1
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Kee TR, Khan SA, Neidhart MB, Masters BM, Zhao VK, Kim YK, McGill Percy KC, Woo JAA. The multifaceted functions of β-arrestins and their therapeutic potential in neurodegenerative diseases. Exp Mol Med 2024; 56:129-141. [PMID: 38212557 PMCID: PMC10834518 DOI: 10.1038/s12276-023-01144-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 01/13/2024] Open
Abstract
Arrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors. Increasing evidence suggests that β-arrestins are involved in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). β-arrestins physically interact with γ-secretase, leading to increased production and accumulation of amyloid-beta in AD. Furthermore, β-arrestin oligomers inhibit the autophagy cargo receptor p62/SQSTM1, resulting in tau accumulation and aggregation in FTD. In PD, β-arrestins are upregulated in postmortem brain tissue and an MPTP model, and the β2AR regulates SNCA gene expression. In this review, we aim to provide an overview of β-arrestin1 and β-arrestin2, and describe their physiological functions and roles in neurodegenerative diseases. The multifaceted roles of β-arrestins and their involvement in neurodegenerative diseases suggest that they may serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, 33613, USA
| | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Maya B Neidhart
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna M Masters
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Victoria K Zhao
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | - Yenna K Kim
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jung-A A Woo
- Department of Pathology, CWRU School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Mandeville JB, Weigand-Whittier J, Wey HY, Chen YCI. Amphetamine pretreatment blunts dopamine-induced D2/D3-receptor occupancy by an arrestin-mediated mechanism: A PET study in internalization compromised mice. Neuroimage 2023; 283:120416. [PMID: 37866759 PMCID: PMC10841768 DOI: 10.1016/j.neuroimage.2023.120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised β-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.
Collapse
Affiliation(s)
- Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yin-Ching I Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Study on the Mechanism of Liuwei Dihuang Pills in Treating Parkinson's Disease Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4490081. [PMID: 34746302 PMCID: PMC8568527 DOI: 10.1155/2021/4490081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Background Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. Liuwei Dihuang (LWDH) pills have a good effect on PD, but its mechanism remains unclear. Network pharmacology is the result of integrating basic theories and research methods of medicine, biology, computer science, bioinformatics, and other disciplines, which can systematically and comprehensively reflect the mechanism of drug intervention in disease networks. Methods The main components and targets of herbs in LWDH pills were obtained through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Its active components were screened based on absorption, distribution, metabolism, and excretion (ADME); the PD-related targets were obtained from the Genecards, OMIM, TTD, and DRUGBANK databases. We used R to take the intersection of LWDH- and PD-related targets and Cytoscape software to construct the drug-component-target network. Moreover, STRING and Cytoscape software was used to analyze protein-protein interactions (PPI), construct a PPI network, and explore potential protein functional modules in the network. The Metascape platform was used to perform KEGG pathway and GO function enrichment analyses. Finally, molecular docking was performed to verify whether the compound and target have good binding activity. Results After screening and deduplication, 210 effective active ingredients, 204 drug targets, 4333 disease targets, and 162 drug-disease targets were obtained. We consequently constructed a drug-component-targets network and a PPI-drug-disease-targets network. The results showed that the hub components of LWDH pills were quercetin, stigmasterol, kaempferol, and beta-sitosterol; the hub targets were AKT1, VEGFA, and IL6. GO and KEGG enrichment analyses showed that these targets are involved in neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic processes, membrane rafts, MAPK signaling pathways, cellular senescence, and other biological processes. Molecular docking showed that the hub components were in good agreement with the hub targets. Conclusion LWDH pills have implications for the treatment of PD since they contain several active components, target multiple ligands, and activate various pathways. The hub components possibly include quercetin, stigmasterol, kaempferol, and beta-sitosterol and act through pairing with hub targets, such as AKT1, VEGFA, and IL6, to regulate neuronal death, G protein-coupled amine receptor activity, reactive oxygen species metabolic process, membrane raft, MAPK signaling pathway, and cellular senescence for the treatment of PD.
Collapse
|
5
|
Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, Ye L, Ren G, Xiang T. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Am J Cancer Res 2021; 11:5214-5231. [PMID: 33859743 PMCID: PMC8039962 DOI: 10.7150/thno.58322] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Breast cancer (BrCa) is the most common cancer worldwide, and the 5-year relative survival rate has declined in patients diagnosed at stage IV. Advanced BrCa is considered as incurable, which still lack effective treatment strategies. Identifying and characterizing new tumor suppression genes is important to establish effective prognostic biomarkers or therapeutic targets for late-stage BrCa. Methods: RNA-seq was applied in BrCa tissues and normal breast tissues. Through analyzing differentially expressed genes, DRD2 was selected for further analysis. And expression and promoter methylation status of DRD2 were also determined. DRD2 functions were analyzed by various cell biology assays in vitro. Subcutaneous tumor model was used to explore DRD2 effects in vivo. A co-cultivated system was constructed to investigate interactions of DRD2 and macrophages in vitro. WB, IHC, IF, TUNEL, qRT-PCR, Co-IP, Antibody Array, and Mass Spectrum analysis were further applied to determine the detailed mechanism. Results: In BrCa, DRD2 was found to be downregulated due to promoter methylation. Higher expression of DRD2 positively correlated with longer survival times especially in HER2-positive patients. DRD2 also promoted BrCa cells sensitivity to Paclitaxel. Ectopic expression of DRD2 significantly inhibited BrCa tumorigenesis. DRD2 also induced apoptosis as well as necroptosis in vitro and in vivo. DRD2 restricted NF-κB signaling pathway activation through interacting with β-arrestin2, DDX5 and eEF1A2. Interestingly, DRD2 also regulated microenvironment as it facilitated M1 polarization of macrophages, and triggered GSDME-executed pyroptosis. Conclusion: Collectively, this study novelly manifests the role of DRD2 in suppressing BrCa tumorigenesis, predicting prognosis and treatment response. And this study further reveals the critical role of DRD2 in educating M1 macrophages, restricting NF-κB signaling pathway and triggering different processes of programmed cell death in BrCa. Taking together, those findings represent a predictive and therapeutic target for BrCa.
