1
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB congeners and their thresholds associated with diabetes using decision tree analysis. Sci Rep 2023; 13:18322. [PMID: 37884570 PMCID: PMC10603165 DOI: 10.1038/s41598-023-45301-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used (1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and (2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR 3.3, 95% CI 1.27-8.55). In the subpopulation with PCB 126 > 0.025 & PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR 2.79, 95% CI 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Buyun Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter S Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA.
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Lan T, Liu B, Bao W, Thorne PS. Identification of PCB Congeners and their Thresholds associated with Diabetes using Decision Tree Analysis. RESEARCH SQUARE 2023:rs.3.rs-2845995. [PMID: 37205460 PMCID: PMC10187404 DOI: 10.21203/rs.3.rs-2845995/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Few studies have investigated the potential combined effects of multiple PCB congeners on diabetes. To address this gap, we used data from 1244 adults in the National Health and Nutrition Examination Survey (NHANES) 2003-2004. We used 1) classification trees to identify serum PCB congeners and their thresholds associated with diabetes; and 2) logistic regression to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of diabetes with combined PCB congeners. Of the 40 PCB congeners examined, PCB 126 has the strongest association with diabetes. The adjusted OR of diabetes comparing PCB 126 > 0.025 to ≤ 0.025 ng/g was 2.14 (95% CI 1.30-3.53). In the subpopulation with PCB 126 > 0.025 ng/g, a lower PCB 101 concentration was associated with an increased risk of diabetes (comparing PCB 101 < 0.72 to ≥ 0.72 ng/g, OR = 3.3, 95% CI: 1.27-8.55). In the subpopulation with PCB 126 > 0.025&PCB 101 < 0.72 ng/g, a higher PCB 49 concentration was associated with an increased risk of diabetes (comparing PCB 49 > 0.65 to ≤ 0.65 ng/g, OR = 2.79, 95% CI: 1.06-7.35). This nationally representative study provided new insights into the combined associations of PCBs with diabetes.
Collapse
Affiliation(s)
- Tuo Lan
- University of Iowa College of Public Health
| | - Buyun Liu
- University of Science and Technology of China
| | - Wei Bao
- University of Science and Technology of China
| | | |
Collapse
|
3
|
Zhou H, Zhuang W, Huang H, Ma N, Lei J, Jin G, Wu S, Zhou S, Zhao X, Lan L, Xia H, Shangguan F. Effects of natural 24-epibrassinolide on inducing apoptosis and restricting metabolism in hepatocarcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154428. [PMID: 36115171 DOI: 10.1016/j.phymed.2022.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 24-epibrassinolide (EBR) is a ubiquitous steroidal phytohormone with anticancer activity. Yet the cytotoxic effects and mechanism of EBR on hepatocarcinoma (HCC) cells remain elusive. METHODS Cell counting kit-8 (CCK-8) assay was performed to evaluate cell viability. Real-time cell analysis (RTCA) technology and colony formation assays were used to evaluate cell proliferation. The apoptosis ratio was measured by flow cytometry. Seahorse XFe96 was applied to detect the effects of EBR on cellular bioenergetics. RNA-seq analysis was performed to investigate differences in gene expression profiles. Western blot and qRT-PCR were used to detect the changes in target molecules. RESULTS EBR induced apoptosis and caused energy restriction in HCC, both of which were related to insulin-like growth factor-binding protein 1 (IGFBP1). EBR rapidly and massively induced IGBFP1, part of which was transcribed by activating transcription factor-4 (ATF4). The accumulation of secreted and cellular IGFBP1 had different important roles, in which secreted IGFBP1 affected cell energy metabolism by inhibiting the phosphorylation of Akt, while intracellular IGFBP1 acted as a pro-survival factor to resist apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) inhibitor SCH772984 and MAP/ERK kinase (MEK) inhibitor PD98059 not only attenuated the EBR-induced IGFBP1 expression but also the basal expression of IGFBP1. Thus, the treatment of cells with these inhibitors further enhances the cytotoxicity of EBR. CONCLUSION Taken together, these findings suggested that EBR can be considered as a potential therapeutic compound for HCC due to its pro-apoptosis, restriction of energy metabolism, and other anti-cancer properties. Meanwhile, the high expression of IGFBP1 induced by EBR in HCC contributes to our understanding of the role of IGFBP1 in drug resistance.
Collapse
Affiliation(s)
- Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Weiwei Zhuang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China; Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Nengfang Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325006, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shipeng Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Xingling Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
4
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
5
|
Rotondo E, Chiarelli F. Endocrine-Disrupting Chemicals and Insulin Resistance in Children. Biomedicines 2020; 8:E137. [PMID: 32481506 PMCID: PMC7344713 DOI: 10.3390/biomedicines8060137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this article is to review the evidence linking background exposure to endocrine-disrupting chemicals (EDCs) with insulin resistance in children. Although evidence in children is scarce since very few prospective studies exist even in adults, evidence that EDCs might be involved in the development of insulin resistance and related diseases such as obesity and diabetes is accumulating. We reviewed the literature on both cross-sectional and prospective studies in humans and experimental studies. Epidemiological studies show a statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, aromatic polycyclic hydrocarbides, or dioxins and insulin resistance.
Collapse
Affiliation(s)
- Eleonora Rotondo
- Department of Pediatrics, University of Chieti, I-66100 Chieti, Italy;
| | | |
Collapse
|
6
|
Vassilopoulou L, Matalliotakis M, Zervou MI, Matalliotaki C, Krithinakis K, Matalliotakis I, Spandidos DA, Goulielmos GN. Defining the genetic profile of endometriosis. Exp Ther Med 2019; 17:3267-3281. [PMID: 30988702 PMCID: PMC6447774 DOI: 10.3892/etm.2019.7346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023] Open
Abstract
Endometriosis is a pathological condition which has been extensively studied, since its pathophysiology stems from a broad spectrum of environmental influences and genetic factors. Familial studies aim at defining inheritance trends, while linkage analysis studies focus on the identification of genetic sites related to endometriosis susceptibility. Genetic association studies take into account candidate genes and single nucleotide polymorphisms, and hence target at unraveling the association between disease severity and genetic variation. The common goal of various types of studies is, through genetic mapping methods, the timely identification of therapeutic strategies for disease symptoms, including pelvic pain and infertility, as well as efficient counselling. While genome-wide association studies (GWAS) play a primary role in depicting genetic contributions to disease development, they entail a certain bias as regards the case-control nature of their design and the reproducibility of the results. Nevertheless, genetic-oriented studies and the implementation of the results through clinical tests, hold a considerable advantage in proper disease management. In this review article, we present information about gene-gene and gene-environment interactions involved in endometriosis and discuss the effectiveness of GWAS in identitying novel potential therapeutic targets in an attempt to develop novel therapeutic strategies for a better management and treatment of patients with endometriosis.
