1
|
Pal C. Small-molecule redox modulators with anticancer activity: A comprehensive mechanistic update. Free Radic Biol Med 2023; 209:211-227. [PMID: 37898387 DOI: 10.1016/j.freeradbiomed.2023.10.406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pursuit of effective anticancer therapies has led to a burgeoning interest in the realm of redox modulation. This review provides a comprehensive exploration of the intricate mechanisms by which diverse anticancer molecules leverage redox pathways for therapeutic intervention. Redox modulation, encompassing the fine balance of oxidation-reduction processes within cells, has emerged as a pivotal player in cancer treatment. This review delves into the multifaceted mechanisms of action employed by various anticancer compounds, including small molecules and natural products, to disrupt cancer cell proliferation and survival. Beginning with an examination of the role of redox signaling in cancer development and resistance, the review highlights how aberrant redox dynamics can fuel tumorigenesis. It then meticulously dissects the strategies employed by anticancer agents to induce oxidative stress, perturb redox equilibrium, and trigger apoptosis within cancer cells. Furthermore, the review explores the challenges and potential side effects associated with redox-based treatments, along with the development of novel redox-targeted agents. In summary, this review offers a profound understanding of the dynamic interplay between redox modulation and anticancer molecules, presenting promising avenues to revolutionize cancer therapy and enhance patient outcomes.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
2
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
3
|
Puurand M, Tepp K, Kaambre T. Diving into cancer OXPHOS - The application of metabolic control analysis to cell and tissue research. Biosystems 2023; 233:105032. [PMID: 37739307 DOI: 10.1016/j.biosystems.2023.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
4
|
Taniguchi S, Ono Y, Doi Y, Taniguchi S, Matsuura Y, Iwasaki A, Hirata N, Fukuda R, Inoue K, Yamaguchi M, Tashiro A, Egami D, Aoki S, Kondoh Y, Honda K, Osada H, Kumeta H, Saio T, Okiyoneda T. Identification of α-Tocopherol succinate as an RFFL-substrate interaction inhibitor inducing peripheral CFTR stabilization and apoptosis. Biochem Pharmacol 2023; 215:115730. [PMID: 37543348 DOI: 10.1016/j.bcp.2023.115730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The E3 ubiquitin ligase RFFL is an apoptotic inhibitor highly expressed in cancers and its knockdown suppresses cancer cell growth and sensitizes to chemotherapy. RFFL also participates in peripheral protein quality control which removes the functional cell surface ΔF508-CFTR channel and reduces the efficacy of pharmaceutical therapy for cystic fibrosis (CF). Although RFFL inhibitors have therapeutic potential for both cancer and CF, they remain undiscovered. Here, a chemical array screening has identified α-tocopherol succinate (αTOS) as an RFFL ligand. NMR analysis revealed that αTOS directly binds to RFFL's substrate-binding region without affecting the E3 enzymatic activity. Consequently, αTOS inhibits the RFFL-substrate interaction, ΔF508-CFTR ubiquitination and elimination from the plasma membrane of epithelial cells, resulting in the increased functional CFTR channel. Among the α-tocopherol (αTOL) analogs we tested, only αTOS inhibited the RFFL-substrate interaction and increased the cell surface ΔF508-CFTR, depending on RFFL expression. Similarly, the unique proapoptotic effect of αTOS was dependent on RFFL expression. Thus, unlike other αTOL analogs, αTOS acts as an RFFL protein-protein interaction inhibitor which may explain its unique biological properties among αTOL analogs. Moreover, αTOS may act as a CFTR stabilizer, a novel class of drugs that extend cell surface ΔF508-CFTR lifetime.
Collapse
Affiliation(s)
- Sachiho Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yukako Doi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuta Matsuura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ayuka Iwasaki
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Miho Yamaguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Anju Tashiro
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Daichi Egami
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Yasumitsu Kondoh
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan.
| |
Collapse
|
5
|
Patel A, Rosenau T. Synthesis and analytical characterization of N-methylated derivatives of α-tocopheramine and their oxidation products. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractN-Methylated derivatives of α-tocopheramine, which have preliminarily been shown to have good performance as stabilizers of cellulose solutions in ionic liquids for production of cellulosic manmade fibers, have not been accessible in sufficient amounts by green syntheses. In this study, the N-methyl-, N,N-dimethyl-, and N,N,N-trimethylammonium derivatives of α-tocopheramine were synthesized and fully analytically characterized. The procedures used dimethyl carbonate as solvent and methylating agent as well as aluminum oxide as the reusable catalyst. Care was taken to ensure that the procedures conformed to green chemistry principles and were easily upscalable.
Graphical abstract
Collapse
|
6
|
Alferiev IS, Guerrero DT, Soberman D, Guan P, Nguyen F, Kolla V, Fishbein I, Pressly BB, Brodeur GM, Chorny M. Nanocarrier-Based Delivery of SN22 as a Tocopheryl Oxamate Prodrug Achieves Rapid Tumor Regression and Extends Survival in High-Risk Neuroblastoma Models. Int J Mol Sci 2022; 23:ijms23031752. [PMID: 35163672 PMCID: PMC8836113 DOI: 10.3390/ijms23031752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.
Collapse
|
7
|
Liu Y, Zhang J, Tu Y, Zhu L. Potential-Independent Intracellular Drug Delivery and Mitochondrial Targeting. ACS NANO 2022; 16:1409-1420. [PMID: 34920667 PMCID: PMC9623822 DOI: 10.1021/acsnano.1c09456] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, two types of the fluoroamphiphile analogs were synthesized and self-assembled into the "core-shell" micellar nanocarriers for intracellular delivery and organelle targeting. Using the fluorescent dyes or vitamin E succinate as the cargo, the drug delivery and targeting capabilities of the fluoroamphiphiles and their micelles were evaluated in the cell lines, tumor cell spheroids, and tumor-bearing mice. The "core-fluorinated" micelles exhibited favorable physicochemical properties and improved the cellular uptake of the cargo by around 20 times compared to their "shell-fluorinated" counterparts. The results also indicated that the core-fluorinated micelles underwent an efficient clathrin-mediated endocytosis and a rapid endosomal escape thereafter. Interestingly, the internalized fluoroamphiphile micelles preferentially accumulated in mitochondria, by which the efficacy of the loaded vitamin E succinate was boosted both in vitro and in vivo. Unlike the popularly used cationic mitochondrial targeting ligands, as a charge-neutral nanocarrier, the fluoroamphiphiles' mitochondrial targeting was potential independent. The mechanism study suggested that the strong binding affinity with the phospholipids, particularly the cardiolipin, played an important role in the fluoroamphiphiles' mitochondrial targeting. These charge-neutral fluoroamphiphiles might have great potential to be a simple and reliable tool for intracellular drug delivery and mitochondrial targeting.
