1
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
2
|
Sánchez ML, Coveñas R. The Neurotensinergic System: A Target for Cancer Treatment. Curr Med Chem 2021; 29:3231-3260. [PMID: 34711154 DOI: 10.2174/0929867328666211027124328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scientific interest regarding the involvement of peptides in cancer has increased in the last years. In tumor cells the overexpression of peptides and their receptors is known and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk and worse sensitivity to chemotherapy agents. OBJECTIVE The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR) and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver and pancreatic cancers, glioblastoma, neuroendocrine tumors and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested such as: molecules regulating the expression of the NT precursor, influence of the diet in the development of tumors, molecules and signaling pathways activated by NT and antitumor therapeutic strategies targeting the neurotensinergic system. CONCLUSION NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| | - Rafael Coveñas
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| |
Collapse
|
3
|
Takahashi K, Ehata S, Miyauchi K, Morishita Y, Miyazawa K, Miyazono K. Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Mol Oncol 2021; 15:151-166. [PMID: 33034134 PMCID: PMC7782081 DOI: 10.1002/1878-0261.12815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the cancers with the poorest prognosis, with a 5-year survival rate of approximately 5-10%. Thus, it is urgent to identify molecular targets for the treatment of pancreatic cancer. Using serial transplantations in a mouse pancreatic orthotopic inoculation model, we previously produced highly malignant pancreatic cancer sublines with increased tumor-forming abilities in vivo. Here, we used these sublines to screen molecular targets for the treatment of pancreatic cancer. Among the genes with increased expression levels in the sublines, we focused on those encoding cell surface receptors that may be involved in the interactions between cancer cells and the tumor microenvironment. Based on our previous RNA-sequence analysis, we found increased expression levels of neurotensin (NTS) receptor 1 (NTSR1) in highly malignant pancreatic cancer sublines. Furthermore, re-analysis of clinical databases revealed that the expression level of NTSR1 was increased in advanced pancreatic cancer and that high NTSR1 levels were correlated with a poor prognosis. Overexpression of NTSR1 in human pancreatic cancer cells Panc-1 and SUIT-2 accelerated their tumorigenic and metastatic abilities in vivo. In addition, RNA-sequence analysis showed that MAPK and NF-κB signaling pathways were activated upon NTS stimulation in highly malignant cancer sublines and also revealed many new target genes for NTS in pancreatic cancer cells. NTS stimulation increased the expression of MMP-9 and other pro-inflammatory cytokines and chemokines in pancreatic cancer cells. Moreover, the treatment with SR48692, a selective NTSR1 antagonist, suppressed the activation of the MAPK and NF-κB signaling pathways and induction of target genes in pancreatic cancer cells in vitro, while the administration of SR48692 attenuated the tumorigenicity of pancreatic cancer cells in vivo. These findings suggest that NTSR1 may be a prognostic marker and a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Shogo Ehata
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
- Environmental Science CenterThe University of TokyoBunkyo‐kuJapan
| | - Kensuke Miyauchi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Yasuyuki Morishita
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keiji Miyazawa
- Department of BiochemistryGraduate School of MedicineUniversity of YamanashiChuoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
4
|
Zhu T, Chen Y, Liu Z, Leng Y, Tian Y. Expression profiles and prognostic significance of AFTPH in different tumors. FEBS Open Bio 2020; 10:2666-2677. [PMID: 33090728 PMCID: PMC7714068 DOI: 10.1002/2211-5463.13003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023] Open
Abstract
Aftiphilin (AFTPH) plays an important role in regulating intracellular trafficking, exocytosis, and the pro‐inflammatory response. However, the potential prognostic role of AFTPH in cancers remains unclear. Here, we examined the expression profiles and prognostic significance of AFTPH in breast invasive carcinoma (BRCA), diffuse large B‐cell lymphoma (DLBC), lung squamous cell carcinoma (LUSC), and pancreatic adenocarcinoma (PADD) using the GEPIA and UALCAN databases. AFTPH expression was observed to be higher in cancer tissues than in normal tissues, but expression did not differ significantly between tumor stages for the four cancer types. AFTPH expression in cancer cell lines was investigated using the CCLE database; AFTPH was found to be highly expressed in four cancer cell lines. The relationship between AFTPH expression and patient prognosis was analyzed using GEPIA, LinkedOmics, and Kaplan–Meier plotter databases. Low expression of AFTPH was associated with improved prognosis for BRCA, DLBC, LUSC, and PAAD. Genetic alterations of AFTPH in cancers were explored using the cBioPortal website, revealing that gene copy number gains and amplification are common in BRCA, DLBC, LUSC, and PAAD. Related genes and markers associated with AFTPH were discovered using the LinkedOmics database. Furthermore, transfection of cells with AFTPH siRNA demonstrated that AFTPH exerts positive effects on cell proliferation in BRCA, LUSC, and PAAD cells. In conclusion, AFTPH may be a potential therapeutic target and prognostic biomarker for BRCA, DLBC, LUSC, and/or PAAD.
