31 uniquely engendered a biphasic dose-response function for locomotion and suppressed self-groom. CONCLUSIONS The finding that YT-III-31 lacked anti-conflict properties is in accordance with transgenic mouse research indicating no role for α3GABAA subtypes in benzodiazepine-mediated anxiety reduction. Instead, our results raise the possibility of a role for α3GABAA receptors in the abuse potential and sedative effects of benzodiazepine-type drugs.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA,Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, CHINA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eileen K Sawyer
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jemma E Cook
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| |
Collapse
|
15
|
Ettcheto M, Olloquequi J, Sánchez-López E, Busquets O, Cano A, Manzine PR, Beas-Zarate C, Castro-Torres RD, García ML, Bulló M, Auladell C, Folch J, Camins A. Benzodiazepines and Related Drugs as a Risk Factor in Alzheimer's Disease Dementia. Front Aging Neurosci 2020; 11:344. [PMID: 31969812 PMCID: PMC6960222 DOI: 10.3389/fnagi.2019.00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Benzodiazepines (BZDs) and Z-drugs are compounds widely prescribed in medical practice due to their anxiolytic, hypnotic, and muscle relaxant properties. Yet, their chronic use is associated with cases of abuse, dependence, and relapse in many patients. Furthermore, elderly people are susceptible to alterations in pharmacodynamics, pharmacokinetics as well as to drug interaction due to polypharmacy. These situations increase the risk for the appearance of cognitive affectations and the development of pathologies like Alzheimer's disease (AD). In the present work, there is a summary of some clinical studies that have evaluated the effect of BZDs and Z-drugs in the adult population with and without AD, focusing on the relationship between their use and the loss of cognitive function. Additionally, there is an assessment of preclinical studies focused on finding molecular proof on the pathways by which these drugs could be involved in AD pathogenesis. Moreover, available data (1990-2019) on BZD and Z-drug use among elderly patients, with and without AD, was compiled in this work. Finally, the relationship between the use of BZD and Z-drugs for the treatment of insomnia and the appearance of AD biomarkers was analyzed. Results pointed to a vicious circle that would worsen the condition of patients over time. Likewise, it put into relevance the need for close monitoring of those patients using BZDs that also suffer from AD. Consequently, future studies should focus on optimizing strategies for insomnia treatment in the elderly by using other substances like melatonin agonists, which is described to have a much more significant safety profile.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | | | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, CUCBA, Guadalajara, Mexico
| | - Rubén D. Castro-Torres
- Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, CUCBA, Guadalajara, Mexico
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Mónica Bulló
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Institut de Salud Carlos III, Madrid, Spain
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antonio Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
16
|
Pandey KP, Khan ZA, Golani LK, Mondal P, Mian Y, Rashid F, Tiruveedhula VVNPB, Knutson DE, Sharmin D, Ahmed T, Rezvanian S, Zahn NM, Arnold LA, Witkin JM, Cook JM. Design, synthesis and characterization of novel gamma‑aminobutyric acid type A receptor ligands. ARKIVOC 2020; 2020:242-256. [PMID: 33642954 DOI: 10.24820/ark.5550190.p011.398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antinociceptive ligand HZ-166 is a GABAA α2/α3 receptor subtype-selective potentiator. It has been shown to exhibit anxiolytic-like effects in rodent and rhesus monkeys, as well as reduced sedative/ataxic liabilities. In order to improve the metabolic stability of HZ-166, the ethyl ester moiety was bioisosterically replaced with 2,4-disubstituted oxazoles and oxazolines. The new analogs of HZ-166 were synthesized, characterized, and evalutated for their biological activity and docked in the human full-length heteromeric α1β3γ2L GABAA receptor subtype CyroEM structure (6HUO). Importantly no sedation nor ataxia was observed on the rotorod for LKG-I-70 (6) or KPP-III-51 (6c) at 100 and 120 mg/kg, respectively. These was also no loss of righting response for either ligand.
