1
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
2
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Hakim MA, Behringer EJ. Development of Alzheimer's Disease Progressively Alters Sex-Dependent KCa and Sex-Independent KIR Channel Function in Cerebrovascular Endothelium. J Alzheimers Dis 2021; 76:1423-1442. [PMID: 32651315 DOI: 10.3233/jad-200085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aβ plaques (Aβ; 6- 8 mo), and Aβ plaques + neurofibrillary tangles (AβT; 12- 15 mo)]. RESULTS The coupling of ΔVm-to-Δ[Ca2+]i during AβT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aβ+ AβT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aβ pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
4
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Trinity JD, Kwon OS, Broxterman RM, Gifford JR, Kithas AC, Hydren JR, Jarrett CL, Shields KL, Bisconti AV, Park SH, Craig JC, Nelson AD, Morgan DE, Jessop JE, Bledsoe AD, Richardson RS. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Am J Physiol Heart Circ Physiol 2020; 320:H668-H678. [PMID: 33306447 DOI: 10.1152/ajpheart.00784.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive leg movement (PLM) evokes a robust and predominantly nitric oxide (NO)-mediated increase in blood flow that declines with age and disease. Consequently, PLM is becoming increasingly accepted as a sensitive assessment of endothelium-mediated vascular function. However, a substantial PLM-induced hyperemic response is still evoked despite nitric oxide synthase (NOS) inhibition. Therefore, in nine young healthy men (25 ± 4 yr), this investigation aimed to determine whether the combination of two potent endothelium-dependent vasodilators, specifically prostaglandin (PG) and endothelium-derived hyperpolarizing factor (EDHF), account for the remaining hyperemic response to the two variants of PLM, PLM (60 movements) and single PLM (sPLM, 1 movement), when NOS is inhibited. The leg blood flow (LBF, Doppler ultrasound) response to PLM and sPLM following the intra-arterial infusion of NG-monomethyl-l-arginine (l-NMMA), to inhibit NOS, was compared to the combined inhibition of NOS, cyclooxygenase (COX), and cytochrome P-450 (CYP450) by l-NMMA, ketorolac tromethamine (KET), and fluconazole (FLUC), respectively. NOS inhibition attenuated the overall LBF [area under the curve (LBFAUC)] response to both PLM (control: 456 ± 194, l-NMMA: 168 ± 127 mL, P < 0.01) and sPLM (control: 185 ± 171, l-NMMA: 62 ± 31 mL, P = 0.03). The combined inhibition of NOS, COX, and CYP450 (i.e., l-NMMA+KET+FLUC) did not further attenuate the hyperemic responses to PLM (LBFAUC: 271 ± 97 mL, P > 0.05) or sPLM (LBFAUC: 72 ± 45 mL, P > 0.05). Therefore, PG and EDHF do not collectively contribute to the non-NOS-derived NO-mediated, endothelium-dependent hyperemic response to either PLM or sPLM in healthy young men. These findings add to the mounting evidence and understanding of the vasodilatory pathways assessed by the PLM and sPLM vascular function tests.NEW & NOTEWORTHY Passive leg movement (PLM) evokes a highly nitric oxide (NO)-mediated hyperemic response and may provide a novel evaluation of vascular function. The contributions of endothelium-dependent vasodilatory pathways, beyond NO and including prostaglandins and endothelium-derived hyperpolarizing factor, to the PLM-induced hyperemic response to PLM have not been evaluated. With intra-arterial drug infusion, the combined inhibition of nitric oxide synthase (NOS), cyclooxygenase, and cytochrome P-450 (CYP450) pathways did not further diminish the hyperemic response to PLM compared with NOS inhibition alone.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Oh Sung Kwon
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise Science, Brigham Young University, Provo, Utah
| | - Andrew C Kithas
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jay R Hydren
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Angela V Bisconti
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Abstract