Collapse
Affiliation(s)
- Yin Liu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 330106, China
| | - Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Ying Tu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Synthesis and analytical characterization of all N–N-coupled, dimeric oxidation products of α-tocopheramine: hydrazo-, azo-, and azoxy-tocopherol. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractTocopherols are a mixture of antioxidants which are commonly referred to as vitamin E. Tocopheramines differ from tocopherols by an amino function in lieu of the phenolic OH group. They are potent antioxidants which are used in biomedical scenarios as well as stabilizers for polymers against aging. While in aqueous media α-tocopheramine is mainly oxidized to α-tocopherylquinone and N-oxidized by-products, oxidation in apolar media or in polymeric matrices mainly leads to dimeric compounds of hitherto unknown structure. In the present study, we synthesized the whole array of N,N-dimerization product of α-tocopheramine, including the hydrazo, azo, and azoxy derivatives for the first time, and provided comprehensive analytical data as well as general protocols to access the compounds in straightforward syntheses. These results can now be used to identify the common oxidation by-products of α -tocopheramine in different reaction systems.
Graphic abstract
Collapse
|
9
|
Patel A, Hofinger A, Rosenau T. Synthesis and analytical characterization of monomeric N-oxidized derivatives of α-tocopheramine. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02805-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstractα-Tocopheramine has shown great promises as a stabilizer for synthetic and natural polymers, but is also investigated in various biomedical scenarios. Many studies have been hampered by the fact that the oxidation products of α-tocopheramine have not yet been properly identified and their analytical data are still lacking. In the present study, we synthesized and fully analytically characterized all N-oxidation products that can form upon oxidation of α-tocopheramine in aqueous media, including the hydroxylamine, nitroso, and nitro derivative, in this way providing standards for the identification of the so far elusive byproducts. Synthesis and stability of the derivatives are discussed.
Graphic abstract
Collapse
|
10
|
Conjugation of Natural Triterpenic Acids with Delocalized Lipophilic Cations: Selective Targeting Cancer Cell Mitochondria. J Pers Med 2021; 11:jpm11060470. [PMID: 34070567 PMCID: PMC8226687 DOI: 10.3390/jpm11060470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a new line of research on mitochondria-targeted anticancer drugs is actively developing in the field of biomedicine and medicinal chemistry. The distinguishing features of this universal target for anticancer agents include presence of mitochondria in the overwhelming majority, if not all types of transformed cells, crucial importance of these cytoplasmic organelles in energy production, regulation of cell death pathways, as well as generation of reactive oxygen species and maintenance of calcium homeostasis. Hence, mitochondriotropic anticancer mitocan agents, acting through mitochondrial destabilization, have good prospects in cancer therapy. Available natural pentacyclic triterpenoids are considered promising scaffolds for development of new mitochondria-targeted anticancer agents. These secondary metabolites affect the mitochondria of tumor cells and initiate formation of reactive oxygen species. The present paper focuses on the latest research outcomes of synthesis and study of cytotoxic activity of conjugates of pentacyclic triterpenoids with some mitochondria-targeted cationic lipophilic molecules and highlights the advantages of applying them as novel mitocan agents compared to their prototype natural triterpenic acids.
Collapse
|
11
|
α-Tocopherol Acetate Attenuates Mitochondrial Oxygen Consumption and Maintains Primitive Cells within Mesenchymal Stromal Cell Population. Stem Cell Rev Rep 2021; 17:1390-1405. [PMID: 33511517 DOI: 10.1007/s12015-020-10111-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
We present here the data showing, in standard cultures exposed to atmospheric O2 concentration, that alpha-tocopherol acetate (α-TOA) has a positive impact on primitive cells inside mesenchymal stromal cell (MstroC) population, by maintaining their proliferative capacity. α-TOA decreases the O2 consumption rate of MStroC probably by impacting respiratory chain complex II activity. This action, however, is not associated with a compensatory increase in glycolysis activity, in spite of the fact that the degradation of HIF-1α was decreased in presence of α-TOA. This is in line with a moderate enhancement of mtROS upon α-TOA treatment. However, the absence of glycolysis stimulation implies the inactivity of HIF-1α which might - if it were active - be related to the maintenance of stemness. It should be stressed that α-TOA might act directly on the gene expression as well as the mtROS themselves, which remains to be elucidated. Alpha-tocopherol acetate (α-TOA), a synthetic vitamin E ester, attenuates electron flow through electron transport chain (ETC) which is probably associated with a moderate increase in mtROS in Mesenchymal Stromal Cells. α-TOA action results in enhancement of the proliferative capacity and maintenance of the differentiation potential of the mesenchymal stem and progenitor cells.
Collapse
|
12
|
Cytotoxic triterpenoid-safirinium conjugates target the endoplasmic reticulum. Eur J Med Chem 2020; 209:112920. [PMID: 33049606 DOI: 10.1016/j.ejmech.2020.112920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022]
Abstract
Safirinium P and Q fluorescence labels were synthesized and conjugated with spacered triterpenoic acids to access hybrid structures. While the parent safirinium compounds were not cytotoxic at all, many triterpenoid safirinium P and Q conjugates showed moderate cytotoxicity. An exception, however, was safirinium P derived compound 30 holding low EC50 = 5.4 μM (for A375 cells) to EC50 = 7.5 μM (for FaDu cells) as well as EC50 = 6.6 μM for non-malignant fibroblasts NIH 3T3. Fluorescence imaging showed that the safirinium core structures cannot enter the cells (not even after a prolonged incubation time of 24 h), while the conjugates (as exemplified for 30) are accumulating in the endoplasmic reticulum but not in the mitochondria. The development of safirinium-hybrids targeting the endoplasmic reticulum can be regarded as a promising strategy in the development of cytotoxic agents.