Collapse
Affiliation(s)
- Kamal P Pandey
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Zubair Ahmed Khan
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Lalit K Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Yeunus Mian
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - V V N Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Sepideh Rezvanian
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Nicolas M Zahn
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jeffrey M Witkin
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
17
|
Witkin JM, Ping X, Cerne R, Mouser C, Jin X, Hobbs J, Tiruveedhula VVNPB, Li G, Jahan R, Rashid F, Kumar Golani L, Cook JM, Smith JL. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res 2019; 1722:146356. [PMID: 31369732 DOI: 10.1016/j.brainres.2019.146356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The need for improved antiepileptics is clearly mandated despite the existence of multiple existing medicines from different chemical and mechanistic classes. Standard of care agents do not fully control epilepsies and have a variety of side-effect and safety issues. Patients typically take multiple antiepileptic drugs and yet many continue to have seizures. Antiepileptic-unresponsive seizures are life-disrupting and life-threatening. One approach to seizure control is surgical resection of affected brain tissue and associated neural circuits. Although non-human brain studies can provide insight into novel antiepileptic mechanisms, human epileptic brain is the bottom-line biological substrate. Human epileptic brain can provide definitive information on the presence or absence of the putative protein targets of interest in the patient population, the potential changes in these proteins in the epileptic state, and the engagement of novel molecules and their functional impact in target tissue. In this review, we discuss data on two novel potential antiepileptic drugs. CERC-611 (LY3130481) is an AMPA receptor antagonist that selectively blocks AMPA receptors associated with the auxiliary protein TARP γ-8 and is in clinical development. KRM-II-81 is a positive allosteric modulator of GABAA receptors selectively associated with protein subunits α2 and α 3. Preclinical data on these compounds argue that patient-based biological data increase the probability that a newly discovered molecule will translate its antiepileptic potential to patients.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Rok Cerne
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Mouser
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jon Hobbs
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Guanguan Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Kumar Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Neale SA, Kambara K, Salt TE, Bertrand D. Receptor variants and the development of centrally acting medications. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31636489 PMCID: PMC6787545 DOI: 10.31887/dcns.2019.21.2/dbertrand] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The progressive changes in research paradigms observed in the largest
pharmaceutical companies and the burgeoning of biotechnology startups over the
last 10 years have generated a need for outsourcing research facilities. In
parallel, progress made in the fields of genomics, protein expression in
recombinant systems, and electrophysiological recording methods have offered new
possibilities for the development of contract research organizations (CROs).
Successful partnering between pharmaceutical companies and CROs largely depends
upon the competences and scientific quality on offer for the discovery of novel
active molecules and targets. Thus, it is critical to review the knowledge in
the field of neuroscience research, how genetic approaches are augmenting our
knowledge, and how they can be applied in the translation from the
identification of potential molecules up to the first clinical trials. Taking
these together, it is apparent that CROs have an important role to play in the
neuroscience of drug discovery.