Purinergic signaling was proposed in 1972, after it was demonstrated that adenosine 5'-triphosphate (ATP) was a transmitter in nonadrenergic, noncholinergic inhibitory nerves supplying the guinea-pig taenia coli. Later, ATP was identified as an excitatory cotransmitter in sympathetic and parasympathetic nerves, and it is now apparent that ATP acts as a cotransmitter in most, if not all, nerves in both the peripheral nervous system and central nervous system (CNS). ATP acts as a short-term signaling molecule in neurotransmission, neuromodulation, and neurosecretion. It also has potent, long-term (trophic) roles in cell proliferation, differentiation, and death in development and regeneration. Receptors to purines and pyrimidines have been cloned and characterized: P1 adenosine receptors (with four subtypes), P2X ionotropic nucleotide receptors (seven subtypes) and P2Y metabotropic nucleotide receptors (eight subtypes). ATP is released from different cell types by mechanical deformation, and after release, it is rapidly broken down by ectonucleotidases. Purinergic receptors were expressed early in evolution and are widely distributed on many different nonneuronal cell types as well as neurons. Purinergic signaling is involved in embryonic development and in the activities of stem cells. There is a growing understanding about the pathophysiology of purinergic signaling and there are therapeutic developments for a variety of diseases, including stroke and thrombosis, osteoporosis, pain, chronic cough, kidney failure, bladder incontinence, cystic fibrosis, dry eye, cancer, and disorders of the CNS, including Alzheimer's, Parkinson's. and Huntington's disease, multiple sclerosis, epilepsy, migraine, and neuropsychiatric and mood disorders.
Collapse
|
7
|
Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, Kiefmann R, Klose H. The P2-receptor-mediated Ca 2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal 2019; 15:299-311. [PMID: 31396838 DOI: 10.1007/s11302-019-09674-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were performed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4, P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors. Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jan K Hennigs
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Nicole Lüneburg
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annett Stage
- Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Melanie Schmitz
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Körbelin
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lars Harbaum
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christiane Matuszcak
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Mienert
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, Center of Anesthesiology and Critical Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
8
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
9
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
10
|
Alefishat E, Alexander SPH, Ralevic V. Antagonism of P2Y1-induced vasorelaxation by acyl CoA: a critical role for palmitate and 3'-phosphate. Br J Pharmacol 2015; 168:1911-22. [PMID: 23215951 DOI: 10.1111/bph.12086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Acyl derivatives of CoA have been shown to act as antagonists at human platelet and recombinant P2Y1 receptors, but little is known about their effects in the cardiovascular system. This study evaluated the effect of these endogenous nucleotide derivatives at P2Y1 receptors natively expressed in rat and porcine blood vessels. EXPERIMENTAL APPROACH Isometric tension recordings were used to evaluate the effects of CoA, acetyl CoA, palmitoyl CoA (PaCoA) and 3'-dephospho-palmitoyl-CoA on concentration relaxation-response curves to ADP and uridine triphosphate (UTP). A FlexStation monitored ADP- and UTP-evoked calcium responses in HEK293 cells. KEY RESULTS Acetyl CoA and PaCoA, but not CoA, inhibited endothelium-dependent relaxations to ADP with apparent selectivity for P2Y1 receptors (over P2Y(2/4) receptors) in rat thoracic aorta; PaCoA was more potent than acetyl CoA (331-fold vs. fivefold shift of ADP response curve evoked by 10 μM PaCoA and acetyl CoA, respectively); the apparent pA2 value for PaCoA was 6.44. 3'-dephospho-palmitoyl-CoA (10 μM) was significantly less potent than PaCoA (20-fold shift). In porcine mesenteric arteries, PaCoA and the P2Y1 receptor antagonist MRS2500 blocked ADP-mediated endothelium-dependent relaxations; in contrast, they were ineffective against ADP-mediated endothelium-independent relaxation in porcine coronary arteries (which does not involve P2Y1 receptors). Calcium responses evoked by ADP activation of endogenous P2Y1 receptors in HEK293 cells were inhibited in the presence of PaCoA, which failed to alter responses to UTP (acting at endogenous P2Y(2/4) receptors). CONCLUSIONS AND IMPLICATIONS Acyl derivatives of CoA can act as endogenous selective antagonists of P2Y1 receptors in blood vessels, and this inhibitory effect critically depends on the palmitate and 3'-ribose phosphate substituents on CoA.