Collapse
Affiliation(s)
- Loukia Vassilopoulou
- Laboratory of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Michail Matalliotakis
- Third Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Department of Obstetrics and Gynecology, Venizeleio and Pananio General Hospital of Heraklion, Heraklion 71409, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Charoula Matalliotaki
- Third Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Department of Obstetrics and Gynecology, Venizeleio and Pananio General Hospital of Heraklion, Heraklion 71409, Greece
| | - Konstantinos Krithinakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion 71500, Greece
| | - Ioannis Matalliotakis
- Department of Obstetrics and Gynecology, Venizeleio and Pananio General Hospital of Heraklion, Heraklion 71409, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
7
|
Wahlang B. Exposure to persistent organic pollutants: impact on women's health. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:331-348. [PMID: 30110273 DOI: 10.1515/reveh-2018-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/18/2018] [Indexed: 05/23/2023]
Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, 505 S. Hancock Street, CTRB, Louisville, KY 40202-1617, USA
| |
Collapse
|
8
|
Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, Sifakis S, Docea AO, Tsiaoussis J, Makrigiannakis A, Tsatsakis AM. Endocrine Disruptors Leading to Obesity and Related Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1282. [PMID: 29064461 PMCID: PMC5664782 DOI: 10.3390/ijerph14101282] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
The review aims to comprehensively present the impact of exposure to endocrine disruptors (EDs) in relation to the clinical manifestation of obesity and related diseases, including diabetes mellitus, metabolic syndrome, cardiovascular diseases, carcinogenesis and infertility. EDs are strong participants in the obesity epidemic scenery by interfering with cellular morphological and biochemical processes; by inducing inflammatory responses; and by presenting transcriptional and oncogenic activity. Obesity and lipotoxicity enhancement occur through reprogramming and/or remodeling of germline epigenome by exposure to EDs. Specific population groups are vulnerable to ED exposure due to current dietary and environmental conditions. Obesity, morbidity and carcinogenicity induced by ED exposure are an evolving reality. Therefore, a new collective strategic approach is deemed essential, for the reappraisal of current global conditions pertaining to energy management.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Loukia Vassilopoulou
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Christos Psycharakis
- Department of Obstetrics and Gynecology, Venizeleio-Pananio General Hospital of Heraklion, 71409 Heraklion, Crete, Greece.
| | - Aliki Anifantaki
- Crete Fertility Center, 56, Arch. Makariou & Sof. Venizelou Str., 71202 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania.
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
9
|
Arrebola JP, González-Jiménez A, Fornieles-González C, Artacho-Cordón F, Olea N, Escobar-Jiménez F, Fernández-Soto ML. Relationship between serum concentrations of persistent organic pollutants and markers of insulin resistance in a cohort of women with a history of gestational diabetes mellitus. ENVIRONMENTAL RESEARCH 2015; 136:435-440. [PMID: 25460665 DOI: 10.1016/j.envres.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/11/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to assess the relationship between serum concentrations of several persistent organic pollutants and insulin resistance markers in a cohort of women with a history of gestational diabetes mellitus. ∑POPs was computed as the sum of individual serum POP concentrations. No statistically significant associations were found between levels of any POP and fasting glucose. However, polychlorinated biphenyl (PCB) congeners 138 and 180 were positively associated with 2-h glucose levels and PCB 180 also with fasting immunoreactive insulin (IRI). We also found a positive association of p,p'- dichlorodiphenyldichloroethylene (p,p'- DDE), PCBs (138, 153, and 180), hexachlorobenzene, and ∑POPs with 2-h IRI. Serum concentrations of PCBs (138, 153, and 180), hexachlorobenzene, and ∑POPs were also positively associated with homeostasis model assessment (HOMA2-IR) levels. Moreover, p,p'- DDE, PCBs (138, 153 and 180), hexachlorobenzene, and ∑POPs were negatively associated with Insulin Sensitivity Index (ISI-gly) levels. No significant association was found between glycated hemoglobin and the concentrations of any POP. The removal of women under blood glucose lowering treatment from the models strengthened most of the associations previously found for the whole population. Our findings suggest that exposure to certain POPs is a modifiable risk factor contributing to insulin resistance.
Collapse
Affiliation(s)
- Juan P Arrebola
- Radiation Oncology Department, Virgen de las Nieves University Hospital, Spain; Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Fernando Escobar-Jiménez
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Endocrine and Nutrition Unit, San Cecilio University Hospital, Spain
| | - María Luisa Fernández-Soto
- Instituto de Investigación Biosanitaria ibs.Granada, University of Granada, San Cecilio University Hospital, Granada, Spain; Endocrine and Nutrition Unit, San Cecilio University Hospital, Spain
| |
Collapse
|
10
|
Brandner S, Eberhagen C, Lichtmannegger J, Hieber L, Andrae U. TCDD induces the expression of insulin-like growth factor binding protein 4 in 5L rat hepatoma cells: A cautionary tale of the use of this cell line in studies on dioxin toxicity. Toxicology 2013; 309:107-16. [DOI: 10.1016/j.tox.2013.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|
11
|
Bourez S, Joly A, Covaci A, Remacle C, Larondelle Y, Schneider YJ, Debier C. Accumulation capacity of primary cultures of adipocytes for PCB-126: influence of cell differentiation stage and triglyceride levels. Toxicol Lett 2012; 214:243-50. [PMID: 23000092 DOI: 10.1016/j.toxlet.2012.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic persistent organic chemicals that accumulate at high concentrations in the adipose tissue. Recent studies correlate the presence of such contaminants in fat cells to possible alterations in the regulation of energy homeostasis in adipocytes. As the adipose tissue is composed of adipocytes at several stages of differentiation, it is possible that PCBs already accumulate in cells at an early stage, and thereby impair their development. The exact driving force enabling the massive accumulation of PCBs in fat cells remains unclear. The present study investigated the time-course incorporation of (3)H-PCB-126 in primary cultures of rat adipocytes at both early and late differentiation stages and showed that the accumulation of this congener was already significant at an early stage of differentiation. In addition, triglyceride levels in cells were an important parameter governing (3)H-PCB-126's entry. The extent of adipocyte ability to store this pollutant in vitro was also evaluated and revealed that fat cells were able to accumulate (3)H-PCB-126 at extremely high concentrations. A linear relationship was observed between the amount of (3)H-PCB-126 added to the medium and the one accumulated in the cells, which favors a passive diffusion mechanism for the entry of this pollutant into fat cells.
Collapse
Affiliation(s)
- Sophie Bourez
- Institut des Sciences de la Vie, UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene 2012; 32:1811-20. [PMID: 22665056 DOI: 10.1038/onc.2012.197] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is commonly described as a transcription factor, which regulates xenobiotic-metabolizing enzymes. Recent studies have suggested that the binding of ligands to the AhR also activates the Src kinase. In this manuscript, we show that the AhR, through the activation of Src, activates focal adhesion kinase (FAK) and promotes integrin clustering. These effects contribute to cell migration. Further, we show that the activation of the AhR increases the interaction of FAK with the metastatic marker, HEF1/NEDD9/CAS-L, and the expression of several integrins. Xenobiotic exposure, thus, may contribute to novel cell-migratory programs.
Collapse
|
13
|
Silverstone AE, Rosenbaum PF, Weinstock RS, Bartell SM, Foushee HR, Shelton C, Pavuk M. Polychlorinated biphenyl (PCB) exposure and diabetes: results from the Anniston Community Health Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:727-32. [PMID: 22334129 PMCID: PMC3346783 DOI: 10.1289/ehp.1104247] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 02/14/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) manufactured in Anniston, Alabama, from 1929 to 1971 caused significant environmental contamination. The Anniston population remains one of the most highly exposed in the world. OBJECTIVES Reports of increased diabetes in PCB-exposed populations led us to examine possible associations in Anniston residents. METHODS Volunteers (n = 774) from a cross-sectional study of randomly selected households and adults who completed the Anniston Community Health Survey also underwent measurements of height, weight, fasting glucose, lipid, and PCB congener levels and verification of medications. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the relationships between PCBs and diabetes, adjusting for diabetes risk factors. Participants with prediabetes were excluded from the logistic regression analyses. RESULTS Participants were 47% African American, 70% female, with a mean age of 54.8 years. The prevalence of diabetes was 27% in the study population, corresponding to an estimated prevalence of 16% for Anniston overall; the PCB body burden of 35 major congeners ranged from 0.11 to 170.42 ppb, wet weight. The adjusted OR comparing the prevalence of diabetes in the fifth versus first quintile of serum PCB was 2.78 (95% CI: 1.00, 7.73), with similar associations estimated for second through fourth quintiles. In participants < 55 years of age, the adjusted OR for diabetes for the highest versus lowest quintile was 4.78 (95% CI: 1.11, 20.6), whereas in those ≥ 55 years of age, we observed no significant associations with PCBs. Elevated diabetes prevalence was observed with a 1 SD increase in log PCB levels in women (OR = 1.52; 95% CI: 1.01, 2.28); a decreased prevalence was observed in men (OR = 0.68; 95% CI: 0.33, 1.41). CONCLUSIONS We observed significant associations between elevated PCB levels and diabetes mostly due to associations in women and in individuals < 55 years of age.