Collapse
|
6
|
Holmes SE, Gallezot JD, Davis MT, DellaGioia N, Matuskey D, Nabulsi N, Krystal JH, Javitch JA, DeLorenzo C, Carson RE, Esterlis I. Measuring the effects of ketamine on mGluR5 using [ 18F]FPEB and PET. J Cereb Blood Flow Metab 2020; 40:2254-2264. [PMID: 31744389 PMCID: PMC7585925 DOI: 10.1177/0271678x19886316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/21/2023]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a promising treatment target for psychiatric disorders due to its modulatory effects on glutamate transmission. Using [11C]ABP688, we previously showed that the rapidly acting antidepressant ketamine decreases mGluR5 availability. The mGluR5 radioligand [18F]FPEB offers key advantages over [11C]ABP688; however, its suitability for drug challenge studies is unknown. We evaluated whether [18F]FPEB can be used to capture ketamine-induced effects on mGluR5. Seven healthy subjects participated in three [18F]FPEB scans: a baseline, a same-day post-ketamine, and a 24-h post-ketamine scan. The outcome measure was VT/fP, obtained using a two-tissue compartment model and a metabolite-corrected arterial input function. Dissociative symptoms, heart rate and blood pressure increased following ketamine infusion. [18F]FPEB VT/fP decreased by 9% across the cortex after ketamine infusion, with minimal difference between baseline and 24-h scans. Compared to our previous work using [11C]ABP688, the magnitude of the ketamine-induced change in mGluR5 was smaller using [18F]FPEB; however, effect sizes were similar for the same-day post-ketamine vs. baseline scan (Cohen's d = 0.75 for [18F]FPEB and 0.88 for [11C]ABP688). [18F]FPEB is therefore able to capture some of the effects of ketamine on mGluR5, but [11C]ABP688 appears to be more suitable in drug challenge paradigms designed to probe glutamate transmission.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, New York, NY, USA
| | - Richard E Carson
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
7
|
Blagotinšek Cokan K, Mavri M, Rutland CS, Glišić S, Senćanski M, Vrecl M, Kubale V. Critical Impact of Different Conserved Endoplasmic Retention Motifs and Dopamine Receptor Interacting Proteins (DRIPs) on Intracellular Localization and Trafficking of the D 2 Dopamine Receptor (D 2-R) Isoforms. Biomolecules 2020; 10:biom10101355. [PMID: 32977535 PMCID: PMC7598153 DOI: 10.3390/biom10101355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The type 2 dopamine receptor D2 (D2-R), member of the G protein-coupled receptor (GPCR) superfamily, exists in two isoforms, short (D2S-R) and long (D2L-R). They differ by an additional 29 amino acids (AA) in the third cytoplasmic loop (ICL3) of the D2L-R. These isoforms differ in their intracellular localization and trafficking functionality, as D2L-R possesses a larger intracellular pool, mostly in the endoplasmic reticulum (ER). This review focuses on the evolutionarily conserved motifs in the ICL3 of the D2-R and proteins interacting with the ICL3 of both isoforms, specifically with the 29 AA insert. These motifs might be involved in D2-R exit from the ER and have an impact on cell-surface and intracellular localization and, therefore, also play a role in the function of dopamine receptor signaling, ligand binding and possible homo/heterodimerization. Our recent bioinformatic data on potential new interaction partners for the ICL3 of D2-Rs are also presented. Both are highly relevant, and have clinical impacts on the pathophysiology of several diseases such as Parkinson’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, manic depression, and others, as they are connected to a variety of essential motifs and differences in communication with interaction partners.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, Sutton, Bonington Campus, Loughborough LE12 5RD, UK;
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
- Correspondence:
| |
Collapse
|
8
|
Xu W, Reith MEA, Liu-Chen LY, Kortagere S. Biased signaling agonist of dopamine D3 receptor induces receptor internalization independent of β-arrestin recruitment. Pharmacol Res 2019; 143:48-57. [PMID: 30844536 DOI: 10.1016/j.phrs.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a significant step in receptor kinetics and is known to be involved in receptor down-regulation. However, the dopamine D3 receptor (D3R) has been an exception wherein agonist induces D3Rs to undergo desensitization followed by pharmacological sequestration - which is defined as the sequestration of cell surface receptors into a more hydrophobic fraction within the plasma membrane without undergoing the process of receptor internalization. Pharmacological sequestration renders the receptor in an inactive state on the membrane. In our previous study we demonstrated that a novel class of D3R agonists exemplified by SK608 have biased signaling properties via the G-protein dependent pathway and do not induce D3R desensitization. In this study, using radioligand binding assay, immunoblot or immunocytochemistry methods, we observed that SK608 induced internalization of human D3R stably expressed in CHO, HEK and SH-SY5Y cells which are derived from neuroblastoma cells, suggesting that it is not a cell-type specific event. Further, we have evaluated the potential mechanism of D3R internalization induced by these biased signaling agonists. SK608-induced D3R internalization was time- and concentration-dependent. In comparison, dopamine induced D3R upregulation and pharmacological sequestration in the same assays. GRK2 and clathrin/dynamin I/II are the key molecular players in the SK608-induced D3R internalization process, while β-arrestin 1/2 and GRK-interacting protein 1(GIT1) are not involved. These results suggest that SK608-promoted D3R internalization is similar to the type II internalization observed among peptide binding GPCRs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States
| | - Maarten E A Reith
- Department of Psychiatry, Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States; Department of Pharmacology and Physiology, Drexel University College of Medicine, PA 19102, United States.
| |
Collapse
|
9
|
Yang HS, Sun N, Zhao X, Kim HR, Park HJ, Kim KM, Chung KY. Role of Helix 8 in Dopamine Receptor Signaling. Biomol Ther (Seoul) 2019; 27:514-521. [PMID: 30971061 PMCID: PMC6824627 DOI: 10.4062/biomolther.2019.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished β-arrestin-mediated desensitization, resulting in increased Gs signaling.
Collapse
Affiliation(s)
- Han-Sol Yang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaodi Zhao
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Neuropharmacology 2017; 121:20-29. [PMID: 28419873 PMCID: PMC5859313 DOI: 10.1016/j.neuropharm.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 02/09/2023]
Abstract
Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects.
Collapse
Affiliation(s)
- Lilia Zurkovsky
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Katayoun Sedaghat
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Research Center and Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - M Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Lee SA, Suh Y, Lee S, Jeong J, Kim SJ, Kim SJ, Park SK. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking. FASEB J 2017; 31:2301-2313. [PMID: 28223337 DOI: 10.1096/fj.201600755rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The dopaminergic system plays an essential role in various functions of the brain, including locomotion, memory, and reward, and the deregulation of dopaminergic signaling as a result of altered functionality of dopamine D2 receptor (DRD2) is implicated in multiple neurologic and psychiatric disorders. Tetraspanin-7 (TSPAN7) is expressed to variable degrees in different tissues, with the highest level in the brain, and multiple mutations in TSPAN7 have been implicated in intellectual disability. Here, we tested the hypothesis that TSPAN7 may be a binding partner of DRD2 that is involved in the regulation of its functional activity. Our results showed that TSPAN7 was associated with DRD2 and reduced its surface expression by enhancing DRD2 internalization. Immunocytochemical analysis revealed that TSPAN7 that resides in the plasma membrane and early and late endosomes promoted internalization of DRD2 and its localization to endosomal compartments of the endocytic pathway. Furthermore, we observed that TSPAN7 deficiency increased surface localization of DRD2 concurrent with the decrease of its endocytosis, regardless of dopamine treatment. Finally, TSPAN7 negatively affects DRD2-mediated signaling. These results disclosed a previously uncharacterized role of TSPAN7 in the regulation of the expression and functional activity of DRD2 by postendocytic trafficking.-Lee, S.-A., Suh, Y., Lee, S., Jeong, J., Kim, S. J., Kim, S. J., Park, S. K. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking.
Collapse
Affiliation(s)
- Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jaehoon Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - So Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
12
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
13
|
Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and D₂ receptors. J Neurochem 2016; 136:1037-51. [PMID: 26685100 DOI: 10.1111/jnc.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023]
Abstract
Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.
Collapse
Affiliation(s)
- Nathalie Schmieg
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Cristina Rocchi
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Mark J Millan
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| |
Collapse
|
14
|
de Witte WEA, Wong YC, Nederpelt I, Heitman LH, Danhof M, van der Graaf PH, Gilissen RAHJ, de Lange ECM. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients. Expert Opin Drug Discov 2015; 11:45-63. [PMID: 26484747 DOI: 10.1517/17460441.2016.1100163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. AREAS COVERED In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. EXPERT OPINION More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.