Collapse
|
13
|
Synthesis of some steroidal mitocans of nanomolar cytotoxicity acting by apoptosis. Eur J Med Chem 2020; 199:112425. [DOI: 10.1016/j.ejmech.2020.112425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/30/2023]
|
14
|
Wu Y, Liu J, Movahedi F, Gu W, Xu T, Xu ZP. Enhanced Prevention of Breast Tumor Metastasis by Nanoparticle-Delivered Vitamin E in Combination with Interferon-Gamma. Adv Healthc Mater 2020; 9:e1901706. [PMID: 32052565 DOI: 10.1002/adhm.201901706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Preventing cancer metastasis is one of the remaining challenges in cancer therapy. As an efficient natural product, alpha-tocopheryl succinate (α-TOS), the most effective form of vitamin E, holds great anticancer potential. To improve its efficacy and bioavailability, lipid-coated calcium carbonate/phosphate (LCCP) nanoparticles (NPs) with folic acid and PEG modification are synthesized for efficient delivery of α-TOS to 4T1 cancer cells. The optimized LCCP-FA NPs (NP-TOS15) show an α-TOS loading efficiency of around 60%, and enhanced uptake by 4T1 metastatic cancer cells. Consequently, NP-TOS15 significantly enhance the anticancer effect in combination with interferon-gamma (IFN-γ) in terms of apoptosis facilitation and migration inhibition. Importantly, NP-TOS15 upregulate the anticancer immunity via downregulating program death ligand 1 (PD-L1) expression that is initially induced by IFN-γ, and remarkably prevent the lung metastasis, particularly in combination with IFN-γ. Further investigation reveals that this combination therapy also modulates the cytotoxic lymphocyte infiltration into the tumor microenvironment for tumor elimination. Taken together, the NP delivery of α-TOS in combination with IFN-γ provides an applicable strategy for cancer therapy.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| | - Tiefeng Xu
- The First Affiliated Hospital of Hainan Medical University Cancer Institute of Hainan Medical University Haikou Hainan 570102 China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
15
|
Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02 cells. Food Chem Toxicol 2019; 130:130-141. [DOI: 10.1016/j.fct.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
16
|
Olivas-Aguirre M, Pottosin I, Dobrovinskaya O. Mitochondria as emerging targets for therapies against T cell acute lymphoblastic leukemia. J Leukoc Biol 2019; 105:935-946. [PMID: 30698851 DOI: 10.1002/jlb.5vmr0818-330rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) comprises a heterogeneous group of hematologic malignancies, arising from diverse genetic alterations in the early lymphocyte development. T-cell subtype of ALL (T-ALL) accounts for about 15% and 25% of ALL in children and adults, respectively. Being less frequent among ALL subtypes, T-ALL represents a high-risk factor for poor prognosis due to its aggressiveness and resistance to common antileukemic drugs. Mitochondria were widely explored recently as a target for anticancer treatment because they are involved in a metabolic reprogramming of a cancer cell and play key roles in reactive oxygen species generation, Ca2+ signaling, and cell death induction. Accordingly, a new class of anticancer compounds named mitocans has been developed, which target mitochondria at distinct crucial points to promote their dysfunction and subsequent cell death. The present review analyses the role of mitochondria in malignant reprogramming and emerging therapeutic strategies targeting mitochondria as an "Achilles' heel" in T-ALL, with an emphasis on BH3 mimetics, sequestering pro-survival BCL proteins and voltage-dependent anion channel (VDAC)1-directed drugs, which promote the suppression of aerobic glycolysis, VDAC1 closure, mitochondrial Ca2+ overload, stoppage of the oxidative phosphorylation, oxidative stress, and release of proapoptotic factors.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
17
|
Wu Y, Gu W, Xu ZP. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform. Nanomedicine (Lond) 2019; 14:77-92. [DOI: 10.2217/nnm-2018-0252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Melanoma, the most life-threatening skin cancer, requires more effective therapies. Methodology: A new folic acid (FA) receptor-targeted lipid-coated calcium carbonate/phosphate (LCCP) nanoparticle was synthesized, incorporating two often-used therapeutics, cell death siRNA and α-tocopheryl succinate. Results: The nanoparticles were spherical, with an average size of 40 nm. The nanoparticles exhibited a high gene/drug loading efficiency (60%), with folic acid-enhanced cellular uptake. The nanoparticles with both therapeutics enhanced inhibition of B16F0 melanoma cell growth, showing a moderate synergistic effect. The mechanism of the inhibition is associated with induction of cell apoptosis and cell cycle arrest at G1 phase. Conclusion: Our data indicate that lipid-coated calcium carbonate/phosphate nanoparticles are a potential platform for targeted therapy for melanoma.