Collapse
Affiliation(s)
- Allen E Silverstone
- State University of New York Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Airaksinen R, Rantakokko P, Eriksson JG, Blomstedt P, Kajantie E, Kiviranta H. Association between type 2 diabetes and exposure to persistent organic pollutants. Diabetes Care 2011; 34:1972-9. [PMID: 21816981 PMCID: PMC3161294 DOI: 10.2337/dc10-2303] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The prevalence of type 2 diabetes is increasing alarmingly in both developed and developing countries. Recently, exposure to persistent organic pollutants (POPs) has been associated with the prevalence of type 2 diabetes. The purpose of this cross-sectional study is to examine the association between type 2 diabetes and POP exposure in the Helsinki Birth Cohort Study. RESEARCH DESIGN AND METHODS The cohort consists of 8,760 people born in Helsinki during 1934-1944, before the global POP emission peak. In 2003, a clinical examination was performed, including blood sampling for laboratory analyses of serum lipids and POPs. Complete data from the examination were available for 1,988 participants. The concentrations of each POP were categorized into four groups on the basis of percentile intervals, and logistic regression was performed to examine diabetes prevalence across the POP categories, adjusting for sex, age, waist circumference, and mean arterial pressure and using the lowest category as the reference group. RESULTS Among the participants with the highest exposure to oxychlordane, trans-nonachlor, 1,1-dichloro-2,2-bis-(p-chlorophenyl)-ethylene (p,p'-DDE, and polychlorinated biphenyl 153, the risk of type 2 diabetes was 1.64-2.24 times higher than that among individuals with the lowest exposure (P(lin) = 0.003-0.050, where P(lin) is the P value for linear trend across POP categories). In the stratified analysis, the associations between type 2 diabetes and oxychlordane and trans-nonachlor remained significant and were strongest among the overweight participants. Exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE 153) was not associated with type 2 diabetes. CONCLUSIONS This study confirms the association between type 2 diabetes and adult-only exposure to organochlorine pesticides in a general urban population.
Collapse
Affiliation(s)
- Riikka Airaksinen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Kim MJ, Marchand P, Henegar C, Antignac JP, Alili R, Poitou C, Bouillot JL, Basdevant A, Le Bizec B, Barouki R, Clément K. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:377-83. [PMID: 21156398 PMCID: PMC3060002 DOI: 10.1289/ehp.1002848] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/03/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND In humans, persistent organic pollutants (POPs) are stored primarily in adipose tissue. Their total body burden and their contribution to obesity-associated diseases remain unclear. OBJECTIVES We characterized POP total body burden and their redistribution in obese individuals before and after drastic weight loss and compared these values with a variety of molecular, biological, and clinical parameters. METHODS Seventy-one obese subjects were enrolled and underwent bariatric surgery. Blood and adipose tissue samples were obtained at different times from these individuals as well as from 18 lean women. RESULTS POP content (17 dioxins/furans and 18 polychlorinated biphenyl congeners) in different adipose tissue territories was similar, allowing us to assess total POP body burden from a single biopsy. Total POP body burden was 2 to 3 times higher in obese than in lean individuals. We also found increased expression of some POP target genes in obese adipose tissue. Drastic weight loss led to increased serum POPs and, within 6-12 months, to a significant 15% decrease in total polychlorinated biphenyl body burden. Importantly, serum POP levels were positively correlated with liver toxicity markers and lipid parameters, independently of age and body mass index. CONCLUSIONS POP content in adipose tissue and serum correlate with biological markers of obesity-related dysfunctions. Drastic weight loss leads to a redistribution of POPs and to a moderate decrease of their total body burden.
Collapse
Affiliation(s)
- Min-Ji Kim
- INSERM, UMR-S 747, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Philippe Marchand
- Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), INRA USC 2013, Nantes, France
| | - Corneliu Henegar
- INSERM, U872, Nutriomique team 7, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
- Centre de Recherche en Nutrition Humaine-Ile de France, Paris, France
| | - Jean-Philippe Antignac
- Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), INRA USC 2013, Nantes, France
| | - Rohia Alili
- INSERM, U872, Nutriomique team 7, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
- Centre de Recherche en Nutrition Humaine-Ile de France, Paris, France
| | - Christine Poitou
- INSERM, U872, Nutriomique team 7, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
- Centre de Recherche en Nutrition Humaine-Ile de France, Paris, France
| | - Jean-Luc Bouillot
- Assistance Publique-Hôpitaux de Paris, Hôtel-Dieu Hospital, Surgery Department, Paris, France
| | - Arnaud Basdevant
- INSERM, U872, Nutriomique team 7, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
- Centre de Recherche en Nutrition Humaine-Ile de France, Paris, France
| | - Bruno Le Bizec
- Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes Atlantique (ONIRIS), Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), INRA USC 2013, Nantes, France
| | - Robert Barouki
- INSERM, UMR-S 747, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
- Address correspondence to R. Barouki, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75270 Paris cedex 06, France. Telephone: 33-001-42-86-20-75. Fax: 33-1-42-86-38-68. E-mail:
| | - Karine Clément
- INSERM, U872, Nutriomique team 7, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
- Centre de Recherche en Nutrition Humaine-Ile de France, Paris, France
| |
Collapse
|
16
|
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 2011; 41:292-320. [PMID: 21323611 DOI: 10.3109/10408444.2010.524635] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous ligands of the aryl hydrocarbon receptor (AhR) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are highly toxic pollutants ubiquitously present in the environment. They cause a variety of toxic effects to different organs and tissues. Among other effects, TCDD exposure to laboratory animals leads to thymus atrophy and immunosuppression on the one hand, and to tumor formation on the other. Apoptosis appears to be involved in both these toxic effects: AhR activation by TCDD was discussed to induce apoptosis of immune cells, leading to the depletion of thymocytes and ultimately immunosuppression. This mechanism could help to explain the highly immunotoxic actions of TCDD but it is nevertheless under debate whether this is the mode of action for immunosuppression by this class of chemical substances. In other cell types, especially liver cells, TCDD inhibits apoptosis induced by genotoxic treatment. In initiation-promotion studies, TCDD was shown to be a potent liver tumor promoter. Among other theories it was hypothesized that TCDD acts as a tumor promoter by preventing initiated cells from undergoing apoptosis. The exact mechanisms of apoptosis inhibition by TCDD are not fully understood, but both in vivo and in vitro studies consistently showed an involvement of the tumor suppressor p53 in this effect. Various strings of evidence have been established linking apoptosis to the detrimental effects of exogenous activation of the AhR. Within this article, studies elucidating the effects of TCDD and related substances on apoptosis signaling, be it inducing or repressing, is to be reviewed.