Collapse
Affiliation(s)
- E Alefishat
- Cardiovascular Research Group and Lipid Signalling, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
11
|
Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci U S A 2015; 112:6425-30. [PMID: 25810253 DOI: 10.1073/pnas.1502285112] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the β-chain (βCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of βCys93 remains unclear. Here we report that mice with a βCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, βCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, βCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.
Collapse
|
12
|
García-Villalón ÁL, Granado M, Monge L, Fernández N, Carreño-Tarragona G, Amor S. Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts. J Vasc Res 2014; 51:283-9. [PMID: 25228127 DOI: 10.1159/000365928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
To determine the involvement of purinergic receptors in coronary endothelium-dependent relaxation, the response to acetylcholine (1 × 10(-8) to 3 × 10(-7)M) was recorded in isolated rat hearts perfused according to the Langendorff procedure before and after 30 min of ischemia and 15 min of reperfusion and after the inhibition of nitric oxide synthesis with L-NAME (10(-4)M), in the absence and presence of the antagonist of purinergic P2X receptors, PPADS (3 × 10(-6)M), and of the antagonist of purinergic P2Y receptors, Reactive Blue 2 (3 × 10(-7)M). In control conditions, the relaxation to acetylcholine was not altered by PPADS or Reactive Blue 2. The relaxation to acetylcholine was reduced after ischemia-reperfusion, and, in this condition, it was further reduced by treatment with PPADS or Reactive Blue 2. Likewise, the relaxation to acetylcholine was reduced by L-NAME, and reduced further by Reactive Blue 2 but not by PPADS. These results suggest that the relaxation to acetylcholine may be partly mediated by purinergic receptors after ischemia-reperfusion, due to the reduction of nitric oxide release in this condition.
Collapse
|
13
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|
14
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
15
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
16
|
Abstract
Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.
Collapse
|
17
|
Oliveira SDDS, Coutinho-Silva R, Silva CLM. Endothelial P2X7 receptors' expression is reduced by schistosomiasis. Purinergic Signal 2013; 9:81-9. [PMID: 22987361 PMCID: PMC3568429 DOI: 10.1007/s11302-012-9332-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/21/2012] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells control vascular tone, permeability and leukocyte transmigration and are modulated by pro-inflammatory mediators. Schistosomiasis is an intravascular disease associated with inflammation, therefore altering endothelial cells' phenotype. Purinergic P2X7 receptors (P2X7R) play an important role in inflammation; however, the impact of the disease upon endothelial P2X7R function or expression has not been explored. Using ethidium bromide uptake to investigate P2X7R function, we observed that the effects of ATP (3 mM) and the P2X7R agonist 3'-O-(4-benzoyl)-ATP (BzATP) were smaller in mesenteric endothelial cells from the Schistosoma mansoni-infected group than in the control group. In the control group, BzATP induced endothelial nitric oxide production, which was blocked by the P2X7R antagonists KN-62 and A740003. However, in the infected group, we observed a reduced effect of BzATP and no effect of both P2X7R antagonists, suggesting a downregulation of endothelial P2X7R in schistosomiasis. We observed similar results in both infected and P2X7R(-/-) groups, which were also comparable to data obtained with KN-62- or A740004-treated control cells. Data from Western blot and immunocytochemistry assays confirmed the reduced expression of P2X7R in the infected group. In conclusion, our data show a downregulation of P2X7R in schistosomiasis infection, which likely limits the infection-related endothelial damage.
