1
|
Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM, Felder CC, Valant C, Dror RO. Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol 2023; 19:805-814. [PMID: 36782010 PMCID: PMC10299909 DOI: 10.1038/s41589-022-01247-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/21/2022] [Indexed: 02/15/2023]
Abstract
A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yianni Laloudakis
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Nicholas W Barnes
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Center, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Yang Y, Lewis MM, Huang X, Dokholyan NV, Mailman RB. Dopamine D 1 receptor-mediated β-arrestin signaling: Insight from pharmacology, biology, behavior, and neurophysiology. Int J Biochem Cell Biol 2022; 148:106235. [PMID: 35688404 PMCID: PMC10266066 DOI: 10.1016/j.biocel.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
The awareness of the potential importance of functional selectivity/biased signaling has led to the discovery of biased compounds as both research tools and novel drugs. A major pan-receptor focus has been to identify GPCR-selective ligands that have bias in G protein-dependent vs. β-arrestin related signaling. Although this field has exploded during the past two decades, it is only recently that highly β-arrestin biased ligands for the dopamine D1 receptor were reported. We now summarize important pharmacological, molecular, and cellular studies relevant to D1-mediated β-arrestin-related signaling. It is intriguing that many results emerged from behavioral and physiological studies implying that bias toward or against D1-mediated β-arrestin either can improve or impair functional outcomes. We discuss the importance of understanding the translatability of cell and animal models to have more precise functional targeting to harness the value of this signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Translational Brain Research Center, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Mechelle M Lewis
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Neurology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Translational Brain Research Center, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA
| | - Xuemei Huang
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Neurology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Humanities, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Radiology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Neurosurgery, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Kinesiology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Translational Brain Research Center, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA
| | - Richard B Mailman
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Department of Neurology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA; Translational Brain Research Center, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Ferraiolo M, Atik H, Ponthot R, Koener B, Hanson J, Hermans E. Dopamine D 2L receptor density influences the recruitment of β-arrestin2 and G i1 induced by antiparkinsonian drugs. Neuropharmacology 2022; 207:108942. [PMID: 35026287 DOI: 10.1016/j.neuropharm.2022.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain imaging studies have highlighted that the density of dopamine D2 receptors markedly fluctuates across the stages of Parkinson's disease and in response to pharmacological treatment. Moreover, receptor density constitutes a molecular determinant for the signaling profile of D2 receptor ligands. We therefore hypothesized that variations in receptor expression could influence D2 receptor response to antiparkinsonian drugs, most notably with respect to the recruitment bias between Gi1 and β-arrestin2. METHODS The recruitment bias of dopamine, pramipexole, ropinirole, and rotigotine was examined using a nanoluciferase-based biosensor for probing the interactions of the D2L receptor with either Gi1 or β-arrestin2. The characterization of the functional selectivity of these D2 receptor agonists was performed at two distinct D2L receptor densities by taking advantage of a cell model carrying an inducible system that enables the overexpression of the D2L receptor when exposed to doxycycline. RESULTS A high receptor density oriented the balanced signaling profile of dopamine towards a preferential recruitment of Gi1. It also moderated the marked Gi1 and β-arrestin2 biases of pramipexole and rotigotine, respectively. At variance, the Gi1 bias of ropinirole appeared as not being influenced by D2L receptor density. CONCLUSIONS Taken together, these observations highlight receptor density as a key driver of the signaling transducer recruitment triggered by antiparkinsonian agents. Moreover, given the putative beneficial properties of β-arrestin2 in promoting locomotion, this study provides molecular insights that position the arrestin-biased ligand rotigotine as a putatively more beneficial D2 receptor agonist for the treatment of early and late Parkinson's disease.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Hicham Atik
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Romane Ponthot
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Beryl Koener
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology - GIGA-Molecular Biology of Disease - ULiège, Liège, Belgium; Laboratory of Medicinal Chemistry - CIRM - ULiège, Liège, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory - Institute of Neurosciences - UCLouvain, Brussels, Belgium.
| |
Collapse
|
4
|
Yang Y. Functional Selectivity of Dopamine D 1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci 2021; 22:ijms222111914. [PMID: 34769344 PMCID: PMC8584964 DOI: 10.3390/ijms222111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Mailman RB, Yang Y, Huang X. D 1, not D 2, dopamine receptor activation dramatically improves MPTP-induced parkinsonism unresponsive to levodopa. Eur J Pharmacol 2021; 892:173760. [PMID: 33279520 PMCID: PMC7861126 DOI: 10.1016/j.ejphar.2020.173760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
Levodopa is the standard-of-care for Parkinson's disease, but continued loss of dopamine neurons with disease progression decreases its bioconversion to dopamine, leading to increased side effects and decreased efficacy. In theory, dopamine agonists could equal levodopa, but no approved oral "dopamine agonist" matches the efficacy of levodopa. There are consistent data in both primate models and in Parkinson's disease showing that selective high intrinsic activity D1 agonists can equal levodopa in efficacy. There are, however, no data on whether such compounds would be effective in severe disease when levodopa efficacy is low or absent. We compared two approved antiparkinson drugs (levodopa and the D2/3 agonist bromocriptine) with the experimental selective D1 full agonist dihydrexidine in two severely parkinsonian MPTP-treated non-human primates. Bromocriptine caused no discernible improvement in parkinsonian signs, whereas levodopa caused a small transient improvement in one of the two subjects. Conversely, the full D1 agonist dihydrexidine caused a dramatic improvement in both subjects, decreasing parkinsonian signs by ca. 75%. No attenuation of dihydrexidine effects was observed when the two subjects were pretreated with the D2 antagonist remoxipride. These data provide evidence that selective D1 agonists may provide profound antiparkinson symptomatic relief even when the degree of nigrostriatal degeneration is so severe that current drugs are ineffective. Until effective disease-modifying therapies are discovered, high intrinsic activity D1 agonists may offer a major therapeutic advance in improving the quality of life, and potentially the longevity, of late stage Parkinson's patients.
Collapse
Affiliation(s)
- Richard B Mailman
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| | - Yang Yang
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| | - Xuemei Huang
- Departments of Pharmacology and NeurologyPenn State University College of Medicine Hershey PA 17033, USA.
| |
Collapse
|
6
|
Shen Y, McCorvy JD, Martini ML, Rodriguiz RM, Pogorelov VM, Ward KM, Wetsel WC, Liu J, Roth BL, Jin J. D 2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. J Med Chem 2019; 62:4755-4771. [PMID: 30964661 PMCID: PMC6509010 DOI: 10.1021/acs.jmedchem.9b00508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionally selective G protein-coupled receptor ligands are valuable tools for deciphering the roles of downstream signaling pathways that potentially contribute to therapeutic effects versus side effects. Recently, we discovered both Gi/o-biased and β-arrestin2-biased D2 receptor agonists based on the Food and Drug Administration (FDA)-approved drug aripiprazole. In this work, based on another FDA-approved drug, cariprazine, we conducted a structure-functional selectivity relationship study and discovered compound 38 (MS1768) as a potent partial agonist that selectively activates the Gi/o pathway over β-arrestin2. Unlike the dual D2R/D3R partial agonist cariprazine, compound 38 showed selective agonist activity for D2R over D3R. In fact, compound 38 exhibited potent antagonism of dopamine-stimulated β-arrestin2 recruitment. In our docking studies, compound 38 directly interacts with S1935.42 on TM5 but has no interactions with extracellular loop 2, which appears to be in contrast to the binding poses of D2R β-arrestin2-biased ligands. In in vivo studies, compound 38 showed high D2R receptor occupancy in mice and effectively inhibited phencyclidine-induced hyperlocomotion.