Collapse
Affiliation(s)
- Martin Chopra
- Institute of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
17
|
Li W, Wu X. Reply of the Authors. Fertil Steril 2011. [DOI: 10.1016/j.fertnstert.2010.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Everett CJ, Frithsen I, Player M. Relationship of polychlorinated biphenyls with type 2 diabetes and hypertension. ACTA ACUST UNITED AC 2010; 13:241-51. [PMID: 21127808 DOI: 10.1039/c0em00400f] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes and hypertension are important contributors to morbidity and mortality worldwide. Both of these conditions are caused by some combination of genetic and environmental factors which may include exposure to persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs). Studies have shown an association between elevated serum PCBs and the metabolic syndrome, insulin sensitivity and insulin secretion. Cross-sectional studies have shown associations between diabetes or hypertension and certain PCB congeners or classes, while those same studies show no association between diabetes or hypertension and several other PCB congeners. In animal and human cell studies, various PCBs and dioxins appear to alter glucose and insulin metabolism. These studies specifically show effects on the glucose transporter (GLUT-4) gene and protein; insulin-like growth factor binding protein-1 (IGFBP-1); nuclear transcription factor kappa B (NFκB); tumor necrosis factor alpha (TNF-α); and insulin production. There are a few longitudinal studies examining the association of diabetes or hypertension and PCBs with no consensus conclusion. Some longitudinal studies have found there to be an association, others have not and a gender difference has also been noted. Prospective studies are needed to determine if PCBs and other POPs contribute to development of diabetes and hypertension.
Collapse
Affiliation(s)
- Charles Jay Everett
- Department of Family Medicine, Medical University of South Carolina, 295 Calhoun Street, MSC 192, Charleston, SC 29425-1920, USA.
| | | | | |
Collapse
|
19
|
Karami-Mohajeri S, Abdollahi M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum Exp Toxicol 2010; 30:1119-40. [PMID: 21071550 DOI: 10.1177/0960327110388959] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Chang JW, Ou HY, Chen HL, Guo HR, Liao PC, Lee CC. Interrelationship between exposure to PCDD/Fs and hypertension in metabolic syndrome in Taiwanese living near a highly contaminated area. CHEMOSPHERE 2010; 81:1027-1032. [PMID: 20850865 DOI: 10.1016/j.chemosphere.2010.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/14/2010] [Accepted: 08/27/2010] [Indexed: 05/29/2023]
Abstract
Metabolic syndrome (MetS) consists of a constellation of metabolic abnormalities that confer increased risk of cardiovascular disease. There is a positive correlation between exposure to persistent organic pollutants and MetS. We examine the association between PCDD/Fs and MetS components in 1490 non-diabetic persons living near a highly dioxin-contaminated area. We used factor analysis, with a set of core variables considered central features of MetS and PCDD/Fs, to group similar risk factors. Serum PCDD/Fs were positively and significantly correlated with the number of MetS components. Four risk factors-lipidemia, blood pressure, body size, and glycemia-accounted for 72.6% of the variance in the 10 core factors, and PCDD/Fs were linked to MetS through shared correlations with high blood pressure. After adjusting for confounding factors, we found that diastolic blood pressure (β=0.018; p=0.006), glucose (β=0.013; p=0.046), and waist circumference (β=0.721; p=0.042) significantly increased with increasing serum PCDD/F levels. We found significant trends for associations between metabolic syndrome and serum low-chlorinated PCDD/Fs. The highest quintiles of 2,3,4,7,8-PeCDF, 1,2,3,6,7,8-HxCDF and 2,3,7,8-TCDD had the top three adjusted ORs (95% CI) of 3.5 (1.9-6.3), 2.9 (1.7-4.9) and 2.8 (1.6-4.9), respectively. We also found a slight monotonic relationship between serum PCDD/Fs and the prevalence of MetS, especially when the serum dioxin level was higher than 25.4pg WHO(98)-TEQ(DF)g(-1) lipid (the fourth Quintile). We hypothesize that high-dose exposure to PCDD/Fs is a blood pressure-related factor that raises MetS risk.
Collapse
Affiliation(s)
- J W Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Pierre S, Bats AS, Chevallier A, Bui LC, Ambolet-Camoit A, Garlatti M, Aggerbeck M, Barouki R, Coumoul X. Induction of the Ras activator Son of Sevenless 1 by environmental pollutants mediates their effects on cellular proliferation. Biochem Pharmacol 2010; 81:304-13. [PMID: 20950586 DOI: 10.1016/j.bcp.2010.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
TCDD (2,3,7,8-tetrachlorodibenzodioxin), a highly persistent environmental pollutant and a human carcinogen, is the ligand with the highest affinity for the Aryl Hydrocarbon Receptor (AhR) that induces via the AhR, xenobiotic metabolizing enzyme genes as well as several other genes. This pollutant elicits a variety of systemic toxic effects, which include cancer promotion and diverse cellular alterations that modify cell cycle progression and cell proliferation. Large-scale studies have shown that the expression of Son of Sevenless 1 (SOS1), the main mediator of Ras activation, is one of the targets of dioxin in human cultured cells. In this study, we investigated the regulation of the previously uncharacterized SOS1 gene promoter by the AhR and its ligands in the human hepatocarcinoma cell line, HepG2. We found that several environmental pollutants (AhR ligands) induce SOS1 gene expression by increasing its transcription. Chromatin immunoprecipitation experiments demonstrated that the AhR binds directly and activates the SOS1 gene promoter. We also showed that dioxin treatment leads to an activated Ras-GTP state, to ERK activation and to accelerated cellular proliferation. All these effects were mediated by SOS1 induction as shown by knock down experiments. Our data indicate that dioxin-induced cellular proliferation is mediated, at least partially, by SOS1 induction. Remarkably, our studies also suggest that SOS1 induction leads to functional effects similar to those elicited by the well-characterized oncogenic Ras mutations.
Collapse
Affiliation(s)
- Stéphane Pierre
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Whitehead A, Triant DA, Champlin D, Nacci D. Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population. Mol Ecol 2010; 19:5186-203. [PMID: 20874759 DOI: 10.1111/j.1365-294x.2010.04829.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wild populations of the killifish Fundulus heteroclitus resident in heavily contaminated North American Atlantic coast estuaries have recently and independently evolved dramatic, heritable, and adaptive pollution tolerance. We compared physiological and transcriptome responses to embryonic polychlorinated biphenyl (PCB) exposures between one tolerant population and a nearby sensitive population to gain insight into genomic, physiological and biochemical mechanisms of evolved tolerance in killifish, which are currently unknown. The PCB exposure concentrations at which developmental toxicity emerged, the range of developmental abnormalities exhibited, and global as well as specific gene expression patterns were profoundly different between populations. In the sensitive population, PCB exposures produced dramatic, dose-dependent toxic effects, concurrent with the alterations in the expression of many genes. For example, PCB-mediated cardiovascular system failure was associated with the altered expression of cardiomyocyte genes, consistent with sarcomere mis-assembly. In contrast, genome-wide expression was comparatively refractory to PCB induction in the tolerant population. Tolerance was associated with the global blockade of the aryl hydrocarbon receptor (AHR) signalling pathway, the key mediator of PCB toxicity, in contrast to the strong dose-dependent up-regulation of AHR pathway elements observed in the sensitive population. Altered regulation of signalling pathways that cross-talk with AHR was implicated as one candidate mechanism for the adaptive AHR signalling repression and the pollution tolerance that it affords. In addition to revealing mechanisms of PCB toxicity and tolerance, this study demonstrates the value of comparative transcriptomics to explore molecular mechanisms of stress response and evolved adaptive differences among wild populations.