Collapse
Affiliation(s)
- Tengjiao Zhu
- Third Hospital of Peking University, Beijing, China
| | | | - Zhongjun Liu
- Third Hospital of Peking University, Beijing, China
| | - Yuxin Leng
- Third Hospital of Peking University, Beijing, China
| | - Yun Tian
- Third Hospital of Peking University, Beijing, China
| |
Collapse
|
5
|
Dao T, Salahuddin S, Charfi C, Sicard AA, Jenabian MA, Annabi B. Pharmacological targeting of neurotensin response by diet-derived EGCG in macrophage-differentiated HL-60 promyelocytic leukemia cells. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Li J, Li X, Song J, Yan B, Rock S, Jia J, Liu J, Wang C, Weiss T, Weiss HL, Gao T, Alam A, Evers BM. Absence of neurotensin attenuates intestinal dysbiosis and inflammation by maintaining Mmp7/α-defensin axis in diet-induced obese mice. FASEB J 2020; 34:8596-8610. [PMID: 32359121 PMCID: PMC7754978 DOI: 10.1096/fj.201902374rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
We previously reported that high levels of plasma neurotensin (NT), a gut hormone released from enteroendocrine cells of the small bowel, contribute to obesity and comorbid conditions. Gut microbiota has been implicated in the obesity development. Paneth cells are critical in maintaining gut microbiota composition and homeostasis by releasing antimicrobial proteins including α-defensins. The purpose of our current study was to determine the possible role of NT in gut microbiota composition and α-defensin gene expression associated with obesity. Here we show that the ratio of Firmicutes/Bacteroidetes (F/B ratio) and intestinal proinflammatory cytokines is significantly increased in NT+/+ mice fed with a high-fat diet (HFD) which were improved in NT-deficient mice. HFD disrupted the intestinal Mmp7/α-defensin axis, which was completely prevented in NT-/- mice. In addition, NT treatment inhibited DEFA5 expression and concurrent NF-κB activity, which was blocked by a pan PKC inhibitor (Gö6983) or an inhibitor for atypical PKCs (CRT0066854). More importantly, the shRNA-mediated knockdown of atypical PKCτ reversed NT-attenuated DEFA5 expression and increased NF-κB activity. NT contributes to the HFD-induced disruption of gut microbiota composition and α-defensin expression. PKCτ/λ plays a central role in NT-mediated α-defensin gene expression which might be mediated through the inhibition of NF-κB signaling pathways in Paneth cells.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Xian Li
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Baoxiang Yan
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Stephanie Rock
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Todd Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ashfaqul Alam
- Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020. [DOI: 10.3390/ijms21103494
expr 969553959 + 931886332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
8
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
9
|
Xiao P, Long X, Zhang L, Ye Y, Guo J, Liu P, Zhang R, Ning J, Yu W, Wei F, Yu J. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology 2018; 7:e1440166. [PMID: 29900041 DOI: 10.1080/2162402x.2018.1440166] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that neurotensin (NTS) induces local inflammation and promotes tumor invasion in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms are not clear. In this study, positive correlations between NTS and interleukin (IL)-8 were identified at both the mRNA and protein levels in 71 fresh HCC tissues and 100 paraffin-embedded HCC tissues. Furthermore, significant correlations were determined among the co-expression of NTS and IL-8, infiltration of inflammatory cells and enhanced epithelial-mesenchymal transition (EMT) of HCC cells. NTS-induced IL-8 production was associated with activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways rather than the protein kinase C (PKC) and phosphoinositide-3 kinase (PI3K) pathways, whose specific antagonists significantly inhibited activation of the NTS/IL-8 pathway. IL-8, which promoted EMT and HCC invasion both in vitro and in vivo, was produced by NTS-induced HCC cells and was effectively attenuated by blocking IL-8 receptors in vitro. Moreover, HCC-derived IL-8 attracted more CD68+ tumor-associated macrophages (TAMs) and CD66b+ polymorphonuclear neutrophils (PMNs) to the local microenvironment, displaying enhanced cytokine secretion and phagocytosis. IL-8 stimulated the M2 polarization of TAMs, which promoted the EMT and invasive potential of HCC cells. Blockage of the IL-8 receptor, NTR1 receptor or both significantly reduced HCC metastases in tumor-bearing mouse models via inhibiting EMT. In summary, aberrant activation of the NTS/IL-8 pathway in HCC dramatically stimulated the invasive potential of HCC cells. HCC-derived IL-8 promoted a pro-oncogenic inflammatory microenvironment by inducing M2-type TAMs and indirectly promoting EMT, which might be a valuable therapeutic target to prevent tumor progression.
Collapse
Affiliation(s)
- Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Lijie Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Jincheng Guo
- Bioinformatics Research Group & Health Big-Data, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
10
|
Ye Y, Long X, Zhang L, Chen J, Liu P, Li H, Wei F, Yu W, Ren X, Yu J. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget 2018; 7:70303-70322. [PMID: 27611941 PMCID: PMC5342554 DOI: 10.18632/oncotarget.11854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS+NTR1+) is a poor prognostic factor correlated with aggressive biological behaviors and poor clinical prognosis. Enhanced epithelial-to-mesenchymal transition (EMT) features, including decreased E-cadherin, increased β-catenin translocation and N-cadherin expression, were identified in NTS+NTR1+ HCC tissues. Varied NTS-responsible HCC cell lines were established using NTR1 genetically modified Hep3B and HepG2 cells which were used to elucidate the molecular mechanisms regulating NTS-induced EMT and tumor invasion in vitro. Results revealed that inducing exogenous NTS stimulation and enhancing NTR1 expression promoted tumor invasion rather than proliferation by accelerating EMT in HCC cells. The NTS-induced EMT was correlated with the remarkable increase in Wnt1, Wnt3, Wnt5, Axin, and p-GSK3β expression and was significantly reversed by blocking the NTS signaling via the NTR1 antagonist SR48692 or by inhibiting the activation of the Wnt/β-catenin pathway via specific inhibitors, such as TSW119 and DKK-1. SR48692 also inhibited the metastases of NTR1-overexpressing HCC xenografts in the lungs in vivo. This finding implied that NTS may be an important stimulus to promote HCC invasion and metastasis both in vitro and in vivo, and NTS signaling enhanced the tumor EMT and invasion potentials by activating the canonical Wnt/β-catenin signaling pathway. Therefore, NTS may be a valuable therapeutic target to prevent tumor progression in HCC.