Collapse
Affiliation(s)
- Wilhelmus E A de Witte
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Yin Cheong Wong
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Indira Nederpelt
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Laura H Heitman
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Meindert Danhof
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Piet H van der Graaf
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Ron A H J Gilissen
- c A Division of Janssen Pharmaceutica N.V., Janssen Research and Development , Turnhoutseweg 30, Beerse 2340 , Belgium
| | - Elizabeth C M de Lange
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| |
Collapse
|
15
|
DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, Yang J, Wen R, Mann JJ, Krystal JH, Parsey RV, Carson RE, Esterlis I. In vivo ketamine-induced changes in [¹¹C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol Psychiatry 2015; 77:266-275. [PMID: 25156701 PMCID: PMC4277907 DOI: 10.1016/j.biopsych.2014.06.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND At subanesthetic doses, ketamine, an N-methyl-D-aspartate glutamate receptor antagonist, increases glutamate release. We imaged the acute effect of ketamine on brain metabotropic glutamatergic receptor subtype 5 with a high-affinity positron emission tomography (PET) ligand [(11)C]ABP688 (E)-3-[2-(6-methyl-2-pyridinyl)ethynyl]-2-cyclohexen-1-one-O-(methyl-11C)oxime, a negative allosteric modulator of the metabotropic glutamatergic receptor subtype 5. METHODS Two [(11)C]ABP688 PET scans were performed in 10 healthy nonsmoking human volunteers (34 ± 13 years old); the two PET scans were performed on the same day-before (scan 1) and during intravenous ketamine administration (.23 mg/kg over 1 min, then .58 mg/kg over 1 hour; scan 2). The PET data were acquired for 90 min immediately after [(11)C]ABP688 bolus injection. Input functions were obtained through arterial blood sampling with metabolite analysis. RESULTS A significant reduction in [(11)C]ABP688 volume of distribution was observed in scan 2 relative to scan 1 of 21.3% ± 21.4%, on average, in the anterior cingulate, medial prefrontal cortex, orbital prefrontal cortex, ventral striatum, parietal lobe, dorsal putamen, dorsal caudate, amygdala, and hippocampus. There was a significant increase in measurements of dissociative state after ketamine initiation (p < .05), which resolved after completion of the scan. CONCLUSIONS This study provides first evidence that ketamine administration decreases [(11)C]ABP688 binding in vivo in human subjects. The results suggest that [(11)C]ABP688 binding is sensitive to ketamine-induced effects, although the high individual variation in ketamine response requires further examination.
Collapse
Affiliation(s)
- Christine DeLorenzo
- Departments of Psychiatry, Stony Brook University, Stony Brook, New York, New York; Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, New York.
| | | | - Michael Bloch
- Department of Psychiatry, Diagnostic, Yale University,Department of Child Study Center, Yale University
| | | | | | - Chadi Abdallah
- Department of Psychiatry, Diagnostic, Yale University,Clinical Neuroscience Division, VA National Center for PTSD
| | - Jie Yang
- Department of Preventive Medicine, Stony Brook University
| | - Ruofeng Wen
- Department of Applied Mathematics and Statistics, Stony Brook University
| | | | - John H. Krystal
- Department of Psychiatry, Diagnostic, Yale University,Clinical Neuroscience Division, VA National Center for PTSD
| | - Ramin V. Parsey
- Department of Psychiatry, Stony Brook University,Department of Radiology, Stony Brook University
| | - Richard E. Carson
- Department of Radiology, Biomedical, Yale University,Department of Engineering, Yale University
| | - Irina Esterlis
- Department of Psychiatry, Diagnostic, Yale University,Department of Child Study Center, Yale University
| |
Collapse
|
16
|
Daly KM, Li Y, Lin DT. Imaging the Insertion of Superecliptic pHluorin-Labeled Dopamine D2 Receptor Using Total Internal Reflection Fluorescence Microscopy. ACTA ACUST UNITED AC 2015; 70:5.31.1-5.31.20. [PMID: 25559003 DOI: 10.1002/0471142301.ns0531s70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of mechanisms governing receptor insertion to the plasma membrane (PM) requires an experimental approach with excellent spatial and temporal resolutions. Here we present a strategy that enables dynamic visualization of insertion events for dopamine D2 receptors into the PM. This approach includes tagging a pH-sensitive GFP, superecliptic pHluorin, to the extracellular domain of the receptor. By imaging pHluorin-tagged receptors under total internal reflection fluorescence microscopy (TIRFM), we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This novel imaging approach can be applied to both secreted proteins and many membrane proteins with an extracellular domain labeled with superecliptic pHluorin, and will ultimately allow for detailed dissections of the key mechanisms governing secretion of soluble proteins or the insertion of different membrane proteins to the PM.
Collapse
Affiliation(s)
- Kathryn M Daly
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland.,The Jackson Laboratory, Bar Harbor, Maine
| |
Collapse
|
17
|
Clayton CC, Donthamsetti P, Lambert NA, Javitch JA, Neve KA. Mutation of three residues in the third intracellular loop of the dopamine D2 receptor creates an internalization-defective receptor. J Biol Chem 2014; 289:33663-75. [PMID: 25336643 DOI: 10.1074/jbc.m114.605378] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arrestins mediate desensitization and internalization of G protein-coupled receptors and also direct receptor signaling toward heterotrimeric G protein-independent signaling pathways. We previously identified a four-residue segment (residues 212-215) of the dopamine D2 receptor that is necessary for arrestin binding in an in vitro heterologous expression system but that also impairs receptor expression. We now describe the characterization of additional mutations at that arrestin binding site in the third intracellular loop. Mutating two (residues 214 and 215) or three (residues 213-215) of the four residues to alanine partially decreased agonist-induced recruitment of arrestin3 without altering activation of a G protein. Arrestin-dependent receptor internalization, which requires arrestin binding to β2-adaptin (the β2 subunit of the clathrin-associated adaptor protein AP2) and clathrin, was disproportionately affected by the three-residue mutation, with no agonist-induced internalization observed even in the presence of overexpressed arrestin or G protein-coupled receptor kinase 2. The disjunction between arrestin recruitment and internalization could not be explained by alterations in the time course of the receptor-arrestin interaction, the recruitment of G protein-coupled receptor kinase 2, or the receptor-induced interaction between arrestin and β2-adaptin, suggesting that the mutation impairs a property of the internalization complex that has not yet been identified.
Collapse
Affiliation(s)
- Cecilea C Clayton
- the Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Prashant Donthamsetti
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Nevin A Lambert
- the Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Jonathan A Javitch
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Kim A Neve
- the Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, From the Research Service, Department of Veterans Affairs Medical Center, Portland, Oregon 97239,
| |
Collapse
|
18
|
The influence of different cellular environments on PET radioligand binding: an application to D2/3-dopamine receptor imaging. Neuropharmacology 2014; 85:305-13. [PMID: 24910074 PMCID: PMC4109028 DOI: 10.1016/j.neuropharm.2014.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/01/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
Abstract
Various D2/3 receptor PET radioligands are sensitive to endogenous dopamine release in vivo. The Occupancy Model is generally used to interpret changes in binding observed in in vivo competition binding studies; an Internalisation Hypothesis may also contribute to these changes in signal. Extension of in vivo competition imaging to other receptor systems has been relatively unsuccessful. A greater understanding of the cellular processes underlying signal changes following endogenous neurotransmitter release may help translate this imaging paradigm to other receptor systems. To investigate the Internalisation Hypothesis we assessed the effects of different cellular environments, representative of those experienced by a receptor following agonist-induced internalisation, on the binding of three D2/3 PET ligands with previously reported sensitivities to endogenous dopamine in vivo, namely [3H]spiperone, [3H]raclopride and [3H]PhNO. Furthermore, we determined the contribution of each cellular compartment to total striatal binding for these D2/3 ligands. These studies suggest that sensitivity to endogenous dopamine release in vivo is related to a decrease in affinity in the endosomal environment compared with those found at the cell surface. In agreement with these findings we also demonstrate that ∼25% of total striatal binding for [3H]spiperone originates from sub-cellular, microsomal receptors, whereas for [3H]raclopride and [3H]PhNO, this fraction is lower, representing ∼14% and 17%, respectively. This pharmacological approach is fully translatable to other receptor systems. Assessment of affinity shifts in different cellular compartments may play a crucial role for understanding if a radioligand is sensitive to endogenous release in vivo, for not just the D2/3, but other receptor systems. The internalisation hypothesis was investigated in relation to D2/3 receptor PET ligand binding. KD and Bmax were determined for [3H]Raclopride, PhNO and Spiperone in different cellular buffers. The cellular distribution of [3H]Raclopride, PhNO and Spiperone binding was also determined. Reductions in KD were observed in the endosomal condition in the following order PhNO > Raclopride > Spiperone. KD shifts in different cellular compartments may predict sensitivity to neurotransmitter release in vivo.