Collapse
Affiliation(s)
- Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - John D. McCorvy
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael L. Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ramona M. Rodriguiz
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Vladimir M. Pogorelov
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Karen M. Ward
- Worldwide Research and Development, Internal Medicine Research Unit, Pfizer, Cambridge, Massachusetts 02139, United States
| | - William C. Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Bryan L. Roth
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
7
|
Erratum: Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines. Front Pharmacol 2019; 10:418. [PMID: 31024325 PMCID: PMC6460767 DOI: 10.3389/fphar.2019.00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
|
8
|
Abstract
Pharmacology, the chemical control of physiology, emerged as an offshoot of physiology when the physiologists using chemicals to probe physiological systems became more interested in the probes than the systems. Pharmacologists were always, and in many ways still are, bound to study drugs in systems they do not fully understand. Under these circumstances, null methods were the main ways in which conclusions about biologically active molecules were made. However, as understanding of the basic mechanisms of cellular function and biochemical systems were elucidated, so too did the understanding of how drugs affected these systems. Over the past 20 years, new ideas have emerged in the field that have completely changed and revitalized it; these are described herein. It will be seen how null methods in isolated tissues gave way to, first biochemical radioligand binding studies, and then to a wide array of functional assay technologies that can measure the effects of molecules on drug targets. In addition, the introduction of molecular dynamics, the appreciation of the allosteric nature of receptors, protein X-ray crystal structures, genetic manipulations in the form of knock-out and knock-in systems and Designer Receptors Exclusively Activated by Designer Drugs have revolutionized pharmacology.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Oyagawa CRM, de la Harpe SM, Saroz Y, Glass M, Vernall AJ, Grimsey NL. Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines. Front Pharmacol 2018; 9:1202. [PMID: 30524271 PMCID: PMC6256112 DOI: 10.3389/fphar.2018.01202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is predominantly distributed in immune tissues and cells and is a promising therapeutic target for modulating inflammation. In this study we designed and synthesised a series of 2,4,6-trisubstituted 1,3,5-triazines with piperazinylalkyl or 1,2-diethoxyethane (PEG2) chains as CB2 agonists, all of which were predicted to be considerably more polar than typical cannabinoid ligands. In this series, we found that triazines containing an adamantanyl group were conducive to CB2 binding whereas those with a cyclopentyl group were not. Although the covalent attachment of a PEG2 linker to the adamantyl triazines resulted in a decrease in binding affinity, some of the ligands produced very interesting hCB2 signalling profiles. Six compounds with notable hCB2 orthosteric binding were functionally characterised in three pathways; internalisation, cyclic adenosine monophosphate (cAMP) and ERK phosphorylation (pERK). These were predominantly confirmed to be hCB2 agonists, and upon comparison to a reference ligand (CP 55,940), four compounds exhibited signalling bias. Triazines 14 (UOSD017) and 15 were biased towards internalisation over cAMP and pERK, and 7 was biased away from pERK activation relative to cAMP and internalisation. Intriguingly, the triazine with an amino-PEG2-piperazinyl linker (13 [UOSD008]) was identified to be a mixed agonist/inverse agonist, exhibiting apparent neutral antagonism in the internalisation pathway, transient inverse agonism in the cAMP pathway and weak partial agonism in the pERK pathway. Both the cAMP and pERK signalling were pertussis toxin (PTX) sensitive, implying that 13 is acting as both a weak agonist and inverse agonist at CB2 via Gαi/o. Compound 10 (UOSD015) acted as a balanced high intrinsic efficacy agonist with the potential to produce greater hCB2-mediated efficacy than reference ligand CP 55,940. As 10 includes a Boc-protected PEG2 moiety it is also a promising candidate for further modification, for example with a secondary reporter or fluorophore. The highest affinity compound in this set of relatively polar hCB2 ligands was compound 16, which acted as a slightly partial balanced agonist in comparison with CP 55,940. The ligands characterised here may therefore exhibit unique functional properties in vivo and have the potential to be valuable in the future development of CB2-directed therapeutics.
Collapse
Affiliation(s)
- Caitlin R. M. Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Yurii Saroz
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Kenakin T. Is the Quest for Signaling Bias Worth the Effort? Mol Pharmacol 2018; 93:266-269. [PMID: 29348268 DOI: 10.1124/mol.117.111187] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/14/2023] Open
Abstract
The question of whether signaling bias is a viable discovery strategy for drug therapy is discussed as a value proposition. On the positive side, bias is easily identified and quantified in simple in vitro functional assays with little resource expenditure. However, there are valid pharmacological reasons why these in vitro bias numbers may not accurately translate to in vivo therapeutic systems making the expectation of direct correspondence of in vitro bias to in vivo systems a problematic process. Presently, in vitro bias is used simply as a means to identify unique molecules to be advanced to more complex therapeutic assays but from this standpoint alone, the value proposition lies far to the positive. However, pharmacological attention needs to be given to the translational gap to reduce inevitable and costly attrition in biased molecule progression.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Burgueño J, Pujol M, Monroy X, Roche D, Varela MJ, Merlos M, Giraldo J. A Complementary Scale of Biased Agonism for Agonists with Differing Maximal Responses. Sci Rep 2017; 7:15389. [PMID: 29133887 PMCID: PMC5684405 DOI: 10.1038/s41598-017-15258-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Compelling data in the literature from the recent years leave no doubt about the pluridimensional nature of G protein-coupled receptor function and the fact that some ligands can couple with different efficacies to the multiple pathways that a receptor can signal through, a phenomenon most commonly known as functional selectivity or biased agonism. Nowadays, transduction coefficients (log(τ/KA)), based on the Black and Leff operational model of agonism, are widely used to calculate bias. Nevertheless, combining both affinity and efficacy in a single parameter can result in compounds showing a defined calculated bias of one pathway over other though displaying varying experimental bias preferences. In this paper, we present a novel scale (log(τ)), that attempts to give extra substance to different compound profiles in order to better classify compounds and quantify their bias. The efficacy-driven log(τ) scale is not proposed as an alternative to the affinity&efficacy-driven log(τ/KA) scale but as a complement in those situations where partial agonism is present. Both theoretical and practical approaches using μ-opioid receptor agonists are presented.