Collapse
Affiliation(s)
- A Whitehead
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
23
|
Exposure to persistent organic pollutants as potential risk factors for developing diabetes. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0157-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Ambolet-Camoit A, Bui LC, Pierre S, Chevallier A, Marchand A, Coumoul X, Garlatti M, Andreau K, Barouki R, Aggerbeck M. 2,3,7,8-tetrachlorodibenzo-p-dioxin counteracts the p53 response to a genotoxicant by upregulating expression of the metastasis marker agr2 in the hepatocarcinoma cell line HepG2. Toxicol Sci 2010; 115:501-12. [PMID: 20299546 DOI: 10.1093/toxsci/kfq082] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental pollutant that binds the aryl hydrocarbon receptor (AhR), a transcription factor that triggers various biological responses. In this study, we show that TCDD treatment counteracts the p53 activation (phosphorylation and acetylation) elicited by a genotoxic compound, etoposide, in the human hepatocarcinoma cell line HepG2 and we delineated the mechanisms of this interaction. Using small interfering RNA knockdown experiments, we found that the newly described metastasis marker, anterior gradient-2 (AGR2), is involved in this effect. Both AGR2 messenger RNA (mRNA) and protein levels were increased (sixfold and fourfold, respectively) by TCDD treatment, and this effect was mediated by the AhR receptor. The half-life of AGR2 mRNA was unchanged by TCDD treatment. Analysis of the promoter of the AGR2 gene revealed three putative xenobiotic-responsive elements (XREs) in the proximal 3.5-kb promoter. Transient transfection of HepG2 cells by the Gaussia luciferase reporter gene driven by various deleted and mutated fragments of the promoter indicated that only the most proximal XRE was active. Binding of the AhR to the endogenous AGR2 promoter was also triggered by TCDD treatment. These results suggest that AhR ligands such as TCDD might contribute to tumor progression by inhibiting p53 regulation (phosphorylation and acetylation) triggered by genotoxicants via the increased expression of the metastasis marker AGR2.
Collapse
|
25
|
Dioxin Exposure and Insulin Resistance in Taiwanese Living Near a Highly Contaminated Area. Epidemiology 2010; 21:56-61. [DOI: 10.1097/ede.0b013e3181c2fc6e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Dong B, Nishimura N, Vogel CF, Tohyama C, Matsumura F. TCDD-induced cyclooxygenase-2 expression is mediated by the nongenomic pathway in mouse MMDD1 macula densa cells and kidneys. Biochem Pharmacol 2009; 79:487-97. [PMID: 19782052 DOI: 10.1016/j.bcp.2009.08.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 01/15/2023]
Abstract
Cyclooxygenase-2 (Cox-2) plays a critical role in TCDD-induced hydronephrosis in mouse neonates. In this study we found that induction of Cox-2 by TCDD in MMDD1, a mouse macula densa cell line, is accompanied with a rapid increase in the enzymatic activity of cytosolic phospholipase A2 (cPLA2) as well as activation of protein kinases. Calcium serves as a trigger for such an action of TCDD in this cell line. These observations indicate that the basic mode of action of TCDD to induce the rapid inflammatory response in MMDD1 is remarkably similar to those mediated by the nongenomic pathway of aryl hydrocarbon receptor (AhR) found in other types of cells. Such an action of TCDD to induce Cox-2 in MMDD1 was not affected by "DRE decoy oligonucleotides" treatment or by introduction of a mutation on the DRE site of Cox-2 promoter, suggesting that this route of action of TCDD is clearly different from that mediated by the classical genomic pathway. An in vivo study with Ahr(nls) mouse model has shown that TCDD-induces Cox-2 and renin expression in the kidneys of the Ahr(nls) mice as well as Ahr(+/-) mice, but not in the Ahr(-/-) mice, indicating that this initial action of TCDD in mouse kidney does not require the translocation of AhR into the nucleus, supporting our conclusion that induction of Cox-2 by TCDD in mouse kidney is largely mediated by the nongenomic pathway of TCDD-activated AhR.
Collapse
Affiliation(s)
- Bin Dong
- Department of Environmental Toxicology, University of California, 4245 Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Furness SGB, Whelan F. The pleiotropy of dioxin toxicity--xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles. Pharmacol Ther 2009; 124:336-53. [PMID: 19781569 DOI: 10.1016/j.pharmthera.2009.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
The aryl hydrocarbon receptor is a signal regulated transcription factor that has best been characterised as regulating the xenobiotic response to a variety of planar aromatic hydrocarbons. There is compelling evidence that it mediates most, if not all, of the toxic effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin). Dioxin exposure results in a wide variety of toxic outcomes including severe wasting syndrome, chloracne, thymic involution, severe immune suppression, reduced fertility, hepatotoxicity, teratogenicity, tumour promotion and death. The pleiotropy of toxic outcomes implies the disruption of a wide range of normal physiological functions. The aryl hydrocarbon receptor has developmentally restricted expression as well as developmental defects in gene-targeted mice. It has a wide range of target genes that do not fit into the classical xenobiotic metabolising gene battery and has recently been shown to interact with NF-kappa B and the estrogen receptor. There is also evidence for its activation in the absence of exogenous ligand, all of which point to various roles outside xenobiotic metabolism. Ligands so far identified display differential activation potential with respect to receptor activity. This article addresses activities of the aryl hydrocarbon receptor that are outside the xenobiotic response. Known physiological roles are discussed as well as how their disruption contributes to the pleiotropic toxicity of TCDD.
Collapse
Affiliation(s)
- Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
28
|
Ramos KS, Nanez A. Genetic regulatory networks of nephrogenesis: deregulation of WT1 splicing by benzo(a)pyrene. ACTA ACUST UNITED AC 2009; 87:192-7. [PMID: 19530133 DOI: 10.1002/bdrc.20148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent studies have identified AHR as a master regulator of Wilms' tumor suppressor gene (WT1) signaling in the developing kidney. Activation of AHR signaling by environmental chemical is associated with proteasome-mediated degradation of AHR protein, disruption of WT1 alternative splicing, and marked alterations in the regulation of genetic programs of developmental progression in the developing kidney. The complexity of genetic regulatory networks of nephrogenesis controlled by AHR-WT1 interactions will be discussed here with particular emphasis given to the biological and medical consequences that may result from deficits in nephrogenesis that compromise reserve capacity and renal function later in life. Understanding the impact of early-life environmental exposures to chemicals that disrupt AHR signaling can help minimize negative health consequences to pregnant women and their offspring.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Delia Baxter Building, Room 227, Louisville, KY 40292, USA.
| | | |
Collapse
|
29
|
Nedd9/Hef1/Cas-L mediates the effects of environmental pollutants on cell migration and plasticity. Oncogene 2009; 28:3642-51. [PMID: 19648964 DOI: 10.1038/onc.2009.224] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aryl hydrocarbon receptor (AhR), or dioxin receptor, is a transcription factor that induces adaptive metabolic pathways in response to environmental pollutants. Recently, other pathways were found to be altered by AhR and its ligands. Indeed, developmental defects elicited by AhR ligands suggest that additional cellular functions may be targeted by this receptor, including cell migration and plasticity. Here, we show that dioxin-mediated activation of Ahr induces Nedd9/Hef1/Cas-L, a member of the Cas protein family recently identified as a metastasis marker. The Hef1 gene induction is mediated by two xenobiotic responsive elements present in this gene promoter. Moreover, using RNA interference, we show that Nedd9/Hef1/Cas-L mediates the dioxin-elicited changes related to cell plasticity, including alterations of cellular adhesion and shape, cytoskeleton reorganization, and increased cell migration. Furthermore, we show that both E-cadherin repression and Jun N-terminal kinases activation by dioxin and AhR also depend on the expression of Nedd9/Hef1/Cas-L. Our study unveils, for the first time, a link between pollutants exposure and the induced expression of a metastasis marker and shows that cellular migration and plasticity markers are regulated by AhR and its toxic ligands.