Collapse
|
19
|
Galvan A, Hu X, Rommelfanger KS, Pare JF, Khan ZU, Smith Y, Wichmann T. Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys. J Neurophysiol 2014; 112:467-79. [PMID: 24760789 DOI: 10.1152/jn.00849.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D2-like receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. Labeling of D1 and D2 receptors was primarily found presynaptically, on preterminal axons and putative glutamatergic and GABAergic terminals, while D5 receptors were more significantly expressed postsynaptically, on dendritic shafts of STN neurons. The electrical spiking activity of STN neurons, recorded with standard extracellular recording methods, was studied before, during, and after intra-STN administration of the dopamine D1-like receptor agonist SKF82958, the D2-like receptor agonist quinpirole, or artificial cerebrospinal fluid (control injections). In normal animals, administration of SKF82958 significantly reduced the spontaneous firing but increased the rate of intraburst firing and the proportion of pause-burst sequences of firing. Quinpirole only increased the proportion of such pause-burst sequences in STN neurons of normal monkeys. In MPTP-treated monkeys, the D1-like receptor agonist also reduced the firing rate and increased the proportion of pause-burst sequences, while the D2-like receptor agonist did not change any of the chosen descriptors of the firing pattern of STN neurons. Our data suggest that dopamine receptor activation can directly modulate the electrical activity of STN neurons by pre- and postsynaptic mechanisms in both normal and parkinsonian states, predominantly via activation of D1 receptors.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia;
| | - Xing Hu
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Karen S Rommelfanger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Zafar U Khan
- Laboratory of Neurobiology at CIMES, Faculty of Medicine, University of Malaga, Malaga, Spain; Department of Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain; and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Pandey P, Mersha MD, Dhillon HS. A synergistic approach towards understanding the functional significance of dopamine receptor interactions. J Mol Signal 2013; 8:13. [PMID: 24308343 PMCID: PMC3878971 DOI: 10.1186/1750-2187-8-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
The importance of the neurotransmitter dopamine (DA) in the nervous system is underscored by its role in a wide variety of physiological and neural functions in both vertebrates and invertebrates. Binding of dopamine to its membrane receptors initiates precise signaling cascades that result in specific cellular responses. Dopamine receptors belong to a super-family of G-protein coupled receptors (GPCRs) that are characterized by seven trans-membrane domains. In mammals, five dopamine receptors have been identified which are grouped into two different categories D1- and D2-like receptors. The interactions of DA receptors with other proteins including specific Gα subunits are critical in deciding the fate of downstream molecular events carried out by effector proteins. In this mini-review we provide a synopsis of known protein-protein interactions of DA receptors and a perspective on the potential synergistic utility of Caenorhabditis elegans as a model eukaryote with a comparatively simpler nervous system to gain insight on the neuronal and behavioral consequences of the receptor interactions.
Collapse
Affiliation(s)
| | | | - Harbinder S Dhillon
- Department of Biological Sciences, Center for Neuroscience Research, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
21
|
Osorio-Espinoza A, Escamilla-Sánchez J, Aquino-Jarquin G, Arias-Montaño JA. Homologous desensitization of human histamine H₃ receptors expressed in CHO-K1 cells. Neuropharmacology 2013; 77:387-97. [PMID: 24161268 DOI: 10.1016/j.neuropharm.2013.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022]
Abstract
Histamine H₃ receptors (H₃Rs) modulate the function of the nervous system at the pre- and post-synaptic levels. In this work we aimed to determine whether, as other G protein-coupled receptors (GPCRs), H₃Rs desensitize in response to agonist exposure. By using CHO-K1 cells stably transfected with the human H₃R (hH3R) we show that functional responses (inhibition of forskolin-induced cAMP accumulation in intact cells and stimulation of [(35)S]-GTPγS binding to cell membranes) were markedly reduced after agonist exposure. For cAMP accumulation assays the effect was significant at 60 min with a maximum at 90 min. Agonist exposure resulted in decreased binding sites for the radioligand [(3)H]-N-methyl-histamine ([(3)H]-NMHA) to intact cells and modified the sub-cellular distribution of H₃Rs, as detected by sucrose density gradients and [(3)H]-NMHA binding to cell membranes, suggesting receptor internalization. The reduction in the inhibition of forskolin-stimulated cAMP formation observed after agonist pre-incubation was prevented by incubation in hypertonic medium or in ice-cold medium. Agonist-induced loss in binding sites was also prevented by hypertonic medium or incubation at 4 °C, but not by filipin III, indicating clathrin-dependent endocytosis. Immunodetection showed that CHO-K1 cells express GPCR kinases (GRKs) 2/3, and both the GRK general inhibitor ZnCl₂ and a small interfering RNA against GRK-2 reduced receptor desensitization. Taken together these results indicate that hH₃Rs experience homologous desensitization upon prolonged exposure to agonists, and that this process involves the action of GRK-2 and internalization via clathrin-coated vesicles.
Collapse
Affiliation(s)
- Angélica Osorio-Espinoza
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico
| | - Guillermo Aquino-Jarquin
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Col. Doctores, 06720 México, D.F., Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico.
| |
Collapse
|
22
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in amygdala as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 252:422-31. [PMID: 23777796 DOI: 10.1016/j.bbr.2013.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
To identify genes involved in anxiety/fear traits, we analyzed the gene expression profile in the amygdala of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock has revealed to be a unique genetic resource for the fine mapping of Quantitative Trait Loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety-(or other)-related traits. We selected high- and low-anxious NIH-HS rats differing in their number of avoidances in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety tests (e.g., elevated zero-maze). Three weeks after behavioural testing, the amygdala was dissected and prepared for the microarray study. There appeared 6 significantly down-regulated and 28 up-regulated genes (fold-change >|2|, FDR<0.05) between the low- and high-anxious groups, with central nervous system-related functions. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, six relevant genes were examined with qRT-PCR, four of which (Ucn3, Tacr3, H2-M9 and Arr3) were validated. Remarkably, some of them are characterized by sharing known functions related with hormonal HPA-axis responses to (and/or modulation of) stress, anxiety or fear, and putative involvement in related neurobehavioural functions. The results confirm the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis of anxiety and fear, while suggesting the involvement of some neuropeptide/neuroendocrine pathways on the development of differential anxiety profiles.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
β-Arrestins in the Central Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:267-95. [DOI: 10.1016/b978-0-12-394440-5.00011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 2012; 7:e48912. [PMID: 23139825 PMCID: PMC3490921 DOI: 10.1371/journal.pone.0048912] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Collapse
Affiliation(s)
| | | | | | | | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kabbani N, Woll MP, Nordman JC, Levenson R. Dopamine receptor interacting proteins: targeting neuronal calcium sensor-1/D2 dopamine receptor interaction for antipsychotic drug development. Curr Drug Targets 2012; 13:72-9. [PMID: 21777187 DOI: 10.2174/138945012798868515] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/06/2010] [Accepted: 09/16/2010] [Indexed: 01/24/2023]
Abstract
D2 dopamine receptors (D2Rs) represent an important class of receptors in the pharmacological development of novel therapeutic drugs for the treatment of schizophrenia. Recent research into D2R signaling suggests that receptor properties are dependent on interaction with a cohort of dopamine receptor interacting proteins (DRIPs) within a macromolecular structure termed the signalplex. One component of this signalplex is neuronal calcium sensor 1 (NCS-1) a protein found to regulate the phosphorylation, trafficking, and signaling profile of the D2R in neurons. It has also been found that NCS-1 can contribute to the pathology of schizophrenia and may play a role in the efficacy of antipsychotic drug medication in the brain. In this review we discuss how the selective targeting of a DRIP, such as NCS-1, can be utilized as a novel strategy of drug design for the creation of new therapeutics for a disease such as schizophrenia. Using a fluorescence polarization assay we explore how the ability to detect changes in D2R/NCS-1 interaction can be exploited as an effective screening tool in the isolation and development of lead compounds for antipsychotic drug development. This line of work explores a novel direction in targeting D2Rs via their signalplex components and supports the notion that receptor interacting proteins represent an emerging new class of molecular targets for pharmacological drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA. nkabbani@gmu
| | | | | | | |
Collapse
|
26
|
Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012; 287:29495-29505. [PMID: 22787152 PMCID: PMC3436164 DOI: 10.1074/jbc.m112.366674] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Indexed: 01/14/2023] Open
Abstract
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
27
|
Identification of two functionally distinct endosomal recycling pathways for dopamine D₂ receptor. J Neurosci 2012; 32:7178-90. [PMID: 22623662 DOI: 10.1523/jneurosci.0008-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dopamine D₂ receptor (DRD2) is important for normal function of the brain reward circuit. Lower DRD2 function in the brain increases the risk for substance abuse, obesity, attention deficit/hyperactivity disorder, and depression. Moreover, DRD2 is the target of most antipsychotics currently in use. It is well known that dopamine-induced DRD2 endocytosis is important for its desensitization. However, it remains controversial whether DRD2 is recycled back to the plasma membrane or targeted for degradation following dopamine stimulation. Here, we used total internal reflection fluorescent microscopy (TIRFM) to image DRD2 with a superecliptic pHluorin tagged to its N terminus. With these technical advances, we were able to directly visualize vesicular insertion events of DRD2 in cultured mouse striatal medium spiny neurons. We showed that insertion of DRD2 occurs on neuronal somatic and dendritic surfaces. Lateral diffusion of DRD2 was observed following its insertion. Most importantly, using our new approach, we uncovered two functionally distinct recycling pathways for DRD2: a constitutive recycling pathway and a dopamine activity-dependent recycling pathway. We further demonstrated that Rab4 plays an important role in constitutive DRD2 recycling, while Rab11 is required for dopamine activity-dependent DRD2 recycling. Finally, we demonstrated that the two DRD2 recycling pathways play distinct roles in determining DRD2 function: the Rab4-sensitive constitutive DRD2 recycling pathway determines steady-state surface expression levels of DRD2, whereas the Rab11-sensitive dopamine activity-dependent DRD2 recycling pathway is important for functional resensitization of DRD2. Our findings underscore the significance of endosomal recycling in regulation of DRD2 function.