Collapse
Affiliation(s)
- Javier Burgueño
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Marta Pujol
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Xavier Monroy
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - David Roche
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.,Universitat Internacional de Catalunya, Faculty of Economics and Social Sciences, 08017, Barcelona, Spain
| | - Maria Jose Varela
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidad de Santiago de Compostela, La Coruña, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
12
|
New Concepts in Dopamine D 2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol Psychiatry 2017; 81:78-85. [PMID: 27832841 PMCID: PMC5702557 DOI: 10.1016/j.biopsych.2016.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor that is a common target for antipsychotic drugs. Antagonism of D2R signaling in the striatum is thought to be the primary mode of action of antipsychotic drugs in alleviating psychotic symptoms. However, antipsychotic drugs are not clinically effective at reversing cortical-related symptoms, such as cognitive deficits in schizophrenia. While the exact mechanistic underpinnings of these cognitive deficits are largely unknown, deficits in cortical dopamine function likely play a contributing role. It is now recognized that similar to most G protein-coupled receptors, D2Rs signal not only through canonical G protein pathways but also through noncanonical beta-arrestin2-dependent pathways. We review the current mechanistic bases for this dual signaling mode of D2Rs and how these new concepts might be leveraged for therapeutic gain to target both cortical and striatal dysfunction in dopamine neurotransmission and hence have the potential to correct both positive and cognitive symptoms of schizophrenia.
Collapse
|
13
|
Arnsten AF, Girgis RR, Gray DI, Mailman RB. Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia. Biol Psychiatry 2017; 81:67-77. [PMID: 26946382 PMCID: PMC4949134 DOI: 10.1016/j.biopsych.2015.12.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 11/30/2022]
Abstract
Schizophrenia is characterized by profound cognitive deficits that are not alleviated by currently available medications. Many of these cognitive deficits involve dysfunction of the newly evolved, dorsolateral prefrontal cortex (dlPFC). The brains of patients with schizophrenia show evidence of dlPFC pyramidal cell dendritic atrophy, likely reductions in cortical dopamine, and possible changes in dopamine D1 receptors (D1R). It has been appreciated for decades that optimal levels of dopamine are essential for dlPFC working memory function, with many beneficial actions arising from D1R stimulation. D1R are concentrated on dendritic spines in the primate dlPFC, where their stimulation produces an inverted-U dose response on dlPFC neuronal firing and cognitive performance during working memory tasks. Research in both academia and the pharmaceutical industry has led to the development of selective D1 agonists, e.g., the first full D1 agonist, dihydrexidine, which at low doses improved working memory in monkeys. Dihydrexidine has begun to be tested in patients with schizophrenia or schizotypal disorder. Initial results are encouraging, but studies are limited by the pharmacokinetics of the drug. These data, however, have spurred efforts toward the discovery and development of improved or novel new compounds, including D1 agonists with better pharmacokinetics, functionally selective D1 ligands, and D1R positive allosteric modulators. One or several of these approaches should allow optimization of the beneficial effects of D1R stimulation in the dlPFC that can be translated into clinical practice.
Collapse
Affiliation(s)
- Amy F.T. Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510
| | - Ragy R. Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - David I. Gray
- Neuroscience & Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139
| | - Richard B. Mailman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17036
| |
Collapse
|
14
|
Chen X, McCorvy JD, Fischer MG, Butler KV, Shen Y, Roth BL, Jin J. Discovery of G Protein-Biased D2 Dopamine Receptor Partial Agonists. J Med Chem 2016; 59:10601-10618. [PMID: 27805392 PMCID: PMC5148701 DOI: 10.1021/acs.jmedchem.6b01208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biased ligands (also known as functionally selective ligands) of G protein-coupled receptors are valuable tools for dissecting the roles of G protein-dependent and independent signaling pathways in health and disease. Biased ligands have also been increasingly pursued by the biomedical community as promising therapeutics with improved efficacy and reduced side effects compared with unbiased ligands. We previously discovered first-in-class β-arrestin-biased agonists of dopamine D2 receptor (D2R) by extensively exploring multiple regions of aripiprazole, a balanced D2R agonist. In our continuing efforts to identify biased agonists of D2R, we unexpectedly discovered a G protein-biased agonist of D2R, compound 1, which is the first G protein-biased D2R agonist from the aripiprazole scaffold. We designed and synthesized novel analogues to explore two regions of 1 and conducted structure-functional selectivity relationship (SFSR) studies. Here we report the discovery of 1, findings from our SFSR studies, and characterization of novel G protein-biased D2R agonists.
Collapse
Affiliation(s)
- Xin Chen
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - John D. McCorvy
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Matthew G. Fischer
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - Kyle V. Butler
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - Yudao Shen
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | - Bryan L. Roth
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| |
Collapse
|
15
|
Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data. Biochem Pharmacol 2016; 101:1-12. [DOI: 10.1016/j.bcp.2015.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023]
|
16
|
Kenakin T. The Effective Application of Biased Signaling to New Drug Discovery. Mol Pharmacol 2015; 88:1055-61. [PMID: 26138073 DOI: 10.1124/mol.115.099770] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 01/14/2023] Open
Abstract
The ability of agonists to selectively activate some but not all signaling pathways linked to pleiotropically signaling receptors has opened the possibility of obtaining molecules that emphasize beneficial signals, de-emphasize harmful signals, and concomitantly deemphasize harmful signals while blocking the harmful signals produced by endogenous agonists. The detection and quantification of biased effects is straightforward, but two important factors should be considered in the evaluation of biased effects in drug discovery. The first is that efficacy, and not bias, determines whether a given agonist signal will be observed; bias only dictates the relative concentrations at which agonist signals will appear when they do appear. Therefore, a Cartesian coordinate system plotting relative efficacy (on a scale of Log relative Intrinsic Activities) as the ordinates and Log(bias) as the abscissae is proposed as a useful tool in evaluating possible biased molecules for progression in discovery programs. Second, it should be considered that the current scales quantifying bias limit this property to the allosteric vector (ligand/receptor/coupling protein complex) and that whole-cell processing of this signal can completely change measured bias from in vitro predictions.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Conroy JL, Free RB, Sibley DR. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci 2015; 6:681-92. [PMID: 25660762 DOI: 10.1021/acschemneuro.5b00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in the level of cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for β-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated β-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of activity in that the G protein-biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G protein signaling, but antagonists of D1R recruitment of β-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful for interpreting the contrasting effects of these compounds in vitro versus in vivo, and also for the understanding of pathway-selective signaling of the D1R.