Collapse
Affiliation(s)
- Yilun Wu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Hepatocellular carcinomas are promoted by tocopheryl acetate but eliminated by tocopheryl succinate. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2018. [DOI: 10.1016/j.jnim.2018.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
21
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
22
|
Li Y, Xiao BX, Dong J, Liu Y, Gao S, Pang J, Sun Z. Near-infrared light-responsive nanoparticles for improved anticancer efficacy through synergistic chemo-photothermal therapy. Pharm Dev Technol 2017; 23:116-124. [PMID: 29160121 DOI: 10.1080/10837450.2017.1402934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Combined treatment is more effective than single treatment against most forms of cancer. The synergistic chemo-thermotherapy mediated by nanoparticles has superior advantages of lesser adverse effects as a promising cancer therapy modality. In this study, we report a theranostic carrier system co-encapsulating Doxorubicin (DOX) and Indocyanine green (ICG) into the D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS). Full physicochemical characterization studies of the DOX/ICG-loaded TPGS nanoparticles (TNPs) are performed. TNPs have a mean size around 60 nm with superior photostability, and entrapment efficiency of drugs in TNPs was 75.0% for ICG and 68.3% for DOX. TNPs also exhibit a longer sustained release with around 63% of the entrapped drug in 24 h. In vitro studies, TNPs could effectively enhance cellular uptake of DOX and ICG, which permitted high therapeutic efficacy against cancer cells. Further, we investigate antitumor efficacy of TNPs along with its impact on major organs in vivo, TNPs also exhibit a complete inhibition of tumor growth and minimal side effects after irradiation. Collectively, these results suggest that near-infrared light-responsive TNPs can further enhance antitumor effects by synergistic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Yanli Li
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| | - Bing Xin Xiao
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| | - Jie Dong
- b Department of College of Pharmaceutical Science , Xuzhou Medical University , Xuzhou , PR China
| | - Yun Liu
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| | - Shan Gao
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| | - Jie Pang
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| | - Zengxian Sun
- a Department of Pharmacy , The First People's Hospital of Lianyungang , Lianyungang , PR China
| |
Collapse
|
23
|
Tan S, Zou C, Zhang W, Yin M, Gao X, Tang Q. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Deliv 2017; 24:1831-1842. [PMID: 29182031 PMCID: PMC8241040 DOI: 10.1080/10717544.2017.1406561] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer remains an obstacle to be surmounted by humans. As an FDA-approved biocompatible drug excipient, d-α-tocopheryl polyethylene glycol succinate (TPGS) has been widely applied in drug delivery system (DDS). Along with in-depth analyses of TPGS-based DDS, increasingly attractive results have revealed that TPGS is able to act not only as a simple drug carrier but also as an assistant molecule with various bio-functions to improve anticancer efficacy. In this review, recent advances in TPGS-based DDS are summarized. TPGS can inhibit P-glycoprotein, enhance drug absorption, induce mitochondrial-associated apoptosis or other apoptotic pathways, promote drug penetration and tumor accumulation, and even inhibit tumor metastasis. As a result, many formulations, by using original TPGS, TPGS-drug conjugates or TPGS copolymers, were prepared, and as expected, an enhanced therapeutic effect was achieved in different tumor models, especially in multidrug resistant and metastatic tumors. Although the mechanisms by which TPGS participates in such functions are not yet very clear, considering its effectiveness in tumor treatment, TPGS-based DDS appears to be one of the best candidates for future clinical applications.
Collapse
Affiliation(s)
- Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxing Yin
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqin Gao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Mild C(sp 3)-H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur J Med Chem 2017. [PMID: 28641156 DOI: 10.1016/j.ejmech.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five β-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 μM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 μM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.
Collapse
|
25
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Martín-Saldaña S, Rohner NA, Thomas SN, San Román J. Multifunctional decoration of alpha-tocopheryl succinate-based NP for cancer treatment: effect of TPP and LTVSPWY peptide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:152. [PMID: 28861765 DOI: 10.1007/s10856-017-5963-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Active targeting not only of a specific cell but also a specific organelle maximizes the therapeutic activity minimizing adverse side effects in healthy tissues. The present work describes the synthesis, characterization, and in vitro biological activity of active targeting nanoparticles (NP) for cancer therapy based on α-tocopheryl succinate (α-TOS), a well-known mitocan, that selectively induces apoptosis of cancer cells and proliferalting endothelial cells. Human epidermal growth factor receptor 2 (HER2) targeting peptide LTVSPWY (PEP) and triphenylphosphonium lipophilic cation (TPP) were conjugated to a previously optimized RAFT block copolymer that formed self-assembled NP of appropriate size for this application and low polydispersity by self-organized precipitation method. PEP and TPP were included in order to target not only HER2 positive cancer cells, but also the mitochondria of these cancer cells, respectively. The in vitro experiments demonstrated the faster incorporation of the active-targeting NP and the higher accumulation of TPP-bearing NP in the mitochondria of MDA-MB-453 HER2 positive cancer cells compared to non-decorated NP. Moreover, the encapsulation of additional α-TOS in the hydrophobic core of the NP was achieved with high efficiencies. The loaded NP presented higher cytotoxicity than unloaded NP but preserved their selectivity against cancer cells in a range of tested concentrations.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - Francisco J Parra-Ruiz
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Sergio Martín-Saldaña
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nathan A Rohner
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332, GA, USA
| | - Julio San Román
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006, Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
26
|
Savitskaya MA, Onischenko GE. α-Tocopheryl Succinate Affects Malignant Cell Viability, Proliferation, and Differentiation. BIOCHEMISTRY (MOSCOW) 2017; 81:806-18. [PMID: 27677550 DOI: 10.1134/s0006297916080034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The widespread occurrence of malignant tumors motivates great attention to finding and investigating effective new antitumor preparations. Such preparations include compounds of the vitamin E family. Among them, α-tocopheryl succinate (vitamin E succinate (VES)) has the most pronounced antitumor properties. In this review, various targets and mechanisms of the antitumor effect of vitamin E succinate are characterized. It has been shown that VES has multiple intracellular targets and effects, and as a result VES is able to induce apoptosis in tumor cells, inhibit their proliferation, induce differentiation, prevent metastasizing, and inhibit angiogenesis. However, VES has minimal effects on normal cells and tissues. Due to the variety of targets and selectivity of action, VES is a promising agent against malignant neoplasms. More detailed studies in this area can contribute to development of effective and safe chemotherapeutic preparations.