Collapse
Affiliation(s)
- Stuart A Neale
- Neurexpert Limited, The Core, Science Central, Newcastle Upon Tyne, UK
| | | | - Thomas E Salt
- Neurexpert Limited, The Core, Science Central, Newcastle Upon Tyne, UK; Honorary Professor, University of Newcastle, Newcastle, UK
| | - Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland; Emeritus Professor, Medical Faculty, Geneva, Switzerland
| |
Collapse
|
19
|
Berro LF, Rüedi-Bettschen D, Cook JE, Golani LK, Li G, Jahan R, Rashid F, Cook JM, Rowlett JK, Platt DM. GABA A Receptor Subtypes and the Abuse-Related Effects of Ethanol in Rhesus Monkeys: Experiments with Selective Positive Allosteric Modulators. Alcohol Clin Exp Res 2019; 43:791-802. [PMID: 30861153 PMCID: PMC6601614 DOI: 10.1111/acer.14000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have investigated α1GABAA and α5GABAA receptor mechanisms in the behavioral effects of ethanol (EtOH) in monkeys. However, genetic studies in humans and preclinical studies with mutant mice suggest a role for α2GABAA and/or α3GABAA receptors in the effects of EtOH. The development of novel positive allosteric modulators (PAMs) with functional selectivity (i.e., selective efficacy) at α2GABAA and α3GABAA receptors allows for probing of these subtypes in preclinical models of the discriminative stimulus and reinforcing effects of EtOH in rhesus macaques. METHODS In discrimination studies, subjects were trained to discriminate EtOH (2 g/kg, intragastrically) from water under a fixed-ratio (FR) schedule of food delivery. In oral self-administration studies, subjects were trained to self-administer EtOH (2% w/v) or sucrose (0.3 to 1% w/v) under an FR schedule of solution availability. RESULTS In discrimination studies, functionally selective PAMs at α2GABAA and α3GABAA (HZ-166) or α3GABAA (YT-III-31) receptors substituted fully (maximum percentage of EtOH-lever responding ≥80%) for the discriminative stimulus effects of EtOH without altering response rates. Full substitution for EtOH also was engendered by a nonselective PAM (triazolam), an α5GABAA -preferring PAM (QH-ii-066) and a PAM at α2GABAA , α3GABAA , and α5GABAA receptors (L-838417). A partial (MRK-696) or an α1GABAA -preferring (zolpidem) PAM only engendered partial substitution (i.e., ~50 to 60% EtOH-lever responding). In self-administration studies, pretreatments with the functionally selective PAMs at α2GABAA and α3GABAA (XHe-II-053 and HZ-166) or α3GABAA (YT-III-31 and YT-III-271) receptors increased EtOH, but not sucrose, drinking at doses that had few, or no, observable sedative-motor effects. CONCLUSIONS Our results confirm prior findings regarding the respective roles of α1GABAA and α5GABAA receptors in the discriminative stimulus effects of EtOH and, further, suggest a key facilitatory role for α3GABAA and potentially α2GABAA receptors in several abuse-related effects of EtOH in monkeys. Moreover, they reveal a potential role for these latter subtypes in EtOH's sedative effects.
Collapse
Affiliation(s)
- Lais F. Berro
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jemma E. Cook
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Lalit K. Golani
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Guanguan Li
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Rajwana Jahan
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - Farjana Rashid
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry, Milwaukee, WI 53201, USA
| | - James K. Rowlett
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Donna M. Platt
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
20
|
Acute and long-lasting effects of oxytocin in cortico-limbic circuits: consequences for fear recall and extinction. Psychopharmacology (Berl) 2019; 236:339-354. [PMID: 30302511 DOI: 10.1007/s00213-018-5030-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
The extinction of conditioned fear responses entrains the formation of safe new memories to decrease those behavioral responses. The knowledge in neuronal mechanisms of extinction is fundamental in the treatment of anxiety and fear disorders. Interestingly, the use of pharmacological compounds that reduce anxiety and fear has been shown as a potent co-adjuvant in extinction therapy. However, the efficiency and mechanisms by which pharmacological compounds promote extinction of fear memories remains still largely unknown and would benefit from a validation based on functional neuronal circuits, and the neurotransmitters that modulate them. From this perspective, oxytocin receptor signaling, which has been shown in cortical and limbic areas to modulate numerous functions (Eliava et al. Neuron 89(6):1291-1304, 2016), among them fear and anxiety circuits, and to enhance the salience of social stimuli (Stoop Neuron 76(1):142-59, 2012), may offer an interesting perspective. Experiments in animals and humans suggest that oxytocin could be a promising pharmacological agent at adjusting memory consolidation to boost fear extinction. Additionally, it is possible that long-term changes in endogenous oxytocin signaling can also play a role in reducing expression of fear at different brain targets. In this review, we summarize the effects reported for oxytocin in cortico-limbic circuits and on fear behavior that are of relevance for the modulation and potential extinction of fear memories.
Collapse
|