Collapse
|
28
|
Pogorelov V, Nomura J, Kim J, Kannan G, Yang C, Taniguchi Y, Abazyan B, Valentine H, Krasnova IN, Kamiya A, Cadet JL, Wong DF, Pletnikov MV. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology 2012; 62:1242-51. [PMID: 21315744 PMCID: PMC3115479 DOI: 10.1016/j.neuropharm.2011.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
Genetic factors involved in neuroplasticity have been implicated in major psychiatric illnesses such as schizophrenia, depression, and substance abuse. Given its extended interactome, variants in the Disrupted-In-Schizophrenia-1 (DISC1) gene could contribute to drug addiction and psychiatric diseases. Thus, we evaluated how dominant-negative mutant DISC1 influenced the neurobehavioral and molecular effects of methamphetamine (METH). Control and mutant DISC1 mice were studied before or after treatment with non-toxic escalating dose (ED) of METH. In naïve mice, we assessed METH-induced conditioned place preference (CPP), dopamine (DA) D2 receptor density and the basal and METH-induced activity of DISC1 partners, AKT and GSK-3β in the ventral striatum. In ED-treated mice, 4 weeks after METH treatment, we evaluated fear conditioning, depression-like responses in forced swim test, and the basal and METH-induced activity of AKT and GSK-3β in the ventral striatum. We found impairment in METH-induced CPP, decreased DA D2 receptor density and altered METH-induced phosphorylation of AKT and GSK-3β in naïve DISC1 female mice. The ED regimen was not neurotoxic as evidenced by unaltered brain regional monoamine tissue content. Mutant DISC1 significantly delayed METH ED-produced sensitization and affected drug-induced phosphorylation of AKT and GSK-3β in female mice. Our results suggest that perturbations in DISC1 functions in the ventral striatum may impact the molecular mechanisms of reward and sensitization, contributing to comorbidity between drug abuse and major mental diseases.
Collapse
Affiliation(s)
- Vladimir Pogorelov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jun Nomura
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jongho Kim
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Chunxia Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Yu Taniguchi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Bagrat Abazyan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Heather Valentine
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Section of High Resolution Brain PET, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Irina N. Krasnova
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, 21224 MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, 21224 MD, USA
| | - Dean F. Wong
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Division of Nuclear Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Section of High Resolution Brain PET, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Environmenal Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287
| | - Mikhail V. Pletnikov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
29
|
Pandey P, Harbinder S. The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit. J Mol Signal 2012; 7:3. [PMID: 22280843 PMCID: PMC3297496 DOI: 10.1186/1750-2187-7-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/26/2012] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic inputs are sensed on the cell surface by the seven-transmembrane dopamine receptors that belong to a superfamily of G-protein-coupled receptors (GPCRs). Dopamine receptors are classified as D1-like or D2-like receptors based on their homology and pharmacological profiles. In addition to well established G-protein coupled mechanism of dopamine receptors in mammalian system they can also interact with other signaling pathways. In C. elegans four dopamine receptors (dop-1, dop-2, dop-3 and dop-4) have been reported and they have been implicated in a wide array of behavioral and physiological processes. We performed this study to assign the signaling pathway for DOP-2, a D2-like dopamine receptor using a split-ubiquitin based yeast two-hybrid screening of a C. elegans cDNA library with a novel dop-2 variant (DOP-2XL) as bait. Our yeast two-hybrid screening resulted in identification of gpa-14, as one of the positively interacting partners. gpa-14 is a Gα coding sequence and shows expression overlap with dop-2 in C. elegans ADE deirid neurons. In-vitro pull down assays demonstrated physical coupling between dopamine receptor DOP-2XL and GPA-14. Further, we sought to determine the DOP-2 region necessary for GPA-14 coupling. We generated truncated DOP-2XL constructs and performed pair-wise yeast two-hybrid assay with GPA-14 followed by in-vitro interaction studies and here we report that the third intracellular loop is the key domain responsible for DOP-2 and GPA-14 coupling. Our results show that the extra-long C. elegans D2-like receptor is coupled to gpa-14 that has no mammalian homolog but shows close similarity to inhibitory G-proteins. Supplementing earlier investigations, our results demonstrate the importance of an invertebrate D2-like receptor's third intracellular loop in its G-protein interaction.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA.
| | | |
Collapse
|
30
|
Zhou Z, Liao JM, Zhang P, Fan JB, Chen J, Liang Y. Parkinson disease drug screening based on the interaction between D(2) dopamine receptor and beta-arrestin 2 detected by capillary zone electrophoresis. Protein Cell 2011; 2:899-905. [PMID: 22180089 PMCID: PMC4875183 DOI: 10.1007/s13238-011-1096-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/05/2011] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease in the world. Beta-arrestin-2 has been reported to be an important protein involved in D2 dopamine receptor desensitization, which is essential to Parkinson’s disease. Moreover, the potential value of pharmacological inactivation of G protein-coupled receptor kinase or arrestin in the treatment of patients with Parkinson’s disease has recently been shown. We studied the interaction between D2 dopamine receptor and beta-arrestin-2 and the pharmacological regulation of chemical compounds on such interaction using capillary zone electrophoresis. The results from screening more than 40 compounds revealed three compounds that remarkably inhibit the beta-arrestin-2/D2 dopamine receptor interaction among them. These compounds are promising therapies for Parkinson’s disease, and the method used in this study has great potential for application in large-scale drug screening and evaluation.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
31
|
Hadipour-Niktarash A, Rommelfanger KS, Masilamoni GJ, Smith Y, Wichmann T. Extrastriatal D2-like receptors modulate basal ganglia pathways in normal and Parkinsonian monkeys. J Neurophysiol 2011; 107:1500-12. [PMID: 22131382 DOI: 10.1152/jn.00348.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to traditional models of the basal ganglia-thalamocortical network of connections, dopamine exerts D2-like receptor (D2LR)-mediated effects through actions on striatal neurons that give rise to the "indirect" pathway, secondarily affecting the activity in the internal and external pallidal segments (GPi and GPe, respectively) and the substantia nigra pars reticulata (SNr). However, accumulating evidence from the rodent literature suggests that D2LR activation also directly influences synaptic transmission in these nuclei. To further examine this issue in primates, we combined in vivo electrophysiological recordings and local intracerebral microinjections of drugs with electron microscopic immunocytochemistry to study D2LR-mediated modulation of neuronal activities in GPe, GPi, and SNr of normal and MPTP-treated (parkinsonian) monkeys. D2LR activation with quinpirole increased firing in most GPe neurons, likely due to a reduction of striatopallidal GABAergic inputs. In contrast, local application of quinpirole reduced firing in GPi and SNr, possibly through D2LR-mediated effects on glutamatergic inputs. Injections of the D2LR antagonist sulpiride resulted in effects opposite to those of quinpirole in GPe and GPi. D2 receptor immunoreactivity was most prevalent in putative striatal-like GABAergic terminals and unmyelinated axons in GPe, GPi, and SNr, but a significant proportion of immunoreactive boutons also displayed ultrastructural features of glutamatergic terminals. Postsynaptic labeling was minimal in all nuclei. The D2LR-mediated effects and pattern of distribution of D2 receptor immunoreactivity were maintained in the parkinsonian state. Thus, in addition to their preferential effects on indirect pathway striatal neurons, extrastriatal D2LR activation in GPi and SNr also influences direct pathway elements in the primate basal ganglia under normal and parkinsonian conditions.