Collapse
Affiliation(s)
- Yingnan Ye
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Lijie Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jieying Chen
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China.,Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
11
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Abstract
BACKGROUND Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. METHODS This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. RESULTS Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. CONCLUSIONS These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder.
Collapse
Affiliation(s)
- Jingzhen Yuan
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA.
| | - Stephen J Pandol
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
13
|
Bakirtzi K, Law IKM, Xue X, Iliopoulos D, Shah YM, Pothoulakis C. Neurotensin Promotes the Development of Colitis and Intestinal Angiogenesis via Hif-1α-miR-210 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:4311-21. [PMID: 27076683 DOI: 10.4049/jimmunol.1501443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Neurotensin (NT) via its receptor 1 (NTR1) modulates the development of colitis, decreases HIF-1α/PHD2 interaction, stabilizes and increases HIF-1α transcriptional activity, and promotes intestinal angiogenesis. HIF-1α induces miR-210 expression, whereas miR-210 is strongly upregulated in response to NT in NCM460 human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1). In this study, we examined whether NT activates a NTR1-HIF-1α-miR-210 cascade using in vitro (NCM460-NTR1 cells) and in vivo (transgenic mice overexpressing [HIF-1α-OE] or lacking HIF-1α [HIF-1α-knockout (KO)] in intestinal epithelial cells and mice lacking NTR1 [NTR1-KO]) models. Pretreatment of NCM460-NTR1 cells with the HIF-1α inhibitor PX-478 or silencing of HIF-1α (small interfering HIF-1α) attenuated miR-210 expression in response to NT. Intracolonic 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration (2-d model) increased colonic miR-210 expression that was significantly reduced in NTR1-KO, HIF-1α-KO mice, and wild-type mice pretreated intracolonically with locked nucleic acid anti-miR-210. In contrast, HIF-1α-OE mice showed increased miR-210 expression at baseline that was further increased following TNBS administration. HIF-1α-OE mice had also exacerbated TNBS-induced neovascularization compared with TNBS-exposed wild-type mice. TNBS-induced neovascularization was attenuated in HIF-1α-KO mice, or mice pretreated intracolonically with anti-miR-210. Intracolonic anti-miR-210 also reduced colitis in response to TNBS (2 d). Importantly, miR-210 expression was increased in tissue samples from ulcerative colitis patients. We conclude that NT exerts its proinflammatory and proangiogenic effects during acute colitis via a NTR1-prolyl hydroxylase 2/HIF-1α-miR-210 signaling pathway. Our results also demonstrate that miR-210 plays a proinflammatory role in the development of colitis.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiang Xue
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dimitrios Iliopoulos
- Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
14
|
Law IKM, Jensen D, Bunnett NW, Pothoulakis C. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin. Sci Rep 2016; 6:22195. [PMID: 26902265 PMCID: PMC4763298 DOI: 10.1038/srep22195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Dane Jensen
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Parkville, Monash University, Australia
- Department of Anesthesia and Peri-operative Medicine, Monash University, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Australia
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
15
|
Law IKM, Bakirtzi K, Polytarchou C, Oikonomopoulos A, Hommes D, Iliopoulos D, Pothoulakis C. Neurotensin--regulated miR-133α is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis. Gut 2015; 64:1095-104. [PMID: 25112884 PMCID: PMC4422787 DOI: 10.1136/gutjnl-2014-307329] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. DESIGN miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated intracolonicaly prior to induction of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and dextran sodium sulfate (DSS)-induced colitis. The effect of AFTPH was examined by gene silencing in vitro. RESULTS NT increased miR-133α levels in NCM-460 overexpressing NTR1 (NCM460-NTR1) and HCT-116 cells. NT-induced p38, ERK1/2, c-Jun, and NF-κB activation, as well as IL-6, IL-8 and IL-1β messenger RNA (mRNA) expression in NCM-460-NTR1 cells were reduced in miR-133α-silenced cells, while overexpression of miR-133α reversed these effects. MiR-133α levels were increased in TNBS (2 day) and DSS (5 day) colitis, while NTR1 deficient DSS-exposed mice had reduced miR-133α levels, compared to wild-type colitic mice. Intracolonic as-miR-133α attenuated several parameters of colitis as well expression of proinflammatory mediators in the colonic mucosa. In silico search coupled with qPCR identified AFTPH as a downstream target of miR-133α, while NT decreased AFTPH expression in NCM-460-NTR1 colonocytes. Gene silencing of AFTPH enhanced NT-induced proinflammatory responses and AFTPH levels were downregulated in experimental colitis. Levels of miR-133α were significantly upregulated, while AFTPH levels were downregulated in colonic biopsies of patients with ulcerative colitis compared to controls. CONCLUSIONS NT-associated colitis and inflammatory signalling are regulated by miR-133α-AFTPH interactions. Targeting of miR-133α or AFTPH may represent a novel therapeutic approach in inflammatory bowel disease.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Christos Polytarchou
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Angelos Oikonomopoulos
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Daniel Hommes
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Ye Y, Liu P, Wang Y, Li H, Wei F, Cheng Y, Han L, Yu J. Neurotensin, a Novel Messenger to Cross-Link Inflammation and Tumor Invasion via Epithelial-Mesenchymal Transition Pathway. Int Rev Immunol 2014; 35:340-350. [PMID: 25215420 DOI: 10.3109/08830185.2014.952412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multiple cytokines and growth factors are critical for the prognosis of cancer which has been regarded as a worldwide health problem. Recently, neuropeptides, soluble factors regulating a series of functions in the central nervous system, have also been demonstrated to stimulate the proliferation and migration of tumor cells. Among these signaling peptides, the role of neurotensin (NTS) on malignancy procession has become a hot topic. The effects of NTS on tumor growth and its antiapoptosis role have already been identified. Subsequently, studies demonstrated the impact of NTS on the migration and invasion, but the molecular mechanisms involved are still unclear at present. Recently, some reports indicated that NTS could induce expression and secretion of interleukin-8 (IL-8) to promote local imflammatory response which might participate in epithelial-mesenchymal transition (EMT)-related tumor migration. In present review, we highlight the process of tumor EMT induced by NTS through stimulating IL-8 and the significance of NTS/IL-8 pathway in clinical application prospect.