Collapse
Affiliation(s)
- Jennie L. Conroy
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - R. Benjamin Free
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| | - David R. Sibley
- Molecular Neuropharmacology Section,
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9405, United States
| |
Collapse
|
18
|
Effects of the D1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder. Neuropsychopharmacology 2015; 40:446-53. [PMID: 25074637 PMCID: PMC4443959 DOI: 10.1038/npp.2014.192] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/22/2023]
Abstract
Pharmacological enhancement of prefrontal D1 dopamine receptor function remains a promising therapeutic approach to ameliorate schizophrenia-spectrum working memory deficits, but has yet to be rigorously evaluated clinically. This proof-of-principle study sought to determine whether the active enantiomer of the selective and full D1 receptor agonist dihydrexidine (DAR-0100A) could attenuate working memory impairments in unmedicated patients with schizotypal personality disorder (SPD). We performed a randomized, double-blind, placebo-controlled trial of DAR-0100A (15 mg/150 ml of normal saline administered intravenously over 30 min) in medication-free patients with SPD (n=16) who met the criteria for cognitive impairment (ie, scoring below the 25th percentile on tests of working memory). We employed two measures of verbal working memory that are salient to schizophrenia-spectrum cognitive deficits, and that clinical data implicate as being associated with prefrontal D1 availability: (1) the Paced Auditory Serial Addition Test (PASAT); and (2) the N-back test (ratio of 2-back:0-back scores). Study procedures occurred over four consecutive days, with working memory testing on Days 1 and 4, and DAR-0100A/placebo administration on Days 2-4. Treatment with DAR-0100A was associated with significantly improved PASAT performance relative to placebo, with a very large effect size (Cohen's d=1.14). Performance on the N-back ratio was also significantly improved; however, this effect rested on both a non-significant enhancement and diminution of 2-back and 0-back performance, respectively; therefore interpretation of this finding is more complicated. DAR-0100A was generally well tolerated, with no serious medical or psychiatric adverse events; common side effects were mild to moderate and transient, consisting mainly of sedation, lightheadedness, tachycardia, and hypotension; however, we were able to minimize these effects, without altering the dose, with supportive measures, eg, co-administered normal saline. Although preliminary, these findings lend further clinical support to the potential of D1 receptor agonists to treat schizophrenia-spectrum working memory impairments. These data suggest a need for further studies with larger group sizes, serum DAR-0100A levels, and a more comprehensive neuropsychological battery.
Collapse
|
19
|
de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism. CNS Drugs 2015; 29:773-99. [PMID: 26346901 PMCID: PMC4602118 DOI: 10.1007/s40263-015-0278-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy.
| | - Carmine Tomasetti
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| | - Felice Iasevoli
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| |
Collapse
|
20
|
Shonberg J, Lopez L, Scammells PJ, Christopoulos A, Capuano B, Lane JR. Biased Agonism at G Protein-Coupled Receptors: The Promise and the Challenges-A Medicinal Chemistry Perspective. Med Res Rev 2014; 34:1286-330. [DOI: 10.1002/med.21318] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Laura Lopez
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Peter J. Scammells
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Arthur Christopoulos
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Ben Capuano
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - J. Robert Lane
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| |
Collapse
|
21
|
Free RB, Chun LS, Moritz AE, Miller BN, Doyle TB, Conroy JL, Padron A, Meade JA, Xiao J, Hu X, Dulcey AE, Han Y, Duan L, Titus S, Bryant-Genevier M, Barnaeva E, Ferrer M, Javitch JA, Beuming T, Shi L, Southall NT, Marugan JJ, Sibley DR. Discovery and characterization of a G protein-biased agonist that inhibits β-arrestin recruitment to the D2 dopamine receptor. Mol Pharmacol 2014; 86:96-105. [PMID: 24755247 DOI: 10.1124/mol.113.090563] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and β-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate β-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor-mediated G protein-linked signaling, but does not recruit β-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated β-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate β-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate β-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein-biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.
Collapse
Affiliation(s)
- R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Brittney N Miller
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Trevor B Doyle
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Jennie L Conroy
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Adrian Padron
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Julie A Meade
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Jingbo Xiao
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Xin Hu
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Andrés E Dulcey
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Yang Han
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Lihua Duan
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Steve Titus
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Melanie Bryant-Genevier
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Elena Barnaeva
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Marc Ferrer
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Jonathan A Javitch
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Thijs Beuming
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Lei Shi
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Noel T Southall
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - Juan J Marugan
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland (R.B.F., L.S.C., A.E.M., B.N.M., T.B.D., J.L.C., A.P., J.A.M., D.R.S.); National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (J.X., X.H., A.E.D., S.T., M.B.-G., E.B., M.F., N.T.S., J.J.M.); Cellular, Molecular, Developmental Biology & Biophysics Program, Johns Hopkins University, Baltimore, Maryland (L.S.C.); Center for Molecular Recognition and Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York (Y.H., L.D., J.A.J.); Schrödinger Inc., New York, New York (T.B.); and Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York (L.S.)
| |
Collapse
|
22
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Phenylpiperazine derivatives with selectivity for dopamine D3 receptors modulate cocaine self-administration in rats. Neuropharmacology 2012; 63:1346-59. [PMID: 22960444 DOI: 10.1016/j.neuropharm.2012.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022]
Abstract
This study examined cocaine self-administration after pretreatments with three structurally related compounds that bind selectively to dopamine D3 receptors (D3Rs) relative to the D2 receptor subtype (D2Rs) and exhibit varying intrinsic activities in the forskolin-stimulated adenylyl cyclase assay. The compounds are: a) WC10, a D3R weak partial agonist/antagonist with 42-fold D3R:D2R selectivity, b) WC26, a 51-fold selective D3R partial agonist, c) WC44, a 23-fold selective D3R agonist. Rats were stabilized on a multiple variable-interval 60-s (VI60) schedule with alternating components of sucrose (45 mg pellets) or cocaine reinforcement (0.375 mg/kg, IV) and then tested for effects of the WC compounds (0.0, 1.0, 3.0, 5.6, or 10.0 mg/kg, IP). Another cohort was trained to self-administer cocaine (0.75 mg/kg, IV) on a VI60 schedule then tested with various doses of cocaine available (0.0-1.5 mg/kg, IV) following pretreatment with WC10 (5.6 or 10.0 mg/kg) or WC44 (10.0 mg/kg). WC10 and WC26 decreased both cocaine and sucrose reinforcement rates at the 10.0 mg/kg dose, whereas WC44 decreased only cocaine reinforcement rate at this dose. Furthermore, WC26 and WC44 increased response latency for cocaine but not sucrose. In the cocaine dose-response experiment, WC10 and WC44 flattened the dose-effect function of cocaine reinforcement rate. All compounds decreased spontaneous locomotion. WC10 and WC26 also reduced cocaine-induced locomotion. These results support the targeting of D3Rs for treatments for cocaine dependence. WC26 and WC44, in particular, show promise as they increased the latency to respond for cocaine but not sucrose, suggesting selective reduction of the motivation for cocaine.
Collapse
|
24
|
Chen X, Sassano MF, Zheng L, Setola V, Chen M, Bai X, Frye SV, Wetsel WC, Roth BL, Jin J. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D₂ receptor agonists. J Med Chem 2012; 55:7141-53. [PMID: 22845053 DOI: 10.1021/jm300603y] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionally selective G protein-coupled receptor (GPCR) ligands, which differentially modulate canonical and noncanonical signaling, are extremely useful for elucidating key signal transduction pathways essential for both the therapeutic actions and side effects of drugs. However, few such ligands have been created, and very little purposeful attention has been devoted to studying what we term: "structure-functional selectivity relationships" (SFSR). We recently disclosed the first β-arrestin-biased dopamine D(2) receptor (D(2)R) agonists UNC9975 (44) and UNC9994 (36), which have robust in vivo antipsychotic drug-like activities. Here we report the first comprehensive SFSR studies focused on exploring four regions of the aripiprazole scaffold, which resulted in the discovery of these β-arrestin-biased D(2)R agonists. These studies provide a successful proof-of-concept for how functionally selective ligands can be discovered.