Collapse
|
32
|
Bychkov ER, Ahmed MR, Gurevich VV, Benovic JL, Gurevich EV. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder. Neurobiol Dis 2011; 44:248-258. [PMID: 21784156 PMCID: PMC3166984 DOI: 10.1016/j.nbd.2011.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022] Open
Abstract
Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting a powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed a reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. A reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder.
Collapse
Affiliation(s)
- ER Bychkov
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - MR Ahmed
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - VV Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| | - JL Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - EV Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville TN, USA
| |
Collapse
|
33
|
Björk K, Svenningsson P. Modulation of monoamine receptors by adaptor proteins and lipid rafts: role in some effects of centrally acting drugs and therapeutic agents. Annu Rev Pharmacol Toxicol 2011; 51:211-42. [PMID: 20887195 DOI: 10.1146/annurev-pharmtox-010510-100520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monoamines and their cognate receptors are widespread in the central nervous system and are vital for normal brain function. Dysfunction in these systems underlies several psychiatric and neurological disease states, and consequently monoamines are targets of a host of pharmacotherapies. This review provides an overview on how monoamine receptors are regulated by adaptor proteins and lipid rafts with emphasis on interactions in nerve cells. Monoamine receptors have prominent intracellular loops that provide binding sites for adaptor proteins. Receptor function is further modulated by cholesterol and submembranous microdomains termed lipid rafts. These interactions determine several facets of G protein-coupled receptor (GPCR) function including trafficking, localization, and signaling. Possible roles of adaptor proteins and lipid rafts in disease states and in mediating actions of drugs and therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Karl Björk
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
34
|
Bychkov E, Ahmed MR, Gurevich EV. Sex differences in the activity of signalling pathways and expression of G-protein-coupled receptor kinases in the neonatal ventral hippocampal lesion model of schizophrenia. Int J Neuropsychopharmacol 2011; 14:1-15. [PMID: 20158934 PMCID: PMC2992801 DOI: 10.1017/s1461145710000118] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animals with the neonatal ventral hippocampal lesion (NVHL) demonstrate altered responsiveness to stress and various drugs reminiscent of that in schizophrenia. Post-pubertal onset of abnormalities suggests the possibility of sex differences in NVHL effects that may model sex differences in schizophrenia. Here we demonstrate that novelty- and MK-801-induced hyperactivity is evident in both male and female NVHL rats, whereas only NVHL males were hyperactive in response to apomorphine. Next, we examined the sex- and NVHL-dependent differences in the activity of the ERK and Akt pathways. The basal activity of both pathways was higher in females than in males. NVHL reduces the level of phosphorylation of ERK1/2, Akt, and GSK-3 in both sexes, although males show more consistent down-regulation. Females had higher levels of G-protein-coupled kinases [G-protein-coupled receptor kinase (GRK)] 3 and 5, whereas the concentrations of other GRKs and arrestins were the same. In the nucleus accumbens, the concentration of GRK5 in females was elevated by NVHL to the male level. The data demonstrate profound sex differences in the expression and activity of signalling molecules that may underlie differential susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
35
|
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 2010; 67:1971-86. [PMID: 20165900 PMCID: PMC11115718 DOI: 10.1007/s00018-010-0293-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 01/20/2023]
Abstract
Dopamine is an important neurotransmitter that regulates several key functions in the brain, such as motor output, motivation and reward, learning and memory, and endocrine regulation. Dopamine does not mediate fast synaptic transmission, but rather modulates it by triggering slow-acting effects through the activation of dopamine receptors, which belong to the G-protein-coupled receptor superfamily. Besides activating different effectors through G-protein coupling, dopamine receptors also signal through interaction with a variety of proteins, collectively termed dopamine receptor-interacting proteins. We focus on the dopamine D4 receptor, which contains an important polymorphism in its third intracellular loop. This polymorphism has been the subject of numerous studies investigating links with several brain disorders, such as attention-deficit hyperactivity disorder and schizophrenia. We provide an overview of the structure, signalling properties and regulation of dopamine D4 receptors, and briefly discuss their physiological and pathophysiological role in the brain.
Collapse
Affiliation(s)
- Pieter Rondou
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Present Address: Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Medical Research Building, De Pintelaan 185, 9000 Ghent, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Abstract
Multiple genetic disorders can be associated with excessive signalling by mutant G-protein-coupled receptors (GPCRs) that are either constitutively active or have lost sites where phosphorylation by GPCR kinases is necessary for desensitisation by cognate arrestins. Phosphorylation-independent arrestin1 can compensate for defects in phosphorylation of the GPCR rhodopsin in retinal rod cells, facilitating recovery, improving light responsiveness, and promoting photoreceptor survival. These proof-of-principle experiments show that, based on mechanistic understanding of the inner workings of a protein, one can modify its functional characteristics to generate custom-designed mutants that improve the balance of signalling in congenital and acquired disorders. Manipulations of arrestin elements responsible for scaffolding mitogen-activated protein kinase cascades and binding other signalling proteins involved in life-or-death decisions in the cell are likely to yield mutants that affect cell survival and proliferation in the desired direction. Although this approach is still in its infancy, targeted redesign of individual functions of many proteins offers a promise of a completely new therapeutic toolbox with huge potential.
Collapse
|
37
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
38
|
Spooren A, Rondou P, Debowska K, Lintermans B, Vermeulen L, Samyn B, Skieterska K, Debyser G, Devreese B, Vanhoenacker P, Wojda U, Haegeman G, Van Craenenbroeck K. Resistance of the dopamine D4 receptor to agonist-induced internalization and degradation. Cell Signal 2010; 22:600-9. [DOI: 10.1016/j.cellsig.2009.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 02/04/2023]
|
39
|
Abstract
Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization.