Collapse
Affiliation(s)
- M A Savitskaya
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
27
|
|
28
|
Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol 2016; 81:281-293. [PMID: 27373679 DOI: 10.1016/j.biocel.2016.06.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Over the last few decades, many different groups have been engaged in studies of new roles for mitochondria, particularly the coupling of alterations in the redox pathway with the inflammatory responses involved in different diseases, including Alzheimer's disease, Parkinson's disease, atherosclerosis, cerebral cavernous malformations, cystic fibrosis and cancer. Mitochondrial dysfunction is important in these pathological conditions, suggesting a pivotal role for mitochondria in the coordination of pro-inflammatory signaling from the cytosol and signaling from other subcellular organelles. In this regard, mitochondrial reactive oxygen species are emerging as perfect liaisons that can trigger the assembly and successive activation of large caspase-1- activating complexes known as inflammasomes. This review offers a glimpse into the mechanisms by which inflammasomes are activated by mitochondrial mechanisms, including reactive oxygen species production and mitochondrial Ca2+ uptake, and the roles they can play in several inflammatory pathologies.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Nigro
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Dept. of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
29
|
Kim WS, Kim I, Kim WK, Choi JY, Kim DY, Moon SG, Min HK, Song MK, Sung JH. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation. Biomol Ther (Seoul) 2016; 24:305-11. [PMID: 26869457 PMCID: PMC4859794 DOI: 10.4062/biomolther.2015.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Abstract
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Collapse
Affiliation(s)
- Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Wang-Kyun Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ju-Yeon Choi
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Doo Yeong Kim
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sung-Guk Moon
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyung-Keun Min
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Min-Kyu Song
- Cleanup Dermatologic Clinic, Seoul 07301, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
30
|
Sangodkar J, Farrington C, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283:1004-24. [PMID: 26507691 PMCID: PMC4803620 DOI: 10.1111/febs.13573] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Caroline Farrington
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly McClinch
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David B. Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goutham Narla
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
31
|
Lian D, Chen Y, Xu G, Zeng X, Li Z, Li Z, Zhou Y, Mei L, Li X. Delivery of siRNA targeting HIF-1α loaded chitosan modifiedd-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) nanoparticles into nasopharyngeal carcinoma cell to improve the therapeutic efficacy of cisplatin. RSC Adv 2016. [DOI: 10.1039/c6ra03440c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoformulation of siRNA targeting HIF-1α loaded chitosan modified TPGS-b-(PCL-ran-PGA) NPs could increase the therapeutic potential of cisplatin for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Daizheng Lian
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| | - Yuhan Chen
- Department of Radiation Oncology
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- PR China
| | - Gang Xu
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| | - Xiaowei Zeng
- The Shenzhen Key Lab of Gene and Antibody Therapy
- Division of Life and Health Sciences
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Zhuangling Li
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| | - Zihuang Li
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| | - Yayan Zhou
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| | - Lin Mei
- The Shenzhen Key Lab of Gene and Antibody Therapy
- Division of Life and Health Sciences
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Xianming Li
- Department of Radiation Oncology
- Second Clinical Medicine College of Jinan University
- Shenzhen
- PR China
| |
Collapse
|
32
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
33
|
Giorgio M. Oxidative stress and the unfulfilled promises of antioxidant agents. Ecancermedicalscience 2015; 9:556. [PMID: 26284120 PMCID: PMC4531130 DOI: 10.3332/ecancer.2015.556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
It is well known that aging and its associated diseases, including cancer, are triggered by oxidative damage to biological macromolecules. However, antioxidant compounds are still disappointingly distant from any clinical application, so that Jim Watson has declared that antioxidant supplementation may have caused more cancers than it has prevented Watson J ((2013) Oxidants, antioxidants and the current incurability of metastatic cancers Open Biol 3 DOI: 10.1098/rsob.120144). To clarify this paradox, here, we describe the mechanisms of oxidative stress focusing in particular on redox balance and physiological oxidative signals.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
34
|
Hou L, Li Y, Song H, Zhang Z, Sun Y, Zhang X, Wu K. Protective Macroautophagy Is Involved in Vitamin E Succinate Effects on Human Gastric Carcinoma Cell Line SGC-7901 by Inhibiting mTOR Axis Phosphorylation. PLoS One 2015; 10:e0132829. [PMID: 26168048 PMCID: PMC4500415 DOI: 10.1371/journal.pone.0132829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/19/2015] [Indexed: 12/26/2022] Open
Abstract
Vitamin E succinate (VES), a potential cancer therapeutic agent, potently induces apoptosis and inhibits the growth of various cancer cells. Autophagy has been supposed to promote cancer cell survival or trigger cell death, depending on particular cancer types and tumor microenvironments. The role of autophagy in the growth suppressive effect of VES on gastric cancer cell is basically unknown. We aimed to determine whether and how autophagy affected the VES-induced inhibition of SGC-7901 human gastric carcinoma cell growth. SGC-7901 cells were treated with VES or pre-treated with autophagy inhibitor, chloroquine (CQ) and 3-methyladenine (3-MA). Electron microscopy, fluorescence microscopy and Western blot were used to study whether VES induced autophagy reaction in SGC-7901 cells. Western blot evaluated the activities of the mammalian target of rapamycin (mTOR) axis. Then we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry to detect the level of cell viability and apoptosis. Collectively, our data indeed strongly support our hypothesis that VES treatment produced cytological variations that depict autophagy, increased the amount of intracellular green fluorescent protein—microtubule associated protein 1 light chain 3 (GFP-LC3) punctate fluorescence and the number of autophagic vacuoles. It altered the expression of endogenous autophagy marker LC3. VES activated the suppression of mTOR through inhibiting upstream regulators p38 MAPK and Akt. mTOR suppression consequently inhibited the activation of mTOR downstream targets p70S6K and 4E-BP-1. The activation of the upstream mTOR inhibitor AMPK had been up-regulated by VES. The results showed that pre-treatment SGC-7901 with autophagy inhibitors before VES treatment could increase the capacity of VES to reduce cell viability and to provoke apoptosis. In conclusion, VES-induced autophagy participates in SGC-7901 cell protection by inhibiting mTOR axis phosphorylation. Our findings not only strengthen our understanding of the roles of autophagy in cancer biology, but may also be useful for developing new treatments for gastric cancer patients.