Collapse
Affiliation(s)
- Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Findeisen M, Würker C, Rathmann D, Meier R, Meiler J, Olsson R, Beck-Sickinger AG. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors. J Med Chem 2012; 55:6124-36. [PMID: 22708927 DOI: 10.1021/jm300535s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By use of four nonpeptidic compounds and the peptide mimetics RF9 and BIBP3226, agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated. The binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF(1) but not in the NPFF(2) receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system.
Collapse
Affiliation(s)
- Maria Findeisen
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Kuzhikandathil EV, Kortagere S. Identification and characterization of a novel class of atypical dopamine receptor agonists. Pharm Res 2012; 29:2264-75. [PMID: 22547031 DOI: 10.1007/s11095-012-0754-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/11/2012] [Indexed: 01/20/2023]
Abstract
PURPOSE The D3 dopamine receptor exhibits tolerance and slow response termination (SRT) properties that are not exhibited by the closely-related D2 dopamine receptor. We previously demonstrated that the induction of tolerance elicits a unique conformational change in the D3 receptor. Here we tested the hypothesis that the tolerance and SRT properties of the D3 receptor are ligand-dependent. METHODS We used pharmacophore modeling and in silico screening approaches coupled with electrophysiological and biochemical methods to identify and functionally characterize the novel dopamine receptor agonists. RESULTS We identified cis-8-OH-PBZI (PBZI), FAUC73 and an additional novel compound, ES609, which although they are full D3 receptor agonists, do not induce the tolerance and SRT properties of the D3 receptor. In addition, PBZI has full intrinsic activity at D2L, is a partial agonist at D2S and exhibits functional selectivity at D4.2 dopamine receptors. ES609 is a partial agonist at D2S, D2L and D4.2 receptors, and exhibits functional selectivity at D2L and D4.2 dopamine receptors. CONCLUSION We have discovered a novel class of atypical dopamine receptor agonists that include three structurally dissimilar compounds. These new agonists will help determine the physiological and pathophysiological relevance of D3 receptor tolerance and SRT properties.
Collapse
Affiliation(s)
- E V Kuzhikandathil
- Department of Pharmacology & Physiology, UMDNJ-New Jersey Medical School, MSB, I-647, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
27
|
Fowler JC, Bhattacharya S, Urban JD, Vaidehi N, Mailman RB. Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol Pharmacol 2012; 81:820-31. [PMID: 22416052 DOI: 10.1124/mol.111.075457] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although functional selectivity is now widely accepted, the molecular basis is poorly understood. We have studied how aspects of transmembrane region 5 (TM5) of the dopamine D(2L) receptor interacts with three rationally selected rigid ligands (dihydrexidine, dinapsoline, and dinoxyline) and the reference compounds dopamine and quinpirole. As was expected from homology modeling, mutation of three TM5 serine residues to alanine (S5.42A, S5.43A, S5.46A) had little effect on antagonist affinity. All three mutations decreased the affinity of the agonist ligands to different degrees, S5.46A being somewhat less affected. Four functions [adenylate cyclase (AC), extracellular signal-regulated kinase 1/2 phosphorylation (MAPK), arachidonic acid release (AA), and guanosine 5'-O-(3-thio)triphosphate binding (GTPγS)] were assessed. The intrinsic activity (IA) of quinpirole was unaffected by any of the mutations, whereas S5.42A and S5.46A mutations abolished the activity of dopamine and the three rigid ligands, although dihydrexidine retained IA at MAPK function only with S5.42A. Remarkably, S5.43A did not markedly affect IA for AC and MAPK for any of the ligands and eliminated AA activity for dinapsoline and dihydrexidine but not dinoxyline. These data suggest that this mutation did not disrupt the overall conformation or signaling ability of the mutant receptors but differentially affected ligand activation. Computational studies indicate that these D(2) agonists stabilize multiple receptor conformations. This has led to models showing the stabilized conformations and interhelical and receptor-ligand contacts corresponding to the different activation pathways stabilized by various agonists. These data provide a basis for understanding D(2L) functional selectivity and rationally discovering functionally selective D(2) drugs.
Collapse
Affiliation(s)
- J Corey Fowler
- Division of Medicinal Chemistry and Toxicology Curriculum, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
28
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
29
|
Kim J, Yip MLR, Shen X, Li H, Hsin LYC, Labarge S, Heinrich EL, Lee W, Lu J, Vaidehi N. Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One 2012; 7:e31004. [PMID: 22319600 PMCID: PMC3272047 DOI: 10.1371/journal.pone.0031004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022] Open
Abstract
Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia and invasive pancreatic cancer; hence, CXCR4 is a promising target for suppression of pancreatic cancer growth. Here, we combined in silico structural modeling of CXCR4 to screen for candidate anti-CXCR4 compounds with in vitro cell line assays and identified NSC56612 from the National Cancer Institute's (NCI) Open Chemical Repository Collection as an inhibitor of activated CXCR4. Next, we identified that NSC56612 is structurally similar to the established anti-malarial drugs chloroquine and hydroxychloroquine. We evaluated these compounds in pancreatic cancer cells in vitro and observed specific antagonism of CXCR4-mediated signaling and cell proliferation. Recent in vivo therapeutic applications of chloroquine in pancreatic cancer mouse models have demonstrated decreased tumor growth and improved survival. Our results thus provide a molecular target and basis for further evaluation of chloroquine and hydroxychloroquine in pancreatic cancer. Historically safe in humans, chloroquine and hydroxychloroquine appear to be promising agents to safely and effectively target CXCR4 in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Joseph Kim
- Department of Surgery, City of Hope, Duarte, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Koener B, Focant MC, Bosier B, Maloteaux JM, Hermans E. Increasing the density of the D2L receptor and manipulating the receptor environment are required to evidence the partial agonist properties of aripiprazole. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:60-70. [PMID: 21871520 DOI: 10.1016/j.pnpbp.2011.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022]
Abstract
The clinical efficacy of aripiprazole in the treatment of psychosis relies on a partial agonism at D2 receptors. As the expression of this receptor differs physiologically between pre- and post-synaptic sites and is affected by pathological conditions or pharmacological treatments, it appears difficult to predict the clinical response to partial agonists. In addition, the response to this novel antipsychotic was shown to depend on the cell-line and the pathway analyzed, suggesting a functional selective profile at the D2 receptor. This study aims at examining the influence of receptor density and ionic environment on the pharmacological properties of aripiprazole. A cell line was developed in which the expression of the recombinant D2 receptor can be tightly manipulated using doxycycline and sodium butyrate. The potency and efficacy of aripiprazole and other reference D2 receptor ligands were examined in [35S]GTPγS binding assays, in buffers containing either NaCl or N-methyl-D-glucamine (NMDG) which is proposed to enhance G protein coupling. Increasing the density of D2 receptors considerably enhanced the [35S]GTPγS binding induced by dopamine and the full agonist NPA. In maximally induced cells, the agonist properties of the partial agonist (-)-3-PPP was revealed in a buffer containing NaCl, whereas the response to aripiprazole was not evidenced. Substituting NMDG for NaCl promoted the response to dopamine and (-)3-PPP and was proven efficient to reveal the partial agonist profile of aripiprazole. While NMDG substitution for NaCl strongly enhanced receptor-G protein coupling, these ionic manipulations are likely to influence receptor conformations, thereby modulating the activation of signaling pathways. Our data obtained with partial agonists acting at the D2 receptor suggest that these changes in the experimental conditions could contribute to reveal the functional selective profile of GPCR ligands. They also emphasize that the properties of functional selective ligands do not only depend on receptor density but also on the surrounding environment which likely differs between brain structures.