Collapse
|
40
|
Deyts C, Galan-Rodriguez B, Martin E, Bouveyron N, Roze E, Charvin D, Caboche J, Bétuing S. Dopamine D2 receptor stimulation potentiates PolyQ-Huntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One 2009; 4:e8287. [PMID: 20016831 PMCID: PMC2790370 DOI: 10.1371/journal.pone.0008287] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 11/18/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a polyglutamine-expanded related neurodegenerative disease. Despite the ubiquitous expression of expanded, polyQ-Huntingtin (ExpHtt) in the brain, striatal neurons present a higher susceptibility to the mutation. A commonly admitted hypothesis is that Dopaminergic inputs participate to this vulnerability. We previously showed that D2 receptor stimulation increased aggregate formation and neuronal death induced by ExpHtt in primary striatal neurons in culture, and chronic D2 antagonist treatment protects striatal dysfunctions induced by ExpHtt in a lentiviral-induced model system in vivo. The present work was designed to elucidate the signalling pathways involved, downstream D2 receptor (D2R) stimulation, in striatal vulnerability to ExpHtt. METHODOLOGY/PRINCIPAL FINDINGS Using primary striatal neurons in culture, transfected with a tagged-GFP version of human exon 1 ExpHtt, and siRNAs against D2R or D1R, we confirm that DA potentiates neuronal dysfunctions via D2R but not D1R stimulation. We demonstrate that D2 agonist treatment induces neuritic retraction and growth cone collapse in Htt- and ExpHtt expressing neurons. We then tested a possible involvement of the Rho/ROCK signalling pathway, which plays a key role in the dynamic of the cytoskeleton, in these processes. The pharmacological inhibitors of ROCK (Y27632 and Hydroxyfasudil), as well as siRNAs against ROCK-II, reversed D2-related effects on neuritic retraction and growth cone collapse. We show a coupling between D2 receptor stimulation and Rho activation, as well as hyperphosphorylation of Cofilin, a downstream effector of ROCK-II pathway. Importantly, D2 agonist-mediated potentiation of aggregate formation and neuronal death induced by ExpHtt, was totally reversed by Y27632 and Hydroxyfasudil and ROCK-II siRNAs. CONCLUSIONS/SIGNIFICANCE Our data provide the first demonstration that D2R-induced vulnerability in HD is critically linked to the activation of the Rho/ROCK signalling pathway. The inclusion of Rho/ROCK inhibitors could be an interesting therapeutic option aimed at forestalling the onset of the disease.
Collapse
Affiliation(s)
- Carole Deyts
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Beatriz Galan-Rodriguez
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Elodie Martin
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Nicolas Bouveyron
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Emmanuel Roze
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Service de Neurologie, Hôpital Salpêtrière, Assitance Publique-Hôpitaux de Paris, Paris, France
| | - Delphine Charvin
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Jocelyne Caboche
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Sandrine Bétuing
- CNRS UMR 7102, Université Pierre et Marie Curie-Paris 6, Paris, France
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie-Paris 6, Paris, France
- Université Evry Val d'Essonne, Evry, France
- * E-mail:
| |
Collapse
|
41
|
Skinbjerg M, Ariano MA, Thorsell A, Heilig M, Halldin C, Innis RB, Sibley DR. Arrestin3 mediates D(2) dopamine receptor internalization. Synapse 2009; 63:621-4. [PMID: 19309759 PMCID: PMC2746036 DOI: 10.1002/syn.20636] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mette Skinbjerg
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 USA
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | - Marjorie A. Ariano
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064 USA
| | - Annika Thorsell
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
42
|
Skinbjerg M, Namkung Y, Halldin C, Innis RB, Sibley DR. Pharmacological characterization of 2-methoxy-N-propylnorapomorphine's interactions with D2 and D3 dopamine receptors. Synapse 2009; 63:462-75. [PMID: 19217026 PMCID: PMC2746040 DOI: 10.1002/syn.20626] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dopaminergic signaling pathways have been extensively investigated using PET imaging, primarily with antagonist radioligands of D(2) and D(3) dopamine receptors (DARs). Recently, agonist radioligands of D(2)/D(3) DARs have begun to be developed and employed. One such agonist is (R)-2-(11)CH(3)O-N-n-propylnorapomorphine (MNPA). Here, we perform a pharmacological characterization of MNPA using recombinant D(2) and D(3) DARs expressed in HEK293 cells. MNPA was found to robustly inhibit forskolin-stimulated cAMP accumulation to the same extent as dopamine in D(2) or D(3) DAR-transfected cells, indicating that it is a full agonist at both receptors. MNPA is approximately 50-fold more potent than dopamine at the D(2) DAR, but equally potent as dopamine at the D(3) DAR. MNPA competition binding curves in membrane preparations expressing D(2) DARs revealed two binding states of high and low-affinity. In the presence of GTP, only one binding state of low affinity was observed. Direct saturation binding assays using [(3)H]MNPA revealed similar results as with the competition experiments leading to the conclusion that MNPA binds to the D(2) DAR in an agonist-specific fashion. In contrast to membrane preparations, using intact cell binding assays, only one site of low affinity was observed for MNPA and other agonists binding to the D(2) DAR. MNPA was also found to induce D(2) DAR internalization to an even greater extent than dopamine as determined using both cell surface receptor binding assays and confocal fluorescence microscopy. Taken together, our data indicate that the PET tracer, MNPA, is a full and potent agonist at both D(2) and D(3) receptors.
Collapse
Affiliation(s)
- Mette Skinbjerg
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Yoon Namkung
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
43
|
Namkung Y, Dipace C, Javitch JA, Sibley DR. G protein-coupled receptor kinase-mediated phosphorylation regulates post-endocytic trafficking of the D2 dopamine receptor. J Biol Chem 2009; 284:15038-51. [PMID: 19332542 DOI: 10.1074/jbc.m900388200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D(2) dopamine receptor (DAR). Agonist activation of D(2) DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D(2) DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [(35)S]GTPgammaS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D(2) DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor.
Collapse
Affiliation(s)
- Yoon Namkung
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892-9405, USA
| | | | | | | |
Collapse
|
44
|
Lan H, Teeter MM, Gurevich VV, Neve KA. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors. Mol Pharmacol 2009; 75:19-26. [PMID: 18820126 PMCID: PMC2606909 DOI: 10.1124/mol.108.050542] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/26/2008] [Indexed: 11/22/2022] Open
Abstract
Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Arrestin/chemistry
- Arrestin/genetics
- Arrestin/isolation & purification
- Arrestin/metabolism
- Binding Sites
- Biophysical Phenomena
- Cell Line
- Cysteine/metabolism
- Glutathione Transferase/metabolism
- Humans
- Hydrogen Bonding
- Kidney/cytology
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/chemistry
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Hongxiang Lan
- Departments of Behavioral Neuroscience (K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; Department of Psychiatry, UC Davis Medical Center, Sacramento, California, and Department of Chemistry, University of California, Davis, California (M.M.T.); and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Martha M. Teeter
- Departments of Behavioral Neuroscience (K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; Department of Psychiatry, UC Davis Medical Center, Sacramento, California, and Department of Chemistry, University of California, Davis, California (M.M.T.); and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Vsevolod V. Gurevich
- Departments of Behavioral Neuroscience (K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; Department of Psychiatry, UC Davis Medical Center, Sacramento, California, and Department of Chemistry, University of California, Davis, California (M.M.T.); and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Kim A. Neve
- Departments of Behavioral Neuroscience (K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; Department of Psychiatry, UC Davis Medical Center, Sacramento, California, and Department of Chemistry, University of California, Davis, California (M.M.T.); and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| |
Collapse
|
45
|
Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol 2009; 75:113-23. [PMID: 18809670 PMCID: PMC2606918 DOI: 10.1124/mol.108.050534] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/19/2008] [Indexed: 11/22/2022] Open
Abstract
Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.