Collapse
Affiliation(s)
- Liying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuze Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of the Fourth Internal Medicine, The Fourth Hospital of Heilongjiang Province, Harbin, China
| | - Huacui Song
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhihong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanpei Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Xuguang Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- Department of Internal Medicine, Hematology and Oncology, Harbin Children’s Hospital, Harbin, China
| | - Kun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
35
|
Liposomal delivery systems for anti-cancer analogues of vitamin E. J Control Release 2015; 207:59-69. [DOI: 10.1016/j.jconrel.2015.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 12/21/2022]
|
36
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Fernández-Gutiérrez M, Parra J, Sánchez-Rodríguez C, Sanz-Fernández R, Rodrigáñez L, Román JS. Anticancer and antiangiogenic activity of surfactant-free nanoparticles based on self-assembled polymeric derivatives of vitamin E: structure-activity relationship. Biomacromolecules 2015; 16:1566-81. [PMID: 25848887 DOI: 10.1021/acs.biomac.5b00130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring. The corresponding families of copolymers (poly(VP-co-MVE), poly(VP-co-SPHY), and poly(VP-co-MPHY)) were synthesized and characterized, and their biological activity was compared to poly(VP-co-MTOS). Both poly(VP-co-MTOS) and poly(VP-co-MVE) presented triple action: reduced cell viability of cancer cells with little or no harm to normal cells (anticancer), reduced viability of proliferating endothelial cells with little or no harm to quiescent endothelial cells (antiangiogenic), and efficiently encapsulated hydrophobic molecules (nanocarrier). The anticancer and antiangiogenic activity of the synthesized copolymers is demonstrated as the active compound (vitamin E or α-tocopheryl succinate) do not need to be cleaved to trigger the biological action targeting ubiquinone binding sites of complex II. Poly(VP-co-SPHY) and poly(VP-co-MPHY) also formed surfactant-free NP that were also endocyted by the assayed cells; however, these NP did not selectively reduce cell viability of cancer cells. Therefore, the chromanol ring of the vitamin E analogues has an important role in the biological activity of the copolymers. Moreover, when succinate moiety is substituted and vitamin E is directly linked to the macromolecular chain through an ester bond, the biological activity is maintained.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - María Rosa Aguilar
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Francisco J Parra-Ruiz
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mar Fernández-Gutiérrez
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Juan Parra
- ‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain.,§Clinical Research and Experimental Biopathology Unit, Healthcare Complex of Ávila, SACYL, C/Jesús del Gran Poder 42, 05003 Ávila, Spain
| | - Carolina Sánchez-Rodríguez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Ricardo Sanz-Fernández
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain.,#European University of Madrid, C/ Tajo s/n. 28670, Villaviciosa de Odón (Madrid), Spain
| | - Laura Rodrigáñez
- ∥Foundation for Biomedical Research, University Hospital of Getafe, Carretera de Toledo, km 12,500, 28905, Getafe, Madrid, Spain
| | - Julio San Román
- †Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.,‡Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|
37
|
Chen Y, Xu G, Zheng Y, Yan M, Li Z, Zhou Y, Mei L, Li X. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for siRNA targeting HIF-1α for nasopharyngeal carcinoma therapy. Int J Nanomedicine 2015; 10:1375-86. [PMID: 25733830 PMCID: PMC4337506 DOI: 10.2147/ijn.s76092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a crucial transcription factor that plays an important role in the carcinogenesis and development of nasopharyngeal carcinoma. In this research, a novel biodegradable D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) (TPGS-b-(PCL-ran-PGA)) nanoparticle (NP) was prepared as a delivery system for small interfering ribonucleic acid (siRNA) molecules targeting HIF-1α in nasopharyngeal carcinoma gene therapy. The results showed that the NPs could efficiently deliver siRNA into CNE-2 cells. CNE-2 cells treated with the HIF-1α siRNA-loaded TPGS-b-(PCL-ran-PGA) NPs showed reduction of HIF-1α expression after 48 hours of incubation via real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. The cytotoxic effect on CNE-2 cells was significantly increased by HIF-1α siRNA-loaded NPs when compared with control groups. In a mouse tumor xenograft model, the HIF-1α siRNA-loaded NPs efficiently suppressed tumor growth, and the levels of HIF-1α mRNA and protein were significantly decreased. These results suggest that TPGS-b-(PCL-ran-PGA) NPs could function as a promising genetic material carrier in antitumor therapy, including therapy for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Gang Xu
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Yi Zheng
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Cente for Biotechnology and BioMedicine, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; Division of Life Sciences and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Maosheng Yan
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Zihuang Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Yayan Zhou
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Lin Mei
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, Cente for Biotechnology and BioMedicine, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; Division of Life Sciences and Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong Province, People's Republic of China ; School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xianming Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
38
|
Yanamala N, Kapralov AA, Djukic M, Peterson J, Mao G, Klein-Seetharaman J, Stoyanovsky DA, Stursa J, Neuzil J, Kagan VE. Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate. J Biol Chem 2014; 289:32488-98. [PMID: 25278024 DOI: 10.1074/jbc.m114.601377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met(80)) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c(+/+) cells than in cytochrome c(-/-) cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.
Collapse
Affiliation(s)
- Naveena Yanamala
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Alexander A Kapralov
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Mirjana Djukic
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Jim Peterson
- the Departments of Environmental and Occupational Health
| | - Gaowei Mao
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Judith Klein-Seetharaman
- the Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Detcho A Stoyanovsky
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Jan Stursa
- the Biomedical Research Center, University Hospital, Hradec Kralove 569810, Czech Republic
| | - Jiri Neuzil
- the Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, and the School of Medical Science, Griffith University, Southport, Queensland 4222, Australia
| | - Valerian E Kagan
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Radiation Oncology, and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
39
|
Sun Y, Zhao Y, Hou L, Zhang X, Zhang Z, Wu K. RRR-α-tocopheryl succinate induces apoptosis in human gastric cancer cells via the NF-κB signaling pathway. Oncol Rep 2014; 32:1243-8. [PMID: 24970592 DOI: 10.3892/or.2014.3282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/15/2014] [Indexed: 11/06/2022] Open
Abstract
To investigate the effects of the nuclear factor (NF)-κB signaling pathway on the induction of apoptosis by vitamin E succinate (RRR-α-tocopheryl succinate; VES) in human gastric carcinoma cells. Human gastric carcinoma SGC-7901 cells were treated with temperate concentrations of VES and pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. Cell viability and apoptosis were respectively estimated by methylthiazol tetrazolium (MTT) assay and the Annexin V‑FITC method. Western blot analysis was used to evaluate the protein expressions of NF-κBp65 and Bcl-2 family members Bcl-2, Bax and cleavage of caspase-3, caspase-9, and poly (ADP-ribose) polymerase (PARP). The DNA-binding activity of NF-κBp65 was measured by electrophoretic mobility shift assay (EMSA). Reverse transcription and polymerase chain reaction (RT-PCR) was implemented to evaluate the transcription of inhibitor of apoptosis (IAP) genes. Apoptosis assessment showed that VES induces apoptotic cell death in human gastric carcinoma cells. In the following experiments, PDTC (100 µM) was used in cell treatment 2 h before VES. The decreased ratio of the nuclear and cytosolic NF-κBp65 protein level was induced by VES and PDTC reinforced this trend. PDTC treatment significantly enhanced the decrease of NF-κB-DNA binding activity induced by VES in human gastric SGC-7901. The decrease in protein expression of Bcl-2 as well as the increase in the protein expression of Bax were induced by VES treatment. The cleavage of caspase-9, caspase-3 and PARP was induced. There was no effect on the gene transcription of c-IAP-1, c-IAP-2, and x-linked IAP (XIAP) compared with the control group, whereas mRNA levels of survivin and the neuronal apoptosis inhibitory protein (NAIP) markedly decreased. Notably, pretreatment with PDTC reinforced all the above VES-induced effects. In conclusion, VES-induced apoptosis in SGC-7901 cells is accompanied by the inhibition of the NF-κB signaling pathway, including changes in Bcl-2 family members, cleavage of caspases and gene transcription of survivin and NAIP.