Collapse
Affiliation(s)
- Beryl Koener
- Institute of Neuroscience (Ions), Group of Neuropharmacology, Université Catholique de Louvain, Avenue Mounier 53, bte B1.53.02, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
31
|
Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A 2011; 108:18488-93. [PMID: 22025698 DOI: 10.1073/pnas.1104807108] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elucidating the key signal transduction pathways essential for both antipsychotic efficacy and side-effect profiles is essential for developing safer and more effective therapies. Recent work has highlighted noncanonical modes of dopamine D(2) receptor (D(2)R) signaling via β-arrestins as being important for the therapeutic actions of both antipsychotic and antimanic agents. We thus sought to create unique D(2)R agonists that display signaling bias via β-arrestin-ergic signaling. Through a robust diversity-oriented modification of the scaffold represented by aripiprazole (1), we discovered UNC9975 (2), UNC0006 (3), and UNC9994 (4) as unprecedented β-arrestin-biased D(2)R ligands. These compounds also represent unprecedented β-arrestin-biased ligands for a G(i)-coupled G protein-coupled receptor (GPCR). Significantly, UNC9975, UNC0006, and UNC9994 are simultaneously antagonists of G(i)-regulated cAMP production and partial agonists for D(2)R/β-arrestin-2 interactions. Importantly, UNC9975 displayed potent antipsychotic-like activity without inducing motoric side effects in inbred C57BL/6 mice in vivo. Genetic deletion of β-arrestin-2 simultaneously attenuated the antipsychotic actions of UNC9975 and transformed it into a typical antipsychotic drug with a high propensity to induce catalepsy. Similarly, the antipsychotic-like activity displayed by UNC9994, an extremely β-arrestin-biased D(2)R agonist, in wild-type mice was completely abolished in β-arrestin-2 knockout mice. Taken together, our results suggest that β-arrestin signaling and recruitment can be simultaneously a significant contributor to antipsychotic efficacy and protective against motoric side effects. These functionally selective, β-arrestin-biased D(2)R ligands represent valuable chemical probes for further investigations of D(2)R signaling in health and disease.
Collapse
|
32
|
CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 2011; 7:624-30. [PMID: 21785426 PMCID: PMC3158273 DOI: 10.1038/nchembio.623] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/16/2011] [Indexed: 01/09/2023]
Abstract
Here we present a novel method that combines protein complementation with resonance energy transfer to study conformational changes in response to activation of a defined G protein-coupled receptor heteromer, and we apply the approach to the putative dopamine D1-D2 receptor heteromer. Remarkably, the potency of the D2 receptor (D2R) agonist R(–)-Propylnorapomorphine (NPA) to change the Gαi conformation via the D2R protomer in the D1-D2 heteromer was enhanced 10-fold relative to that observed in the D2R homomer. In contrast, the potencies of the D2R agonists dopamine and quinpirole were the same in the homomer and heteromer. Thus, we have uncovered a molecular mechanism for functional selectivity, in which a drug acts differently at a GPCR protomer depending on the identity of the second protomer that participates in forming the signaling unit, opening the door to enhanced pharmacological specificity through targeting differences between homomeric and heteromeric signaling.
Collapse
|
33
|
Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin Drug Discov 2011; 6:811-25. [DOI: 10.1517/17460441.2011.586691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Roth BL. Irving Page Lecture: 5-HT(2A) serotonin receptor biology: interacting proteins, kinases and paradoxical regulation. Neuropharmacology 2011; 61:348-54. [PMID: 21288474 DOI: 10.1016/j.neuropharm.2011.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/28/2010] [Accepted: 01/10/2011] [Indexed: 01/04/2023]
Abstract
5-Hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, Program in Neurosciences, Lineberger Cancer Center, NIMH Psychoactive Drug Screening Program, and Division of Medicinal Chemistry and Natural Products, Room 4072, Genetic Medicine Building, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA.
| |
Collapse
|
35
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2010; 17:126-39. [PMID: 21183406 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Han JM, Pan JL, Lei T, Liu C, Pei J. Smart Macrocyclic Molecules: Induced Fit and Ultrafast Self-Sorting Inclusion Behavior through Dynamic Covalent Chemistry. Chemistry 2010; 16:13850-61. [DOI: 10.1002/chem.201001606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Millan MJ. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease. Pharmacol Ther 2010; 128:229-73. [PMID: 20600305 DOI: 10.1016/j.pharmthera.2010.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2010] [Indexed: 12/16/2022]
Abstract
Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other antiparkinson agents, and for optimizing their clinical exploitation.
Collapse
Affiliation(s)
- Mark J Millan
- Dept of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine (Paris), France.
| |
Collapse
|
38
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
39
|
Mailman RB, Murthy V. Ligand functional selectivity advances our understanding of drug mechanisms and drug discovery. Neuropsychopharmacology 2010; 35:345-6. [PMID: 20010712 PMCID: PMC2952437 DOI: 10.1038/npp.2009.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard B Mailman
- Departments of Pharmacology and Neurology and The Neuroscience Institute, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA,E-mail:
| | - Vishakantha Murthy
- Departments of Pharmacology and Neurology and The Neuroscience Institute, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
40
|
Mailman RB, Murthy V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des 2010; 16:488-501. [PMID: 19909227 PMCID: PMC2958217 DOI: 10.2174/138161210790361461] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/12/2009] [Indexed: 11/22/2022]
Abstract
Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D(2) receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D(2) and 5-HT(2A) antagonists, and those that also bind with modest affinity to D(2), 5-HT(2A), and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D(2) partial agonism or D(2) functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D(2) functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D(2) antagonists.