Collapse
Affiliation(s)
- Yingnan Ye
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Pengpeng Liu
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Yue Wang
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Hui Li
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Feng Wei
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| | - Yanan Cheng
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Lei Han
- b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China
| | - Jinpu Yu
- a Department of Immunology , Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China.,b Cancer Molecular Diagnostic Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy , Tianjin , P. R. China.,c Biotherapy Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , P. R. China
| |
Collapse
|
17
|
Xu ZP, Song Y, Yang K, Zhou W, Hou LN, Zhu L, Chen HZ, Cui YY. M3 mAChR-mediated IL-8 expression through PKC/NF-κB signaling pathways. Inflamm Res 2014; 63:463-73. [PMID: 24522860 DOI: 10.1007/s00011-014-0718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE M3 muscarinic acetylcholine receptor (mAChR) plays an important role in the regulation of cytokine production in inflammatory diseases. In this study, we explored the precise role of M3 mAChR under stimulation with agonist in IL-8 expression and of the signaling pathway involved in this process. MATERIALS AND METHODS Recombinant U2OS cells stably expressing M3 mAChR as a model system were stimulated by carbachol to evaluate the role of M3 mAChR in the expression of IL-8. RESULTS Activation of M3 mAChR with carbachol increased both IL-8 mRNA and protein expression in a concentration-dependent manner. Elevated IL-8 expression was completely antagonized by atropine, 4-DAMP and tiotropium. M3 mAChR-mediated IL-8 expression was almost completely inhibited by the NF-κB inhibitor BAY11-7082 and, to a lesser extent, by U0126, SB203580, and SP600125, which are inhibitors for ERK1/2, p38, and JNK, respectively. Furthermore, M3 mAChR-mediated NF-κB activation and IL-8 expression were simultaneously attenuated by the PKC inhibitor calphostin C, whereas PMA, a PKC activator, mimicked the effects of carbachol, inducing IL-8 expression. CONCLUSIONS Our findings offer insights into the specific and critical role of M3 mAChR in regulating inflammatory response and indicate M3 mAChR/PKC/NF-κB signaling axis driven by endogenous acetylcholine as a potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Zu-Peng Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Moura LIF, Cruz MT, Carvalho E. The effect of neurotensin in human keratinocytes--implication on impaired wound healing in diabetes. Exp Biol Med (Maywood) 2013; 239:6-12. [PMID: 24198343 DOI: 10.1177/1535370213510665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetic foot ulcers are an important complication of diabetes mellitus characterized by chronic, non-healing ulcers resulting from poor proliferation and migration of fibroblasts and keratinocytes, thus impairing a correct re-epithelialization of wounded tissues. This healing process can be modulated by neuropeptides released from peripheral nerves; however, little is known regarding the role of neurotensin (NT) as a modulator of human keratinocyte function under hyperglycemic conditions. Therefore, this work is focused on the effect of NT in human keratinocytes, under normal and hyperglycemic conditions at different functional levels, namely NT receptors, cytokine, and growth factor expression, as well as proliferation and migration. Human keratinocyte cells were maintained at either 10/30 mM glucose and treated with or without NT (10 nM). The results show that NT did not affect keratinocyte viability. In addition, NT and all NT receptor expression levels were significantly reduced by hyperglycemia; however, NT treatment stimulated expression of NT and neurotensin receptor 2 (NTR2) while neurotensin receptor 1 (NTR1) and neurotensin receptor 3 (NTR3) expression levels were unchanged. Keratinocyte proliferation was not affected by NT and hyperglycemia, while cell migration was reduced by NT treatment. These results demonstrated that hyperglycemic conditions strongly impaired endogenous NT and NTR2 expression in keratinocytes. Despite the addition of exogenous NT to stimulate the endogenous NT and NTR2 expression, these changes do not translate into functional modifications on keratinocytes, particularly in terms of migration, proliferation, and production of cytokines or growth factors. These results suggest that NT production by keratinocytes may exert a paracrine effect on other skin cells, namely fibroblasts, macrophages, and dendritic cells for correct wound healing.
Collapse
Affiliation(s)
- Liane I F Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
19
|
Neurotensin modulates the migratory and inflammatory response of macrophages under hyperglycemic conditions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:941764. [PMID: 24000330 PMCID: PMC3755412 DOI: 10.1155/2013/941764] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFUs) are characterized by an unsatisfactory inflammatory and migratory response. Skin inflammation involves the participation of many cells and particularly macrophages. Macrophage function can be modulated by neuropeptides; however, little is known regarding the role of neurotensin (NT) as a modulator of macrophages under inflammatory and hyperglycemic conditions. RAW 264.7 cells were maintained at 10/30 mM glucose, stimulated with/without LPS (1 μg/mL), and treated with/without NT(10 nM). The results show that NT did not affect macrophage viability. However, NT reverted the hyperglycemia-induced impair in the migration of macrophages. The expression of IL-6 and IL-1β was significantly increased under 10 mM glucose in the presence of NT, while IL-1β and IL-12 expression significantly decreased under inflammatory and hyperglycemic conditions. More importantly, high glucose modulates NT and NT receptor expression under normal and inflammatory conditions. These results highlight the effect of NT on cell migration, which is strongly impaired under hyperglycemic conditions, as well as its effect in decreasing the proinflammatory status of macrophages under hyperglycemic and inflammatory conditions. These findings provide new insights into the potential therapeutic role of NT in chronic wounds, such as in DFU, characterized by a deficit in the migratory properties of cells and a chronic proinflammatory status.