Collapse
Affiliation(s)
- Yanpei Sun
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Zhao
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Liying Hou
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xuguang Zhang
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Zhihong Zhang
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. China
| | - Kun Wu
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
40
|
Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by α-tocopheryl succinate. Int J Biochem Cell Biol 2014; 53:409-13. [PMID: 24953557 DOI: 10.1016/j.biocel.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/28/2014] [Accepted: 06/13/2014] [Indexed: 01/06/2023]
Abstract
α-Tocopheryl succinate (TOS), a redox-silent analogue of vitamin E, suppresses cell growth in a number of clinical and experimental cancers, inhibits mitochondrial succinate dehydrogenase (SDH) and activates reactive oxygen species (ROS) generation. The aim of this study was to test whether TOS also inhibits glycerol-3-phosphate dehydrogenase (mGPDH), another flavoprotein-dependent enzyme of the mitochondrial respiratory chain because there are differences between electron transfer pathway from SDH and mGPDH to coenzyme Q pool. For our experiments brown adipose tissue mitochondria with high expression of mGPDH were used. Our data showed that inhibition of glycerol-3-phosphate (GP)-dependent oxygen consumption by TOS was more pronounced than the succinate (SUC)-dependent one (50% inhibition was reached at 10 μmol/l TOS vs. 80 μmol/l TOS, respectively). A comparison of the inhibitory effect of TOS on GP-oxidase, GP-cytochrome c oxidoreductase and GP-dehydrogenase activities showed that TOS directly interacts with the dehydrogenase. After TOS application the GP-dependent generation of ROS was highly depressed. It may thus be concluded that TOS-induced inhibition of mGPDH is more pronounced than TOS-induced inhibition of SDH and that the inhibitory effect of TOS for both substrates is exerted at different locations of the particular dehydrogenases. Our data indicate that the inhibition of mGPDH activity could also play a role in TOS-induced growth suppression in neoplastic cells.
Collapse
|
41
|
Use of the Mannich Reaction to Synthesize Spin-Labeled Derivatives of the Natural Flavonoid Dihydroquercetin. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-0927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 2014; 35:2391-400. [DOI: 10.1016/j.biomaterials.2013.11.086] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/28/2013] [Indexed: 12/26/2022]
|
43
|
Angulo-Molina A, Reyes-Leyva J, López-Malo A, Hernández J. The Role of Alpha Tocopheryl Succinate (α-TOS) as a Potential Anticancer Agent. Nutr Cancer 2013; 66:167-76. [DOI: 10.1080/01635581.2014.863367] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Hahn T, Polanczyk MJ, Borodovsky A, Ramanathapuram LV, Akporiaye ET, Ralph SJ. Use of anti-cancer drugs, mitocans, to enhance the immune responses against tumors. Curr Pharm Biotechnol 2013; 14:357-76. [PMID: 22201597 DOI: 10.2174/1389201011314030010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/02/2010] [Accepted: 09/17/2010] [Indexed: 12/12/2022]
Abstract
Cytotoxic drugs in cancer therapy are used with the expectation of selectively killing and thereby eliminating the offending cancer cells. If they should die in an appropriate manner, the cells can also release danger signals that promote an immune reaction that reinforces the response against the cancer. The identity of these immune-enhancing danger signals, how they work extra- and intracellularly, and the molecular mechanisms by which some anti-cancer drugs induce cell death to bring about the release of danger signals are the major focus of this review. A specific group of mitocans, the vitamin E analogs that act by targeting mitochondria to drive ROS production and also promote a more immunogenic means of cancer cell death exemplify such anti-cancer drugs. The role of reactive oxygen species (ROS) production and the events leading to the activation of the inflammasome and pro-inflammatory mediators induced by dying cancer cell mitochondria are discussed along with the evidence for their contribution to promoting immune responses against cancer. Current knowledge of how the danger signals interact with immune cells to boost the anti-tumor response is also evaluated.