Collapse
|
30
|
Minami K, Nakajima M, Fujiki Y, Katoh M, Gonzalez FJ, Yokoi T. Regulation of insulin-like growth factor binding protein-1 and lipoprotein lipase by the aryl hydrocarbon receptor. J Toxicol Sci 2009; 33:405-13. [PMID: 18827440 DOI: 10.2131/jts.33.405] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aryl hydrocarbon receptor (Ahr), a ligand-activated transcriptional factor, mediates the transcriptional activation of a battery of genes encoding drug metabolism enzymes. In the present study, we investigated the hepatic mRNA expression profile in Ahr-null (Ahr KO) mice compared to wild-type mice by microarray analysis to find new Ahr target genes. Pooled total RNA samples of liver extracted from 7- and 60-week-old Ahr KO or wild-type mice were studied by DNA microarray representing 19,867 genes. It was demonstrated that 23 genes were up-regulated and 20 genes were down-regulated over 2 fold in Ahr KO mice compared with wild-type mice commonly within the different age groups. We focused on insulin-like growth factor binding protein-1 (Igfbp-1) and lipoprotein lipase (Lpl) that were up-regulated in Ahr KO mice. The higher expression in Ahr KO mice compared to wild-type mice were confirmed by real-time RT-PCR analysis. In the wild-type mice but not in the Ahr KO mice, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment increased the Igfbp-1 and Lpl mRNA levels. The expression profile of Igfbp-1 protein was consistent with that of Igfbp-1 mRNA. Since Lpl is the primary enzyme responsible for hydrolysis of lipids in lipoproteins, the serum triglyceride levels were determined. Indeed, the serum triglyceride levels in Ahr KO mice was lower than that in wild-type mice in accordance with the Lpl mRNA levels. Contrary to our expectation, TCDD treatment significantly increased the serum triglyceride levels in wild-type, but did not in Ahr KO mice. These results suggest that serum triglyceride levels are not correlated with hepatic Lpl expression levels. In the present study, we found that Ahr paradoxically regulates Igfbp-1 and Lpl expressions in the liver.
Collapse
Affiliation(s)
- Keiichi Minami
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Uemura H, Arisawa K, Hiyoshi M, Satoh H, Sumiyoshi Y, Morinaga K, Kodama K, Suzuki TI, Nagai M, Suzuki T. Associations of environmental exposure to dioxins with prevalent diabetes among general inhabitants in Japan. ENVIRONMENTAL RESEARCH 2008; 108:63-68. [PMID: 18649880 DOI: 10.1016/j.envres.2008.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 06/02/2008] [Accepted: 06/12/2008] [Indexed: 05/26/2023]
Abstract
The aim of this study was to evaluate the associations of environmental exposure to dioxins with diabetes among general inhabitants in Japan. A cross-sectional study was performed on 1374 participants, who were not occupationally exposed to dioxins, aged 15-73 years, living widely in 75 different residential areas of 25 prefectures in Japan through 2002-2006. Seven polychlorinated dibenzo-p-dioxins (PCDDs), 10 polychlorinated dibenzofurans (PCDFs), 12 dioxin-like polychlorinated biphenyls (PCBs), which are assigned a toxic equivalency factor, and biochemical factors were determined in fasting blood. A questionnaire survey on life-style including past history of diseases and treatments was also performed. We examined the associations of the accumulated toxic equivalents (TEQs) of PCDDs+PCDFs, dioxin-like PCBs and total dioxins with prevalent diabetes. Simple and partial correlation analyses revealed that HbA1c correlated with the accumulated TEQs of PCDDs+PCDFs, dioxin-like PCBs and total dioxins. In logistic regression analyses, the third and the highest quartiles of dioxin-like PCBs had adjusted odds ratios (ORs) of 3.07 (95% CI 1.16-8.81) and 6.82 (95% CI 2.59-20.1) compared to the reference (first plus second quartiles). On the other hand, the highest but not the third quartiles of PCDDs+PCDFs and total dioxins had significantly higher adjusted ORs compared to the respective references. These associations persisted when the subjects with poor liver or poor renal function were removed from the analysis. This recent representative data from general inhabitants in Japan showed associations of environmental exposure to dioxins, especially dioxin-like PCBs, with diabetes.
Collapse
Affiliation(s)
- Hirokazu Uemura
- Department of Preventive Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang SL, Tsai PC, Yang CY, Guo YL. Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care 2008; 31:1574-9. [PMID: 18487481 PMCID: PMC2494618 DOI: 10.2337/dc07-2449] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Polychlorinated biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs) are important and persistent organic pollutants (POPs) in humans. Recent cross-sectional studies have detected increased concentrations of serum POPs in diabetic patients. We aimed to examine the association between previous high exposures to PCBs and PCDFs and the cumulative incidence of type 2 diabetes and hypertension. RESEARCH DESIGN AND METHODS During the late 1970s, the consumption of rice-bran oil laced with PCBs poisoned thousands of Taiwanese. Between 1993 and 2003, we examined 1,054 Yucheng ("oil disease") victims against neighborhood reference subjects using a protocol blinded for POP exposure. Here, we report the results derived from 378 Yucheng subjects and 370 matched references. RESULTS The diabetes risk to members of the Yucheng cohort relative to their reference subjects was significantly increased for women (odds ratio [OR] 2.1 [95% CI 1.1-4.5]) but not for men after considering age, BMI, cigarette smoking, and alcohol intake. Yucheng women diagnosed with chloracne had adjusted ORs of 5.5 (95% CI 2.3-13.4) for diabetes and 3.5 (1.7-7.2) for hypertension compared with those who were chloracne free. CONCLUSIONS Yucheng women, who had endured previous exposure to PCBs and PCDFs, suffered from increased incidences of diabetes, particularly those who had retained significant levels of pollutant as evident from chloracne. When planning treatments against diabetes, the body burden of PCBs and dioxins should be carefully considered, especially for women.
Collapse
Affiliation(s)
- Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | |
Collapse
|
33
|
Carpenter DO. Environmental contaminants as risk factors for developing diabetes. REVIEWS ON ENVIRONMENTAL HEALTH 2008; 23:59-74. [PMID: 18557598 DOI: 10.1515/reveh.2008.23.1.59] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The contribution of exposure to persistent organic pollutants (POPs) to the incidence of diabetes has received little attention until recently. A number of reports have emerged, however, concerning elevated diabetes in persons occupationally exposed to dioxin. United States (US) Air Force personnel in Vietnam who sprayed Agent Orange containing dioxin as a contaminant had elevated rates of diabetes, leading to US government compensation for diabetes in these veterans. Recent studies in populations exposed to polychlorinated biphenyls (PCBs) and chlorinated pesticides found a dose-dependent elevated risk of diabetes. An elevation in risk of diabetes in relation to levels of several POPs has been demonstrated by two different groups using the National Health and Nutrition Examination Survey (NHANES), a random sampling of US citizens. The strong associations seen in quite different studies suggest the possibility that exposure to POPs could cause diabetes. One striking observation is that obese persons that do not have elevated POPs are not at elevated risk of diabetes, suggesting that the POPs rather than the obesity per se is responsible for the association. Although a specific mechanism is not known, most POPs induce a great number and variety of genes, including several that alter insulin action. Because diabetes is a dangerous disease that is increasing in frequency throughout the world, further study of the possibility that exposure to POPs contributes to the etiology of diabetes is critical.