Collapse
|
20
|
Saada S, Marget P, Fauchais AL, Lise MC, Chemin G, Sindou P, Martel C, Delpy L, Vidal E, Jaccard A, Troutaud D, Lalloué F, Jauberteau MO. Differential expression of neurotensin and specific receptors, NTSR1 and NTSR2, in normal and malignant human B lymphocytes. THE JOURNAL OF IMMUNOLOGY 2012; 189:5293-303. [PMID: 23109725 DOI: 10.4049/jimmunol.1102937] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotensin, a neuropeptide growth factor, and its two specific neurotensin receptors, NTSR1 and NTSR2, were shown to be expressed by human B cell lines. Another NTSR, sortilin, which is common to neurotensin and neurotrophins, was also detected as we have previously described. Neurotensin was functional in B cell lines; it induced their proliferation and inhibited apoptosis induced by serum deprivation or Fas activation. Quantitative study of gene expression in two malignant B cell diseases showed that NTSR2 was overexpressed, NTSR1 decreased, and neurotensin was unexpressed in B cell leukemia patient's cells, as compared with healthy B cells. However, these expressions did not significantly change in large diffuse B cell lymphoma lymph nodes compared with benign ones. This study points out that neurotensin and its two specific receptors are expressed in human B lymphocytes. Such expressions were not described, and their relationship in B cell diseases, especially in chronic B cell leukemia, needs to be considered further in regard to these findings.
Collapse
Affiliation(s)
- Sofiane Saada
- Department of Immunology, University of Limoges, Equipe Accueil 3842, 87025 Limoges, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nagel JM, Geiger BM, Karagiannis AKA, Gras-Miralles B, Horst D, Najarian RM, Ziogas DC, Chen X, Kokkotou E. Reduced intestinal tumorigenesis in APCmin mice lacking melanin-concentrating hormone. PLoS One 2012; 7:e41914. [PMID: 22848656 PMCID: PMC3407051 DOI: 10.1371/journal.pone.0041914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/27/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has been proposed for the treatment of inflammatory bowel disease. Given the link between chronic intestinal inflammation and colorectal cancer, in the present study we sought to investigate whether blocking MCH might have effects on intestinal tumorigenesis that are independent of inflammation. METHODOLOGY Tumor development was evaluated in MCH-deficient mice crossed to the APCmin mice which develop spontaneously intestinal adenomas. A different cohort of MCH-/- and MCH+/+ mice in the APCmin background was treated with dextran sodium sulphate (DSS) to induce inflammation-dependent colorectal tumors. In Caco2 human colorectal adenocarcinoma cells, the role of MCH on cell survival, proliferation and apoptosis was investigated. RESULTS APCmin mice lacking MCH developed fewer, smaller and less dysplastic tumors in the intestine and colon which at the molecular level are characterized by attenuated activation of the wnt/beta-catenin signaling pathway and increased apoptotic indices. Form a mechanistic point of view, MCH increased the survival of colonic adenocarcinoma Caco2 cells via inhibiting apoptosis, consistent with the mouse studies. CONCLUSION In addition to modulating inflammation, MCH was found to promote intestinal tumorigenesis at least in part by inhibiting epithelial cell apoptosis. Thereby, blocking MCH as a therapeutic approach is expected to decrease the risk for colorectal cancer.
Collapse
Affiliation(s)
- Jutta M. Nagel
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brenda M. Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K. A. Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Horst
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert M. Najarian
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C. Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - XinHua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Law IKM, Murphy JE, Bakirtzi K, Bunnett NW, Pothoulakis C. Neurotensin-induced proinflammatory signaling in human colonocytes is regulated by β-arrestins and endothelin-converting enzyme-1-dependent endocytosis and resensitization of neurotensin receptor 1. J Biol Chem 2012; 287:15066-75. [PMID: 22416137 DOI: 10.1074/jbc.m111.327262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-7019, USA
| | | | | | | | | |
Collapse
|
23
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. ACTA ACUST UNITED AC 2011; 170:7-17. [DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
|
24
|
Alifano M, Souazé F, Dupouy S, Camilleri-Broët S, Younes M, Ahmed-Zaïd SM, Takahashi T, Cancellieri A, Damiani S, Boaron M, Broët P, Miller LD, Gespach C, Regnard JF, Forgez P. Neurotensin receptor 1 determines the outcome of non-small cell lung cancer. Clin Cancer Res 2011; 16:4401-10. [PMID: 20810387 DOI: 10.1158/1078-0432.ccr-10-0659] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aimed to investigate the role of the neurotensin/neurotensin receptor I (NTSR1) complex in non-small cell lung cancer (NSCLC) progression. EXPERIMENTAL DESIGN The expression of neurotensin and NTSR1 was studied by transcriptome analysis and immunohistochemistry in two series of 74 and 139 consecutive patients with pathologic stage I NSCLC adenocarcinoma. The findings were correlated with clinic-pathologic features. Experimental tumors were generated from the malignant human lung carcinoma cell line A459, and a subclone of LNM35, LNM-R. The role of the neurotensin signaling system on tumor growth and metastasis was investigated by small hairpin RNA-mediated silencing of NTSR1 and neurotensin. RESULTS Transcriptome analysis carried out in a series of 74 patients showed that the positive regulation of NTSR1 put it within the top 50 genes related with relapse-free survival. Immunohistochemistry revealed neurotensin- and NTSR1-positive staining in 60.4% and 59.7% of lung adenocarcinomas, respectively. At univariate analysis, NTSR1 expression was strongly associated with worse 5-year overall survival rate (P = 0.0081) and relapse-free survival (P = 0.0024). Multivariate analysis showed that patients over 65 years of age (P = 0.0018) and NTSR1 expression (P = 0.0034) were independent negative prognostic factors. Experimental tumor xenografts generated by neurotensin- and NTSR1-silenced human lung cancer cells revealed that neurotensin enhanced primary tumor growth and production of massive nodal metastasis via autocrine and paracrine regulation loops. CONCLUSION NTSR1 expression was identified as a potential new prognostic biomarker for surgically resected stage I lung adenocarcinomas, as NTSR1 activation was shown to participate in lung cancer progression.