Collapse
Affiliation(s)
- Richard B Mailman
- Penn State University College of Medicine - Milton S. Hershey Medical Center Department of Pharmacology. R130 500 University Dr., PO Box 850, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
41
|
Lalley PM. D1/D2-dopamine receptor agonist dihydrexidine stimulates inspiratory motor output and depresses medullary expiratory neurons. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1829-36. [PMID: 19279296 DOI: 10.1152/ajpregu.00057.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now accepted that dopamine plays an important neuromodulatory role in the central nervous control of respiration. D1, D2, and D4 subtypes of the receptor seem to be important players, but the assignment of various respiratory tasks to specific subtypes of the dopamine receptor is a work in progress. In the present investigation, dihydrexidine (DHD), a full dopamine receptor agonist with affinity for both D1- and D2-subtypes of receptor, was tested for its effects on inspiratory neurons and motor output and on membrane potential properties of medullary bulbospinal expiratory augmenting expiratory neurons in the pentobarbital anesthetized adult cat. The effects of DHD were compared with those of the highly selective D1-dopamine receptor (D1R) agonists SKF-38393 and 6-chloro-APB. DHD increased the intensity and duration of inspiratory motor output. Phrenic nerve discharge intensity was increased and prolonged, contributing to elevated inspiratory effort and duration when spontaneous breathing was monitored with tracheal pressure measurements. Intracellular recording from rostral medullary inspiratory neurons revealed that DHD, like SKF-38393, increases and prolongs inspiratory phase membrane depolarization, resulting in a longer and more intense discharge of action potentials. Remarkably, DHD had opposite effects on Aug-E neurons. Membrane potential was hyperpolarized, and action potential discharges were suppressed or abolished. In association with reduction of discharge intensity, action potential half width was reduced and after-hyperpolarization increased. The stimulatory action of DHD on inspiratory motor output is attributed to D1R effects, while the depression of Aug-E neurons seems to be linked to D2R actions on the postsynaptic membrane.
Collapse
Affiliation(s)
- Peter M Lalley
- Department of Physiology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Zhang L, Brass LF, Manning DR. The Gq and G12 families of heterotrimeric G proteins report functional selectivity. Mol Pharmacol 2008; 75:235-41. [PMID: 18952767 DOI: 10.1124/mol.108.050906] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptors coupled to the G(q) and G(12) families of heterotrimeric G proteins have surfaced rarely in the context of functional selectivity and always indirectly. We explore here the differential engagement of G(q) and G(13) (of the G(12) family) by the thromboxane A(2) receptor alpha (TPalpha), via agonist-effected [(35)S]-guanosine 5'-O-(3-thio)triphosphate binding when the G proteins themselves are used as reporters. We find for TPalpha introduced into human embryonic kidney 293 cells and for the receptor expressed normally in human platelets an agonist-selective engagement of G(q) versus G(13). Pinane thromboxane A(2) (PTA(2)) activates G(q) in preference to G(13), whereas 8-iso-prostaglandin F(2alpha) activates G(13) in preference to G(q). 9,11-Dideoxy-9alpha,11alpha-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U46619), in contrast, exhibits no preference. Reserve of receptor in relation to G protein and of G protein in relation to downstream events is apparent in some instances but does not have a bearing on selectivity. Activation of G proteins by PTA(2) is right-shifted from binding of the ligand to receptor, a manifestation of which is a bimodal action: PTA(2) is an antagonist at low concentrations and an agonist at higher concentrations. We posit two populations of TPalpha, or two intrinsic sites of ligand binding, with selectivity evident not only in terms of the G proteins activated but properties of antagonism versus agonism.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
43
|
Klewe IV, Nielsen SM, Tarpø L, Urizar E, Dipace C, Javitch JA, Gether U, Egebjerg J, Christensen KV. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology 2008; 54:1215-22. [PMID: 18455202 DOI: 10.1016/j.neuropharm.2008.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/29/2008] [Accepted: 03/26/2008] [Indexed: 01/14/2023]
Abstract
Drugs acting at dopamine D2-like receptors play a pivotal role in the treatment of both schizophrenia and Parkinson's disease. Recent studies have demonstrated a role for G-protein independent D2 receptor signaling pathways acting through beta-arrestin. In this study we describe the establishment of a Bioluminescence Resonance Energy Transfer (BRET) assay for measuring dopamine induced recruitment of human beta-arrestin2 to the human dopamine D2 receptor. Dopamine, as well as the dopamine receptor agonists pramipexole and quinpirole, acted as full agonists in the assay as reflected by their ability to elicit marked concentration dependent increases in the BRET signal signifying beta-arrestin2 recruitment to the D2 receptor. As expected from their effect on G-protein coupling and cAMP levels mediated through the D2 receptor RNPA, pergolide, apomorphine, ropinirole, bromocriptine, 3PPP, terguride, aripiprazole, SNPA all acted as partial agonists with decreasing efficacy in the BRET assay. In contrast, a wide selection of typical and atypical anti-psychotics was incapable of stimulating beta-arrestin2 recruitment to the D2 receptor. Moreover, we observed that haloperidol, sertindole, olanzapine, clozapine and ziprasidone all fully inhibited the dopamine induced beta-arrestin2 recruitment to D2 receptor (short variant) in a concentration dependent manner. We conclude that most anti-psychotics are incapable of stimulating beta-arrestin2 recruitment to the dopamine D2 receptor, in accordance with their antagonistic properties at the level of G-protein coupling.
Collapse
Affiliation(s)
- Ib V Klewe
- H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ehlert FJ. On the analysis of ligand-directed signaling at G protein-coupled receptors. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:549-77. [PMID: 18253722 DOI: 10.1007/s00210-008-0260-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/09/2008] [Indexed: 12/01/2022]
Abstract
The phenomenon of "ligand-directed signaling" is often considered to be inconsistent with the traditional receptor theory. In this review, I show how the mathematics of the receptor theory can be used to measure the observed affinity and relative efficacy of protean ligands at G protein-coupled receptors. The basis of this analysis rests on the assumption that the fraction of agonist bound in the form of the active receptor-G protein-guanine nucleotide complex is the biochemical equivalent of the pharmacological stimulus. Consequently, this stimulus function is analogous to the current response of a ligand-gated ion channel. Because guanosine triphosphate (GTP) greatly inhibits the formation of the active quaternary complex, even the most efficacious agonists probably only elicit partial receptor activation, and it seems likely that the ceiling of 100% receptor activation is not reached in the intact cell with high intracellular concentrations of GTP. Under these conditions, the maximum of the stimulus function is proportional to the ratio of microscopic affinity constants of the agonist for ground and active states. Ligand-directed signaling depends on the existence of different active states of the receptor with different selectivities for different G proteins or other effectors. This phenomenon can be characterized using classic pharmacological methods. Although not widely appreciated, it is possible to estimate the product of observed affinity and intrinsic efficacy expressed relative to that of another agonist (intrinsic relative activity) through the analysis of the concentration-response curves. No other information is required. This approach should be useful in quantifying agonist activity and in converting the two disparate parameters of potency and maximal response into a single parameter dependent only on the agonist-receptor-effector complex.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
45
|
Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 2007; 33:1120-30. [PMID: 17641146 PMCID: PMC2632365 DOI: 10.1093/schbul/sbm083] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Wayne Fenton was a major driving force behind the establishment of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and Treatment Units for Research on Neurocognition and Schizophrenia (TURNS) project mechanisms. These projects were designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia. The MATRICS project identified 3 drug mechanisms of particular interest: cholinergic, dopaminergic, and glutamatergic. The TURNS project is designed to select potential cognitive-enhancing agents and evaluate their potential efficacy in the context of proof of concept or clinical efficacy trials. This article reviews the rationale for these 3 approaches and provides an update on the development of therapeutic agents, which act through one of these 3 mechanisms.