Collapse
Affiliation(s)
- T Hahn
- School of Medical Sciences, Griffith Health Institute, Griffith University, Parklands Ave., Gold Coast, Queensland 4222, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Aichler M, Elsner M, Ludyga N, Feuchtinger A, Zangen V, Maier SK, Balluff B, Schöne C, Hierber L, Braselmann H, Meding S, Rauser S, Zischka H, Aubele M, Schmitt M, Feith M, Hauck SM, Ueffing M, Langer R, Kuster B, Zitzelsberger H, Höfler H, Walch AK. Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J Pathol 2013; 230:410-9. [PMID: 23592244 DOI: 10.1002/path.4199] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/25/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022]
Abstract
Chemotherapeutic drugs kill cancer cells, but it is unclear why this happens in responding patients but not in non-responders. Proteomic profiles of patients with oesophageal adenocarcinoma may be helpful in predicting response and selecting more effective treatment strategies. In this study, pretherapeutic oesophageal adenocarcinoma biopsies were analysed for proteomic changes associated with response to chemotherapy by MALDI imaging mass spectrometry. Resulting candidate proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated for functional relevance in vitro. Clinical impact was validated in pretherapeutic biopsies from an independent patient cohort. Studies on the incidence of these defects in other solid tumours were included. We discovered that clinical response to cisplatin correlated with pre-existing defects in the mitochondrial respiratory chain complexes of cancer cells, caused by loss of specific cytochrome c oxidase (COX) subunits. Knockdown of a COX protein altered chemosensitivity in vitro, increasing the propensity of cancer cells to undergo cell death following cisplatin treatment. In an independent validation, patients with reduced COX protein expression prior to treatment exhibited favourable clinical outcomes to chemotherapy, whereas tumours with unchanged COX expression were chemoresistant. In conclusion, previously undiscovered pre-existing defects in mitochondrial respiratory complexes cause cancer cells to become chemosensitive: mitochondrial defects lower the cells' threshold for undergoing cell death in response to cisplatin. By contrast, cancer cells with intact mitochondrial respiratory complexes are chemoresistant and have a high threshold for cisplatin-induced cell death. This connection between mitochondrial respiration and chemosensitivity is relevant to anticancer therapeutics that target the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Michaela Aichler
- Research Unit of Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bernabeu E, Helguera G, Legaspi MJ, Gonzalez L, Hocht C, Taira C, Chiappetta DA. Paclitaxel-loaded PCL-TPGS nanoparticles: in vitro and in vivo performance compared with Abraxane®. Colloids Surf B Biointerfaces 2013; 113:43-50. [PMID: 24060929 DOI: 10.1016/j.colsurfb.2013.07.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 02/05/2023]
Abstract
The purpose of this work was to develop Cremophor(®) EL-free nanoparticles (NPs) loaded with Paclitaxel (PTX) in order to improve the drug i.v. pharmacokinetic profile and to evaluate its activity against commercially available formulations such as Taxol(®) and Abraxane(®). PTX-loaded poly(ε-caprolactone)-alpha tocopheryl polyethylene glycol 1000 succinate (PCL-TPGS) NPs were prepared using three different techniques: (i) by nanoprecipitation (NPr-method), (ii) by emulsion-solvent evaporation homogenized with an Ultra-Turrax(®) (UT-method) and (iii) by emulsion-solvent evaporation homogenized with an ultrasonicator (US-method). The NPs prepared by US-method showed the smallest size and the highest drug content. The NPs exhibited a slow and continuous release of PTX. The in vitro anti-tumoral activity was assessed using two human breast cancer cell lines (MCF-7 and MDA-MB-231) with the WTS assay. Cytotoxicity studies with both cell lines showed that PTX-loaded PCL-TPGS NPs exhibited better anti-cancer activity compared to PTX solution and the commercial formulation Abraxane(®) at different concentrations. Importantly, in the case of triple negative MDA-MB-231 breast cancer cells, the IC50 value for PTX-loaded PCL-TPGS NPs was 7.8 times lower than Abraxane(®). Finally, in vivo studies demonstrated that PTX-loaded PCL-TPGS NPs exhibited longer systemic circulation time and slower plasma elimination rate than Taxol(®) and Abraxane(®). Therefore, the novel NPs investigated might be an alternative nanotechnological platform for PTX delivery system in cancer chemotherapy.
Collapse
Affiliation(s)
- Ezequiel Bernabeu
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Gustavo Helguera
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Maria J Legaspi
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Lorena Gonzalez
- National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Department of Biological Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Carlos Taira
- National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Diego A Chiappetta
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina; National Science Research Council (CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| |
Collapse
|
47
|
Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65:880-90. [PMID: 23220325 DOI: 10.1016/j.addr.2012.11.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/28/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Oral chemotherapy is an important topic in the 21st century medicine, which may radically change the current regimen of chemotherapy and greatly improve the quality of life of the patients. Unfortunately, most anticancer drugs, especially those of high therapeutic efficacy such as paclitaxel and docetaxel, are not orally bioavailable due to the gastrointestinal (GI) drug barrier. The molecular basis of the GI barrier has been found mainly due to the multidrug efflux proteins, i.e. P-type glycoproteins (P-gp), which are rich in the epithelial cell membranes in the GI tract. Medical solution for oral chemotherapy is to apply P-gp inhibitors such as cyclosporine A, which, however, suppress the body's immune system either, thus causing medical complication. Pharmaceutical nanotechnology, which is to apply and further develop nanotechnology to solve the problems in drug delivery, may provide a better solution and thus change the way we make drug and the way we take drug. This review is focused on the problems encountered in oral chemotherapy and the pharmaceutical nanotechnology solutions such as prodrugs, nanoemulsions, dendrimers, micelles, liposomes, solid lipid nanoparticles and nanoparticles of biodegradable polymers. Proof-of-concept in vitro and in vivo results for oral delivery of anticancer drugs by the various nanocarriers, which can be found so far from the literature, are provided.
Collapse
|
48
|
Cheng G, Zielonka J, McAllister DM, Mackinnon AC, Joseph J, Dwinell MB, Kalyanaraman B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 2013; 13:285. [PMID: 23764021 PMCID: PMC3686663 DOI: 10.1186/1471-2407-13-285] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. METHODS In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. RESULTS Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. CONCLUSIONS We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect.
Collapse
Affiliation(s)
- Gang Cheng
- Free Radical Research Center and Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Pokorný J, Foletti A, Kobilková J, Jandová A, Vrba J, Vrba J, Nedbalová M, Čoček A, Danani A, Tuszyński JA. Biophysical insights into cancer transformation and treatment. ScientificWorldJournal 2013; 2013:195028. [PMID: 23844381 PMCID: PMC3693169 DOI: 10.1155/2013/195028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022] Open
Abstract
Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.
Collapse
Affiliation(s)
- Jiří Pokorný
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, AS CR, Chaberská 57, 182 51 Prague 8-Kobylisy, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chitosan-modified d-α-tocopheryl poly(ethylene glycol) 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) nanoparticles for the oral chemotherapy of bladder cancer. J Appl Polym Sci 2013. [DOI: 10.1002/app.39330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|