Collapse
Affiliation(s)
- Marco Alifano
- Service de chirurgie thoracique, Hôtel-Dieu, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mustain WC, Rychahou PG, Evers BM. The role of neurotensin in physiologic and pathologic processes. Curr Opin Endocrinol Diabetes Obes 2011; 18:75-82. [PMID: 21124211 DOI: 10.1097/med.0b013e3283419052] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Neurotensin is a 13-amino acid peptide found in the central nervous system central nervous system and the gastrointestinal tract. Since its initial discovery in 1973, neurotensin has been shown to play a role in a wide range of physiologic and pathologic processes throughout the body. Ongoing research efforts continue to clarify the role of neurotensin in various central nervous system and gastrointestinal processes, as well as how disruption of these normal mechanisms may lead to diseases ranging from schizophrenia to colorectal cancer. The goal of this review is to provide an overview of the most recent advances in the field of neurotensin research, in the context of what has been previously published. RECENT FINDINGS Because of the seemingly unrelated functions of neurotensin in the central nervous system and the periphery, the scope of the articles reviewed is rather broad. Contributions continue to be made to our understanding of the downstream effects of neurotensin signaling and the complex feedback loops between neurotensin and other signaling molecules. By selective targeting or blockade of specific neurotensin receptors, investigators have identified potential drugs for use in the treatment of schizophrenia, alcoholism, chronic pain, or cancer. Neurotensin-based pharmacologic agents are being used successfully in animal models for a number of these conditions. SUMMARY The review highlights the wide array of biological processes in which neurotensin has a role, and summarizes the most recent advances in various fields of neurotensin research. The knowledge gained through this research has led to the development of first-in-class drugs for the treatment of various medical conditions, and it is clear that in the coming years some of these agents will be ready to move from the bench to the bedside in clinical trials.
Collapse
Affiliation(s)
- W Conan Mustain
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
26
|
Zhao D, Bakirtzi K, Zhan Y, Zeng H, Koon HW, Pothoulakis C. Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells. J Biol Chem 2011; 286:6092-9. [PMID: 21212273 DOI: 10.1074/jbc.m110.192534] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neurotensin (NT) is a gastrointestinal neuropeptide that modulates intestinal inflammation and healing by binding to its high-affinity receptor NTR1. The dual role of NT in inflammation and healing is demonstrated in models of colitis induced by Clostridium difficile toxin A and dextran sulfate sodium, respectively, and involves NF-κB-dependent IL-8 expression and EGF receptor-mediated MAPK activation in human colonocytes. However, the detailed signaling pathways involved in these responses remain to be elucidated. We report here that NT/NTR1 coupling in human colonic epithelial NCM460 cells activates tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) in a time- and dose-dependent manner. NT also rapidly induces Src tyrosine phosphorylation, whereas pretreatment of cells with the Src inhibitor PP2 before NT exposure decreases NT-induced IGF-1R phosphorylation. In addition, inhibition of IGF-1R activation by either its specific antagonist AG1024 or siRNA against IGF-1 significantly reduces NT-induced IL-8 expression and NF-κB-dependent reporter gene expression. Pretreatment with AG1024 also inhibits Akt activation and apoptosis induced by NT. Silencing of Akt expression by siRNA also substantially attenuates NT-induced IL-8 promoter activity and NF-κB-dependent reporter gene expression. This is the first report to indicate that NT transactivates IGF-1R and that this response is linked to Akt phosphorylation and NF-κB activation, contributing to both pro-inflammatory and tissue repair signaling pathways in response to NT in colonic epithelial cells. We propose that IGF-1R activation represents a previously unrecognized key pathway involved in the mechanisms by which NT and NTR1 modulate colonic inflammation and inflammatory bowel disease.