Collapse
MESH Headings
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Cognition Disorders/drug therapy
- Cognition Disorders/physiopathology
- Cognition Disorders/psychology
- Drug Design
- Humans
- Program Development/methods
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/physiology
- Schizophrenia/drug therapy
- Schizophrenia/physiopathology
- Schizophrenic Psychology
Collapse
|
46
|
Mu Q, Johnson K, Morgan PS, Grenesko EL, Molnar CE, Anderson B, Nahas Z, Kozel FA, Kose S, Knable M, Fernandes P, Nichols DE, Mailman RB, George MS. A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia. Schizophr Res 2007; 94:332-41. [PMID: 17596915 DOI: 10.1016/j.schres.2007.03.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 11/21/2022]
Abstract
Dopamine D1 receptors play an important role in memory and cognition in non-human primates. Dopamine D1 agonists have been shown to reverse performance deficits in both aged non-human primates and in primates with lesions to dopamine systems. This study explored whether a single dose of the first full D1 agonist dihydrexidine (DAR-0100) would cause changes in brain activity (perfusion) in dopamine-rich brain regions. We used a new gadolinium-contrast magnetic resonance perfusion scanning technique to measure brain activity. A within-subject cross-over double-blind randomized design was used in 20 adults with SCID-diagnosed schizophrenia. Each morning at 0800 h, they were scanned on a 3.0 T MRI scanner for perfusion. They then received either 20 mg of dihydrexidine, or placebo, subcutaneously over 15 min. Over the next 45 min, they had intermittent MRI scans. Two days later, they had a repeat of the Day 1 schedule, but received the opposite treatment from that given on the first day. Within-day, as well as between-day, comparisons were made to test for perfusion effects of dihydrexidine. Analysis revealed that dihydrexidine induced a significant increase in both prefrontal and non-prefrontal perfusion compared to placebo. The greatest increases occurred approximately 20 min after dihydrexidine infusion, consistent with the short pharmacokinetic half-life of dihydrexidine. These data are consistent with the hypothesis formulated from studies of non-human primates that dihydrexidine and other D1 agonists may be able to modulate prefrontal dopaminergic function.
Collapse
Affiliation(s)
- Qiwen Mu
- Brain Stimulation Laboratory, Institute of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mailman RB. GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 2007; 28:390-6. [PMID: 17629962 PMCID: PMC2958218 DOI: 10.1016/j.tips.2007.06.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/14/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Many in vitro data show that some ligands can cause the differential activation of signaling pathways mediated by a single receptor (termed 'functional selectivity'). It remains unclear, however, whether functionally selective properties are meaningful in vivo. Data obtained with experimental compounds that are functionally selective at the dopamine D2L receptor in vitro suggest that these properties might predict atypical behavioral actions. Moreover, the antipsychotic drug aripiprazole is commonly thought to be a D2 partial agonist, but data clearly show that aripiprazole is functionally selective in vitro. It is proposed that the effects of aripiprazole in animal models and humans can be reconciled only with its functionally selective D2 properties, not its partial D2 agonism. Together, these data provide support for the hypothesis that compounds with functionally selective properties in vitro are likely to have novel actions in vivo, opening doors to new avenues of drug discovery.
Collapse
Affiliation(s)
- Richard B Mailman
- Neurosciences Hospital, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7160, USA.
| |
Collapse
|
48
|
|
49
|
Urban JD, Vargas GA, von Zastrow M, Mailman RB. Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 2007; 32:67-77. [PMID: 16554739 DOI: 10.1038/sj.npp.1301071] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aripiprazole is a unique atypical antipsychotic drug with an excellent side-effect profile presumed, in part, to be due to lack of typical D(2) dopamine receptor antagonist properties. Whether aripiprazole is a typical D(2) partial agonist, or a functionally selective D(2) ligand, remains controversial (eg D(2)-mediated inhibition of adenylate cyclase is system dependent; aripiprazole antagonizes D(2) receptor-mediated G-protein-coupled inwardly rectifying potassium channels and guanosine triphosphate nucleotide (GTP)gammaS coupling). The current study examined the D(2L) receptor binding properties of aripiprazole, as well as the effects of the drug on three downstream D(2) receptor-mediated functional effectors: mitogen-activated protein kinase (MAPK) phosphorylation, potentiation of arachidonic acid (AA) release, and D(2) receptor internalization. Unlike quinpirole (a full D(2) agonist) or (-)3PPP (S(-)-3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride, a D(2) partial agonist), the apparent D(2) affinity of aripiprazole was not decreased significantly by GTP. Moreover, full or partial agonists are expected to have Hill slopes <1.0, yet that of aripiprazole was significantly >1.0. Whereas aripiprazole partially activated both the MAPK and AA pathways, its potency vs MAPK phosphorylation was much lower relative to potencies in assays either of AA release or inhibition of cyclic adenosine 3',5'-cyclic monophosphate accumulation. In addition, unlike typical agonists, neither aripiprazole nor (-)3PPP produced significant internalization of the D(2L) receptor. These data are clear evidence that aripiprazole affects D(2L)-mediated signaling pathways in a differential manner. The results are consistent with the hypothesis that aripiprazole is a functionally selective D(2) ligand rather than a simple partial agonist. Such data may be useful in understanding the novel clinical actions of this drug.
Collapse
Affiliation(s)
- Jonathan D Urban
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599-7160, USA
| | | | | | | |
Collapse
|
50
|
McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE. 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 2006; 49:5794-803. [PMID: 16970404 DOI: 10.1021/jm060656o] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of conformationally restricted analogues of the hallucinogenic phenethylamine 1 (2,5-dimethoxy-4-bromophenethylamine, 2C-B) was synthesized to test several hypotheses concerning the bioactive conformation of phenethylamine ligands upon binding to the 5-HT(2A) receptor. These benzocycloalkane analogues were assayed for their receptor binding affinity and ability to activate downstream signaling pathways, and one exceptional compound was selected for testing in an in vivo drug discrimination model of hallucinogenesis. All compounds were examined in silico by virtual docking into a homology model of the 5-HT(2A) receptor. On the basis of these docking experiments, it was predicted that the R enantiomer of benzocyclobutene analogue 2 would be the most potent. Subsequent chemical resolution and X-ray crystallography confirmed this prediction, as (R)-2 proved to be equipotent to LSD in rats trained to discriminate LSD from saline. Thus, we propose that the conformation of 2 mimics the active binding conformation of the more flexible phenethylamine type hallucinogens. In addition, (R)-2 is one of the most potent and selective compounds yet discovered in the in vivo drug discrimination assay. Further, 2 was found to be a functionally selective agonist at the 5-HT(2A) receptor, having 65-fold greater potency in stimulating phosphoinositide turnover than in producing arachidonic acid release. If hallucinogenic effects are correlated with arachidonic acid production, such functionally selective 5-HT(2A) receptor agonists may lack the intoxicating properties of hallucinogens such as LSD.
Collapse
Affiliation(s)
- Thomas H McLean
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, Indiana 47907-1333, USA
| | | | | | | | | | | |
Collapse
|