Collapse
Affiliation(s)
- David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
34
|
Murray IA, Perdew GH. Omeprazole stimulates the induction of human insulin-like growth factor binding protein-1 through aryl hydrocarbon receptor activation. J Pharmacol Exp Ther 2007; 324:1102-10. [PMID: 18055878 DOI: 10.1124/jpet.107.132241] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-Methoxy-2-{(4-methoxy-3,5-dimethyl-pyridin-2-yl)methylsulfinyl}-3H-benzoimidazole (omeprazole), a benzoimidazole-derived gastric H(+)/K(+)-ATPase proton pump inhibitor (PPI) extensively prescribed for the treatment of gastroesophageal acid reflux disease, can stimulate the expression of CYP1A1 via activation of the human aryl hydrocarbon receptor (hAhR) in an apparent nonligand-binding manner. Here, we have examined the effect of nonclassical, i.e., nonligand binding, AhR activation by omeprazole upon human insulin-like growth factor binding protein (hIGFBP)-1, a secreted phosphoprotein involved in regulation of insulin-like growth factor-I/II bioavailability and mitogenic activity. Analysis of the proximal promoter of the hIGFBP-1 gene reveals the presence of an aryl hydrocarbon binding/dioxin response element (DRE). Quantitative mRNA analysis revealed hIGFBP-1 expression to be responsive to both ligand (TCDD) and nonligand (omeprazole) modes of hAhR activation in the human hepatocarcinoma HepG2 cell line. Furthermore, mutagenesis of the DRE renders the hIGFBP-1 promoter unresponsive to both compounds in HepG2 cells. Likewise, small interfering RNA-mediated hAhR ablation inhibits TCDD and omeprazole-dependent hIGFBP-1 induction, as determined by quantitative mRNA analysis. Cotreatment with cycloheximide further suggests a direct transcriptional role for hAhR at the hIGFBP-1 promoter. Omeprazole exposure prompted a significant increase in both hIGFBP-1 mRNA and secreted protein from HepG2 cells. In addition, we present in vitro evidence indicating that omeprazole at a concentration comparable with that found circulating in subjects undergoing PPI therapy can stimulate the expression of hIGFBP-1. These data demonstrate that activation of hAhR by pharmaceuticals such as omeprazole can alter IGFBP-1 expression and thus may influence IGFBP-1-dependent physiological processes.
Collapse
Affiliation(s)
- Iain A Murray
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, 309A Life Sciences Bldg., The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
35
|
Magne L, Blanc E, Marchand A, Fafournoux P, Barouki R, Rouach H, Garlatti M. Stabilization of IGFBP-1 mRNA by ethanol in hepatoma cells involves the JNK pathway. J Hepatol 2007; 47:691-8. [PMID: 17640761 DOI: 10.1016/j.jhep.2007.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/13/2007] [Accepted: 05/07/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Insulin-like growth factor-binding protein-1 (IGFBP-1) modulates cell growth and metabolism in a variety of physiopathological conditions. The aim of this study was to determine the molecular mechanisms involved in IGFBP-1 upregulation by ethanol. METHODS We studied IGFBP-1 regulation by ethanol at the protein, mRNA and gene promoter levels in the human hepatocarcinoma cell line, HepG2, which does not express significantly ethanol-metabolizing enzymes. RESULTS Ethanol (35-150mM) induced the IGFBP-1 mRNA and protein up to 5-fold in a dose-dependent manner. A similar effect was observed using primary cultures of human hepatocytes. Various inhibitors of ethanol metabolism and the antioxidant N-acetylcysteine did not prevent ethanol effects. While ethanol did not modify the IGFBP-1 gene promoter activity, it elicited a 2- to 3-fold increase in IGFBP-1 mRNA half-life and this stabilization required the 5' and the 3' untranslated mRNA region. Ethanol triggered a rapid activation of c-Jun N-terminal Kinase (JNK) in HepG2 cells and IGFBP-1 induction was significantly decreased by a specific inhibitor of JNK. CONCLUSIONS This study reveals a novel pathway of gene regulation by alcohol which involves the activation of JNK and the consequent mRNA stabilization.
Collapse
Affiliation(s)
- Laurent Magne
- INSERM U747, Laboratoire de Pharmacologie, Toxicologie et Signalisation Cellulaire, Paris F-75006, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, Mendrick DL, Zacharewski TR. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol Sci 2006; 94:398-416. [PMID: 16960034 DOI: 10.1093/toxsci/kfl100] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an effort to further characterize conserved and species-specific mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated toxicity, comparative temporal and dose-response microarray analyses were performed on hepatic tissue from immature, ovariectomized Sprague Dawley rats and C57BL/6 mice. For temporal studies, rats and mice were gavaged with 10 or 30 microg/kg of TCDD, respectively, and sacrificed after 2, 4, 8, 12, 18, 24, 72, or 168 h while dose-response studies were performed at 24 h. Hepatic gene expression profiles were monitored using custom cDNA microarrays containing 8567 (rat) or 13,361 (mouse) cDNA clones. Affymetrix data from male rats treated with 40 microg/kg TCDD were also included to expand the species comparison. In total, 3087 orthologous genes were represented in the cross-species comparison. Comparative analysis identified 33 orthologous genes that were commonly regulated by TCDD as well as 185 rat-specific and 225 mouse-specific responses. Functional annotation using Gene Ontology identified conserved gene responses associated with xenobiotic/chemical stress and amino acid and lipid metabolism. Rat-specific gene expression responses were associated with cellular growth and lipid metabolism while mouse-specific responses were associated with lipid uptake/metabolism and immune responses. The common and species-specific gene expression responses were also consistent with complementary histopathology, clinical chemistry, hepatic lipid analyses, and reports in the literature. These data expand our understanding of TCDD-mediated gene expression responses and indicate that species-specific toxicity may be mediated by differences in gene expression which may help explain the wide range of species sensitivities and will have important implications in risk assessment strategies.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Diry M, Tomkiewicz C, Koehle C, Coumoul X, Bock KW, Barouki R, Transy C. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 2006; 25:5570-4. [PMID: 16619036 DOI: 10.1038/sj.onc.1209553] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/31/2006] [Accepted: 02/22/2006] [Indexed: 02/01/2023]
Abstract
Environmental chemicals such as dioxin adversely affect immune, neurological and reproductive functions and have been implicated in cancer development. However, the mechanisms responsible for dioxin toxicity are still poorly understood. Here, we show that dioxin and related pollutants trigger a marked morphological change in epithelial cells that remodel their cytoskeleton to increase interaction with extra cellular matrix while loosening cell-cell contacts. Furthermore, dioxin-treated cells show increased motility. These dioxin-mediated effects are mimicked by constitutive expression and activation of the intracellular dioxin receptor (aryl hydrocarbon receptor (AhR)). They correlate with activation of the Jun NH2-terminal kinase (JNK) and are reverted by treatment with a JNK inhibitor. Dioxin-induced effects occur 48 h post-treatment initiation, a time scale, which argues for a genomic effect of the AhR, linked to induction of target genes. This novel Ahr action on cell plasticity points to a role in cancer progression.
Collapse
Affiliation(s)
- M Diry
- UMR-S 490 INSERM, UFR Biomédicale des Saints Pères, Paris, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim WK, In YJ, Kim JH, Cho HJ, Kim JH, Kang S, Lee CY, Lee SC. Quantitative relationship of dioxin-responsive gene expression to dioxin response element in Hep3B and HepG2 human hepatocarcinoma cell lines. Toxicol Lett 2006; 165:174-81. [PMID: 16697128 DOI: 10.1016/j.toxlet.2006.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 03/03/2006] [Accepted: 03/10/2006] [Indexed: 11/29/2022]
Abstract
Dioxin response element (DRE) is a cis-acting DNA sequence mediating the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced gene expression. The present study was undertaken to elucidate TCDD-responsive gene expression profiles and their relationships to the number of DREs in liver cancer cells. Hep3B and HepG2 human hepatocarcinoma cells were exposed to 50-nM TCDD for 0, 1, 2 and 4h in culture, after which gene expression profiles were analyzed by the microarray hybridization using a chip containing 24,000 cDNAs prepared from the human liver. The TCDD-responsive expression levels in each gene were calculated by dividing the densitometric values of the hybridization signal for h1, h2 and h4 by that of h0, followed by transformation of the resulting data into a log scale with the base of 2. Up- and down-regulated gene expressions were defined as >0.585 and <-0.585 by the log scale (>1.5 and <1/1.5 arithmetically), respectively, exhibited at any time after h0. Hep3B and HepG2 cells had 27 and 58 TCDD-responsive, up-regulated genes, respectively, of which 78% (21/27) and 62% (36/58) had one or more DREs. Of these 85, 80 genes were up-regulated exclusively in one of the two lines, with CYP1A1 and PPP1R15A being so regulated in both lines. Expression levels of the up-regulated genes at h1, h2 and h4 were correlated with each other (P<0.01) and the mean of these regressed to the number of DRE(s) in both lines (P<0.01). However, expression of a total of 93 TCDD-responsive, down-regulated genes, of which 46% contained DRE(s), had no relation to the number of DRE(s). In conclusion, results suggest that DREs may cooperatively mediate the expression of TCDD-responsive genes in liver cancer cells.