Collapse
Affiliation(s)
- Dezheng Zhao
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 022115, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Yoo J, Chung C, Slice L, Sinnett-Smith J, Rozengurt E. Protein kinase D mediates synergistic expression of COX-2 induced by TNF-{alpha} and bradykinin in human colonic myofibroblasts. Am J Physiol Cell Physiol 2009; 297:C1576-87. [PMID: 19794144 DOI: 10.1152/ajpcell.00184.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myofibroblasts have recently been identified as major mediators of tumor necrosis factor-alpha (TNF-alpha)-associated colitis, but the precise mechanism(s) involved remains incompletely understood. In particular, the possibility that TNF-alpha signaling cross talks with other proinflammatory mediators, including bradykinin (BK), has not been examined in these cells. Here we show that treatment of 18Co cells, a model of human colonic myofibroblasts, with BK and TNF-alpha induced striking synergistic COX-2 protein expression that was paralleled by increases in the levels of transcripts encoding COX-2 and microsomal prostaglandin E synthase 1 (mPGES-1) and by the production of PGE(2). COX-2 expression in 18Co cells treated with BK and TNF-alpha was prevented by the B(2) BK receptor antagonist HOE-140, the preferential protein kinase C (PKC) inhibitors Ro31-8220 and GF-109203X, and Gö-6976, an inhibitor of conventional PKCs and protein kinase D (PKD). In a parallel fashion, TNF-alpha, while having no detectable effect on the activation of PKD when added alone, augmented PKD activation induced by BK, as measured by PKD phosphorylation at its activation loop (Ser(744)) and autophosphorylation site (Ser(916)). BK-induced PKD activation was also inhibited by HOE-140, Ro31-8220, and Gö-6976. Transfection of 18Co cells with small interfering RNA targeting PKD completely inhibited the synergistic increase in COX-2 protein in response to BK and TNF-alpha, demonstrating, for the first time, a critical role of PKD in the pathways leading to synergistic expression of COX-2. Our results imply that cross talk between TNF-alpha and BK amplifies a PKD phosphorylation cascade that mediates synergistic COX-2 expression in colonic myofibroblasts. It is plausible that PKD increases COX-2 expression in colonic myofibroblasts to promote an inflammatory microenvironment that supports tumor growth.
Collapse
Affiliation(s)
- James Yoo
- Department of Surgery, CURE: Digestive Diseases Research Center, Molecular Biology Institute, University of California, Los Angeles, 90095-1786, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Abnormal wound healing is a major complication of both type 1 and type 2 diabetes, with nonhealing foot ulcerations leading in the worst cases to lower-limb amputation. Wound healing requires the integration of complex cellular and molecular events in successive phases of inflammation, cell proliferation, cell migration, angiogenesis and re-epithelialisation. A link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30-50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. Indeed, a bidirectional connection between the nervous and the immune systems and its role in wound repair has emerged as one of the focal features of the wound-healing dogma. This review provides a broad overview of the mediators of this connection, which include neuropeptides and cytokines released from nerve fibres, immune cells and cutaneous cells. In-depth understanding of the signalling pathways in the neuroimmune axis in diabetic wound healing is vital to the development of successful wound-healing therapies.
Collapse
|
29
|
Yuan J, Lugea A, Zheng L, Gukovsky I, Edderkaoui M, Rozengurt E, Pandol SJ. Protein kinase D1 mediates NF-kappaB activation induced by cholecystokinin and cholinergic signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1190-201. [PMID: 18845574 PMCID: PMC2604803 DOI: 10.1152/ajpgi.90452.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/05/2008] [Indexed: 02/07/2023]
Abstract
The transcription factor NF-kappaB plays a critical role in inflammatory and cell death responses during acute pancreatitis. Previous studies in our laboratory demonstrated that protein kinase C (PKC) isoforms PKCdelta and epsilon are key regulators of NF-kappaB activation induced by cholecystokinin-8 (CCK-8), tumor necrosis factor-alpha, and ethanol. However, the downstream participants in regulating NF-kappaB activation in exocrine pancreas remain poorly understood. Here, we demonstrate that protein kinase D1 (PKD1) is a key downstream target of PKCdelta and PKCepsilon in pancreatic acinar cells stimulated by two major secretagogues, CCK-8 and the cholinergic agonist carbachol (CCh), and that PKD1 is necessary for NF-kappaB activation induced by CCK-8 and CCh. Both CCK-8 and CCh dose dependently induced a rapid and striking activation of PKD1 in rat pancreatic acinar cells, as measured by in vitro kinase assay and by phosphorylation at PKD1 activation loop (Ser744/748) or autophosphorylation site (Ser916). The phosphorylation and activation of PKD1 correlated with NF-kappaB activity stimulated by CCK-8 or CCh, as measured by NF-kappaB DNA binding. Either inhibition of PKCdelta or epsilon by isoform-specific inhibitory peptides, genetic deletion of PKCdelta and epsilon in pancreatic acinar cells, or knockdown of PKD1 by using small interfering RNAs in AR42J cells resulted in a marked decrease in PKD1 and NF-kappaB activation stimulated by CCK-8 or CCh. Conversely, overexpression of PKD1 resulted in augmentation of CCK-8- and CCh-stimulated NF-kappaB activation. Finally, the kinetics of PKD1 and NF-kappaB activation during cerulein-induced rat pancreatitis showed that both PKD1 and NF-kappaB activation were early events during acute pancreatitis and that their time courses of response were similar. Our results identify PKD1 as a novel early convergent point for PKCdelta and epsilon in the signaling pathways mediating NF-kappaB activation in pancreatitis.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles VA Healthcare Center, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing condition involving complex interactions between genes and the environment. The mechanisms triggering the initial attack and relapses, however, are not well understood. In the past several years the enteric nervous system (ENS) has been implicated in the pathophysiology of IBD. Both the ENS and the central nervous system (CNS) can amplify or modulate aspects of intestinal inflammation through secretion of neuropeptides that serve as a link between the ENS and CNS. Neuropeptides are defined as any peptide released from the nervous system that serves as an intercellular signaling molecule. Neuropeptides thought to play a potentially key role in IBD include substance P, corticotropin-releasing hormone, neurotensin, vasoactive intestinal peptide, mu-opioid receptor agonists, and galanin. This review focuses on the role of these neuropeptides in the pathophysiology of IBD and discusses the cell types and mechanisms involved in this process. The available evidence that neuropeptide blockade may be considered a therapeutic approach in both Crohn's disease and ulcerative colitis will also be discussed.