Collapse
Affiliation(s)
- Hongxiang Lan
- Departments of Behavioral Neuroscience (Y.L., M.I.B., K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Yong Liu
- Departments of Behavioral Neuroscience (Y.L., M.I.B., K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Michal I. Bell
- Departments of Behavioral Neuroscience (Y.L., M.I.B., K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Vsevolod V. Gurevich
- Departments of Behavioral Neuroscience (Y.L., M.I.B., K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| | - Kim A. Neve
- Departments of Behavioral Neuroscience (Y.L., M.I.B., K.A.N.) and Physiology & Pharmacology (H.L.), Oregon Health & Science University, and Veterans Affairs Medical Center (K.A.N.), Portland, Oregon; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.V.G.)
| |
Collapse
|
46
|
Stanwood GD. Protein-protein interactions and dopamine D2 receptor signaling: a calcium connection. Mol Pharmacol 2008; 74:317-9. [PMID: 18511653 DOI: 10.1124/mol.108.049098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The third cytoplasmic loop is a crucial site of physical contact between some G protein-coupled receptors (GPCRs) and their respective G proteins. However, interactions not only occur among these proteins but also involve a number of additional protein binding partners. Modulation of these protein-protein interactions may represent an important new avenue of pharmacotherapy through which signaling of GPCRs can be modulated. In the current issue of Molecular Pharmacology, Liu et al. (p. 371) report that dopamine D(2) receptors interact with the Ca(2+) binding protein S100B. Using the third intracellular loop of the dopamine D(2) receptor as bait in a bacterial two-hybrid system, S100B was determined to be a potential binding partner. They used pull-down assays both in vitro and in vivo to confirm the interaction and define its specificity. Neither the D(3) nor the D(4) receptor expresses the motif conferring the interaction, and peptides based on the third intracellular loop of the D(3) receptor did not pull down S100B. Some groups might stop there, but Liu and colleagues moved on to demonstrate colocalization of the D(2) receptor and S100B by immunostaining. Functional assays were then used to show that coexpression of S100B with the D(2) receptor increases the ability of D(2) receptors to activate ERK and to inhibit adenylyl cyclase. These data suggest that S100B coexpression may serve as an important mediator of D(2) receptor signaling efficacy in the brain. These interactions contribute to cellular, regional, and developmental differences in D(2) receptor activation.
Collapse
Affiliation(s)
- Gregg D Stanwood
- Department of Pharmacology, Vanderbilt Kennedy Center, 23rd Ave South, 476 RRB, Nashville TN 37232-6600, USA.
| |
Collapse
|
47
|
Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 2008; 104:1622-36. [PMID: 17996024 PMCID: PMC2628845 DOI: 10.1111/j.1471-4159.2007.05104.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dysregulation of dopamine (DA) receptors is believed to underlie Parkinson's disease pathology and l-DOPA-induced motor complications. DA receptors are subject to regulation by G protein-coupled receptor kinases (GRKs) and arrestins. DA lesion with 6-hydroxydopamine caused multiple protein- and brain region-specific changes in the expression of GRKs. In the globus pallidus, all four GRK isoforms (GRK2, 3, 5, 6) were reduced in the lesioned hemisphere. In the caudal caudate-putamen (cCPu) three GRK isoforms (GRK2, 3, 6) were decreased by DA depletion. The decrease in GRK proteins in globus pallidus, but not cCPu, was mirrored by reduction in mRNA. GRK3 protein was reduced in the rostral caudate-putamen (rCPu), whereas other isoforms were either unchanged or up-regulated. GRK6 protein and mRNA were up-regulated in rCPu and nucleus accumbens. l-DOPA (25 mg/kg, twice daily for 10 days) failed to reverse changes caused by DA depletion, whereas D(2)/D(3) agonist pergolide (0.25 mg/kg daily for 10 days) restored normal levels of expression of GRK5 and 6. In rCPu, GRK2 protein was increased in most subcellular fractions by l-DOPA but not by DA depletion alone. Similarly, l-DOPA up-regulated arrestin3 in membrane fractions in both regions. GRK5 was down-regulated by l-DOPA in cCPu in the light membrane fraction, where this isoform is the most abundant. The data suggest that alterations in the expression and subcellular distribution of arrestins and GRKs contribute to pathophysiology of Parkinson's disease. Thus, these proteins may be targets for antiparkinsonian therapy.
Collapse
Affiliation(s)
- M. Rafiuddin Ahmed
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Evgeny Bychkov
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
48
|
Kabbani N, Levenson R. A proteomic approach to receptor signaling: Molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 receptor signalplex. Eur J Pharmacol 2007; 572:83-93. [PMID: 17662712 DOI: 10.1016/j.ejphar.2007.06.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 12/23/2022]
Abstract
Recent research in cell signaling has shown that the assembly of G protein coupled receptors into signaling complexes or signalplexes represents the primary mechanism by which receptor-mediated signaling is established and maintained. In this review, we summarize the current state of knowledge regarding protein interactions that comprise the dopamine D2 receptor signalplex within the brain. Studies based on conventional and advanced two-hybrid methodologies, as well as bioinformatic and computational analysis of sequence information from completed genomes have demonstrated interactions between dopamine D2 receptors and a cohort of dopamine receptor interacting proteins (DRIPs). DRIP interactions appear to regulate key aspects of receptor function including the signaling and membrane trafficking of dopamine D2 receptors. Disruptions or modifications of the signalplex, using membrane permeant competing peptide or dominant negative approaches, may represent promising new strategies for the selective targeting of the dopamine D2 receptor in cells and in native tissue. DRIP interactions provide a novel platform for understanding the mechanisms of dopamine receptor signaling, and for the potential development of novel treatments for brain disease.
Collapse
Affiliation(s)
- Nadine Kabbani
- Department of Neuroscience, Pasteur Institute, 75015 Paris, France.
| | | |
Collapse
|
49
|
Wolstencroft EC, Simic G, thi Man N, Holt I, Lam LT, Buckland PR, Morris GE. Endosomal location of dopamine receptors in neuronal cell cytoplasm. J Mol Histol 2007; 38:333-40. [PMID: 17593530 DOI: 10.1007/s10735-007-9106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Five subtypes of dopamine receptor exist in two subfamilies: two D(1)-like (D(1) and D(5)) and three D(2)-like (D(2), D(3) and D(4)). We produced novel monoclonal antibodies against all three D(2)-like receptors and used them to localize receptors in Ntera-2 (NT-2) cells, the human neuronal precursor cell line. Most of the immunostaining for all three receptors colocalized with mannose-6-phosphate receptor, a marker for late endosomes formed by internalization of the plasma membrane. This result was obtained with antibodies against three different epitopes on the D(3) receptor, to rule out the possibility of cross-reaction with another protein, and controls without primary antibody or in the presence of competitor antigen were completely negative. In rat cerebral cortex and hippocampus, some of the dopamine receptor staining was found in similar structures in neuronal cell cytoplasm. Only some of the neurons were positive for dopamine receptors and the pattern was consistent with previously-reported patterns of innervation by dopamine-producing neurons. Endosomal dopamine receptors may provide a useful method for identifying cell bodies of dopamine-responsive neurons to complement methods that detect only active receptors in the neuronal cell membrane.
Collapse
Affiliation(s)
- Elizabeth C Wolstencroft
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, LMARC Building, Oswestry SY10 7AG, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu Y, Buck DC, Macey TA, Lan H, Neve KA. Evidence that calmodulin binding to the dopamine D2 receptor enhances receptor signaling. J Recept Signal Transduct Res 2007; 27:47-65. [PMID: 17365509 DOI: 10.1080/10799890601094152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Ca2+ sensor calmodulin (CaM) regulates numerous proteins involved in G protein-coupled receptor (GPCR) signaling. CaM binds directly to some GPCRs, including the dopamine D2 receptor. We confirmed that the third intracellular loop of the D2 receptor is a direct contact point for CaM binding using coimmunoprecipitation and a polyHis pull-down assay, and we determined that the D2-like receptor agonist 7-OH-DPAT increased the colocalization of the D2 receptor and endogenous CaM in both 293 cells and in primary neostriatal cultures. The N-terminal three or four residues of D2-IC3 were required for the binding of CaM; mutation of three of these residues in the full-length receptor (I210C/K211C/I212C) decreased the coprecipitation of the D2 receptor and CaM and also significantly decreased D2 receptor signaling, without altering the coupling of the receptor to G proteins. Taken together, these findings suggest that binding of CaM to the dopamine D2 receptor enhances D2 receptor signaling.
Collapse
Affiliation(s)
- Yong Liu
- Department of Behavioral Neuroscience, Oregon Health & Science University. Portland, Oregon, USA
| | | | | | | | | |
Collapse
|