Collapse
Affiliation(s)
- Won Kon Kim
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and BioTechnology (KRIBB), Daejeon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bock KW, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 2006; 72:393-404. [PMID: 16545780 DOI: 10.1016/j.bcp.2006.01.017] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of chemosensors and developmental regulators. It represents a multifunctional molecular switch regulating endo- and xenobiotic metabolism as well as cell proliferation and differentiation. Physiologic functions of the AhR are beginning to be understood, including functions in vascular development, and in detoxification of endo- and xenobiotics. The AhR is also recognized as the culprit for most toxic responses observed after exposure to dioxins and related compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The non-metabolizable AhR agonist TCDD has to be distinguished from the myriad of metabolizable agonists present as dietary contaminants and plant constituents as well as endogenous toxins. The hypothesis is emerging that the diverse tissue-specific, TCDD-mediated toxicities are due to sustained and inappropriate AhR activation leading to deregulated physiologic functions. In support of this hypothesis recent observations in the context of some TCDD-mediated toxic responses are discussed, such as chloracne, cleft palate, thymus involution and in particular carcinogenesis. Major open questions are addressed, such as ligand-independent AhR activation by phosphorylation and the large differences in species-dependent susceptibility to toxic responses. Though important issues remain unresolved, the commentary is intended to stimulate efforts to understand dioxin-mediated toxic responses with emphasis on carcinogenesis in comparison with AhR-mediated physiologic functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
40
|
Vasiliu O, Cameron L, Gardiner J, Deguire P, Karmaus W. Polybrominated Biphenyls, Polychlorinated Biphenyls, Body Weight, and Incidence of Adult-Onset Diabetes Mellitus. Epidemiology 2006; 17:352-9. [PMID: 16755267 DOI: 10.1097/01.ede.0000220553.84350.c5] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Prior studies have reported an increased risk of diabetes related to polychlorinated biphenyl (PCB) exposure. No study has yet investigated whether polybrominated biphenyls (PBBs), which are similar in chemical structure, increase the incidence of diabetes. METHODS The Michigan PBB cohort was established in 1976 and surveyed again in 1991-1993 and in 2001. PBB and PCB serum levels were measured from blood collected at enrollment. To determine the incidence of adult-onset diabetes, we analyzed cohort members without diabetes at enrollment, ages 20 years and older, with known PBB and PCB levels, who participated in at least 1 follow-up survey (n = 1384). Using Poisson regression, we determined the incidence density ratio (IDR) of diabetes for different serum levels of PBB and PCB, controlling for age, body mass index, smoking, and alcohol consumption at enrollment. RESULTS Analyzing 25 years of follow-up data, we did not find that higher PBB serum levels were a risk factor for the incidence of diabetes mellitus. However, in women, but not in men, higher PCB serum levels were associated with increased incidence of diabetes (IDR = 2.33; 95% confidence interval = 1.25-4.34 in the highest PCB group compared with the lowest). In both men and women, overweight and obesity increased the diabetes incidence. CONCLUSIONS We found no association between PBB serum levels and diabetes incidence. In women, there was a positive linear association of diabetes incidence with PCB serum levels at enrollment. This finding is in agreement with 2 prior studies indicating a higher relative risk of diabetes in PCB-exposed women.
Collapse
Affiliation(s)
- Oana Vasiliu
- Department of Epidemiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
41
|
Marchand A, Tomkiewicz C, Magne L, Barouki R, Garlatti M. Endoplasmic Reticulum Stress Induction of Insulin-like Growth Factor-binding Protein-1 Involves ATF4. J Biol Chem 2006; 281:19124-33. [PMID: 16687408 DOI: 10.1074/jbc.m602157200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is sensed by cells in different physiopathological conditions in which there is an accumulation of unfolded proteins in the ER. A coordinated adaptive program called the unfolded protein response is triggered and includes translation inhibition, transcriptional activation of a set of genes encoding mostly intracellular proteins, and ultimately apoptosis. Here we show that insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1), a secreted protein that modulates IGF bioavailability and has other IGF-independent effects, is potently induced during ER stress in human hepatocytes. Various ER stress-inducing agents were able to increase IGFBP-1 mRNA levels, as well as cellular and secreted IGFBP-1 protein up to 20-fold. A distal regulatory region of the human IGFBP-1 gene (-6682/-6384) containing an activating transcription factor 4 (ATF4) composite site was required for promoter activation upon ER stress. Mutation of the ATF4 composite site led to the loss of IGFBP-1 regulation. Electrophoretic mobility shift assay revealed an ER stress-inducible complex that was displaced by an ATF4 antibody. Knockdown of ATF4 expression using two specific small interfering RNAs impaired up-regulation of IGFBP-1 mRNA, which highlights the relevance of ATF4 in endogenous IGFBP-1 gene induction. In addition to intracellular proteins involved in secretory and metabolic pathways, we conclude that ER stress induces the synthesis of secreted proteins. Increased secretion of IGFBP-1 during hepatic ER stress may thus constitute a signal to modulate cell growth and metabolism and induce a systemic adaptive response.
Collapse
Affiliation(s)
- Alexandre Marchand
- INSERM UMR-S 747, Université Paris-Descartes, 45 Rue des Saints-Pères, 75270 Paris, France
| | | | | | | | | |
Collapse
|
42
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
43
|
Carney SA, Prasch AL, Heideman W, Peterson RE. Understanding dioxin developmental toxicity using the zebrafish model. ACTA ACUST UNITED AC 2006; 76:7-18. [PMID: 16333842 DOI: 10.1002/bdra.20216] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zebrafish (Danio rerio) have advantages over mammals as an animal model for investigating developmental toxicity. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin, TCDD), a persistent global contaminant, is the most comprehensively studied developmental toxicant in zebrafish. The hallmark responses of TCDD developmental toxicity manifested in zebrafish larvae include edema, anemia, hemorrhage, and ischemia associated with arrested growth and development. Heart and vasculature development and function are severely impaired, and jaw malformations occur secondary to inhibited chondrogenesis. The swim bladder fails to inflate, and the switch from embryonic to adult erythropoiesis is blocked. This profile of developmental toxicity responses, commonly referred to as "blue sac syndrome" because the edematous yolk sac appears blue, is observed in the larval form of all freshwater fish species exposed to TCDD at the embryonic stage of development. Components of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator (AHR/ARNT) signaling pathway in zebrafish have been identified and functionally characterized. Their role in mediating TCDD toxicity has been determined using morpholinos to specifically knockdown the translation of zfAHR1, zfAHR2, zfARNT1, and zfARNT2 mRNAs, respectively, and a line of zfARNT2 null mutant zebrafish has provided further insight. These studies have shown that zfAHR2 and zfARNT1 mediate TCDD developmental toxicity. In addition, the growing use of molecular and genomic tools for research on zebrafish have led to advances in our understanding of the mechanism of TCDD developmental toxicity at the molecular level, including the recent finding that toxicity is not mediated by increased cytochrome P4501A (zfCYP1A) expression.
Collapse
Affiliation(s)
- Sara A Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705-2222, USA
| | | | | | | |
Collapse
|