Collapse
Affiliation(s)
- Kara J Gross
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
|
32
|
Wang Q, Zhou Y, Evers BM. Neurotensin phosphorylates GSK-3alpha/beta through the activation of PKC in human colon cancer cells. Neoplasia 2006; 8:781-7. [PMID: 16984735 PMCID: PMC1584301 DOI: 10.1593/neo.06259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurotensin (NT), a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR)] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3) regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3alpha/beta in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC), but not by inhibitors of MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3beta phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCalpha and PKCbeta1) or downregulation of endogenous PKCalpha or PKCbeta1 blocked NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation. Moreover, a selective PKCbeta inhibitor, LY379196, reduced NT-mediated GSK-3beta (but not GSK-3alpha) phosphorylation, suggesting a role for PKCbeta1 in the NT-mediated phosphorylation of GSK-3beta and an undefined kinase in the NT-mediated phosphorylation of GSK-3alpha. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
33
|
Zhao D, Pothoulakis C. Effects of NT on gastrointestinal motility and secretion, and role in intestinal inflammation. Peptides 2006; 27:2434-44. [PMID: 16872719 DOI: 10.1016/j.peptides.2005.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 01/17/2023]
Abstract
It is well established that interactions of neuropeptides with several cell types at various parts of the intestine are critically involved in intestinal pathophysiology. Among them, neurotensin has been identified as an important mediator in the development and progress of several gastrointestinal functions and disease conditions, exerting its effects by interacting with specific receptors that exert direct and indirect effects on nerves, epithelial cells, and cells of the immune and inflammatory systems. This review summarizes our recent understanding on the participation of neurotensin in the physiology and pathophysiology of the small and large intestine, and discusses various mechanisms that could be involved in these actions.
Collapse
Affiliation(s)
- Dezheng Zhao
- Gastrointestinal Neuropeptide Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
34
|
Chiu TT, Leung WY, Moyer MP, Strieter RM, Rozengurt E. Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol 2006; 292:C767-77. [PMID: 16928771 DOI: 10.1152/ajpcell.00308.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling pathways mediating lysophosphatidic acid (LPA)-stimulated PKD(2) activation and the potential contribution of PKD(2) in regulating LPA-induced interleukin 8 (IL-8) secretion in nontransformed, human colonic epithelial NCM460 cells were examined. Treatment of serum-deprived NCM460 cells with LPA led to a rapid and striking activation of PKD(2), as measured by in vitro kinase assay and phosphorylation at the activation loop (Ser706/710) and autophosphorylation site (Ser876). PKD(2) activation induced by LPA was abrogated by preincubation with selective PKC inhibitors GF-I and Ro-31-8220 in a dose-dependent manner. These inhibitors did not have any direct inhibitory effect on PKD(2) activity. LPA induced a striking increase in IL-8 production and stimulated NF-kappaB activation, as measured by NF-kappaB-DNA binding, NF-kappaB-driven luciferase reporter activity, and IkappaBalpha phosphorylation. PKD(2) gene silencing utilizing small interfering RNAs targeting distinct PKD(2) sequences dramatically reduced LPA-stimulated NF-kappaB promoter activity and IL-8 production. PKD(2) activation is a novel early event in the biological action of LPA and mediates LPA-stimulated IL-8 secretion in NCM460 cells through a NF-kappaB-dependent pathway. Our results demonstrate, for the first time, the involvement of a member of the PKD family in the production of IL-8, a potent proinflammatory chemokine, by epithelial cells.
Collapse
Affiliation(s)
- Terence T Chiu
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1786, USA
| | | | | | | | | |
Collapse
|
35
|
Zhao D, Zhan Y, Zeng H, Moyer MP, Mantzoros CS, Pothoulakis C. Ghrelin stimulates interleukin-8 gene expression through protein kinase C-mediated NF-kappaB pathway in human colonic epithelial cells. J Cell Biochem 2006; 97:1317-27. [PMID: 16552751 DOI: 10.1002/jcb.20744] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ghrelin, a newly identified gastric peptide, is known for its potent activity in growth hormone (GH) release and appetite. Although ghrelin is involved in several other responses such as stress and intestinal motility, its potential role in intestinal inflammation is not clear. Here, we show that expression of ghrelin and its receptor mRNA is significantly increased during acute experimental colitis in mice injected intracolonically with trinitrobenzene sulfate (TNBS). We found by PCR that ghrelin receptor mRNA is expressed in non-transformed human colonic epithelial NCM460 cells. Exposure of NCM460 cells stably transfected with ghrelin receptor mRNA to ghrelin, increased IkappaBalpha phosphorylation and its subsequent degradation. In addition, ghrelin stimulated NF-kappaB-binding activity and NF-kappaB p65 subunit phosphorylation, and induced IL-8 promoter activity and IL-8 protein secretion. Furthermore, our data show that ghrelin-induced IkappaBalpha and p65 phosphorylation was markedly reduced by pharmacological inhibitors of intracellular calcium mobilization (BAPTA/AM) and protein kinase C (GF 109203X). Pretreatment with BAPTA/AM or GF109203X also significantly attenuated ghrelin-induced IL-8 production. Together, our results strongly suggest that ghrelin may be a proinflammatory peptide in the colon. Ghrelin may participate in the pathophysiology of colonic inflammation by inducing PKC-dependent NF-kappaB activation and IL-8 production at the colonocyte level.
Collapse
Affiliation(s)
- Dezheng Zhao
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Souazé F, Viardot-Foucault V, Roullet N, Toy-Miou-Leong M, Gompel A, Bruyneel E, Comperat E, Faux MC, Mareel M, Rostène W, Fléjou JF, Gespach C, Forgez P. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas. Carcinogenesis 2005; 27:708-16. [PMID: 16299383 DOI: 10.1093/carcin/bgi269] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.
Collapse
Affiliation(s)
- Frédérique Souazé
- INSERM U673-UPMC, Department of Pathology, 184 Rue Du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|