Collapse
Affiliation(s)
- Suellen D’Arc dos Santos Oliveira
- />Instituto de Ciências Biomédicas, Laboratory of Biochemical and Molecular Pharmacology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room J-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
- />Instituto de Biofísica Carlos Chagas Filho, Laboratory of Immunophysiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room C-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
| | - Robson Coutinho-Silva
- />Instituto de Biofísica Carlos Chagas Filho, Laboratory of Immunophysiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room C-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
- />Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Cidade Universitária, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- />Instituto de Ciências Biomédicas, Laboratory of Biochemical and Molecular Pharmacology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room J-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
| |
Collapse
|
18
|
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Mechanisms underlying reduced P2Y(1) -receptor-mediated relaxation in superior mesenteric arteries from long-term streptozotocin-induced diabetic rats. Acta Physiol (Oxf) 2013; 207:130-41. [PMID: 22759594 DOI: 10.1111/j.1748-1716.2012.02469.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/29/2012] [Accepted: 06/25/2012] [Indexed: 12/20/2022]
Abstract
AIM Extracellular nucleotides activate cell-surface purinergic (P2) receptors, contribute to the local regulation of vascular tone and play important roles in pathophysiological states. However, little is known about the vasodilator effects of P2Y(1) -receptor activation in diabetic states. We hypothesized that in a model of established type 1 diabetes, long-term streptozotocin (STZ)-induced diabetic rats, the arterial relaxation elicited by a P2Y(1) -receptor agonist would be impaired. METHODS Relaxations to adenosine 5'-diphosphate sodium salt (ADP), 2-MeSADP (selective P2Y(1) -receptor agonist) and adenosine 5'-triphosphate disodium salt (ATP) were examined in superior mesenteric artery rings from long-term STZ-induced diabetic rats (at 50-57 weeks after STZ injection). ADP-stimulated nitric oxide (NO) production in the superior mesenteric artery was assessed by measuring the levels of NO metabolites. Mesenteric artery expressions of P2Y(1) receptor, and ADP-stimulated levels of phosphorylated endothelial NO synthase (eNOS) (at Ser(1177) and at Thr(495) ) and eNOS were detected by Western blotting. RESULTS Arteries from diabetic rats exhibited (vs. those from age-matched control rats): (i) reduced ADP-induced relaxation, which was partly or completely inhibited by endothelial denudation, by NOS inhibitor treatment and by a selective P2Y(1) -receptor antagonist, (ii) reduced 2-MeSADP-induced relaxation, (iii) reduced ADP-stimulated release of NO metabolites and (iv) impaired ADP-induced stimulation of eNOS activity (as evidenced by reduced the fold increase in eNOS phosphorylation at Ser(1177) with no difference in fold increase in eNOS phosphorylation at Thr(495) ). The protein expression of P2Y(1) receptor did not differ between diabetic and control arteries. CONCLUSIONS These results suggest that P2Y(1) -receptor-mediated vasodilatation is impaired in superior mesenteric arteries from long-term type 1 diabetic rats. This impairment is because of reduced P2Y(1) -receptor-mediated NO signalling, rather than to reduced P2Y(1) -receptor expression.
Collapse
Affiliation(s)
- K. Ishida
- Department of Physiology and Morphology, Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - K. Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - K. Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| | - T. Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku; Tokyo; Japan
| |
Collapse
|
19
|
Roberts JA, Lukewich MK, Sharkey KA, Furness JB, Mawe GM, Lomax AE. The roles of purinergic signaling during gastrointestinal inflammation. Curr Opin Pharmacol 2012; 12:659-66. [PMID: 23063457 DOI: 10.1016/j.coph.2012.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 02/09/2023]
Abstract
Extracellular purines play important roles as neurotransmitters and paracrine mediators in the gastrointestinal (GI) tract. Inflammation of the GI tract causes marked changes in the release and extracellular catabolism of purines, and can modulate purinoceptor expression and/or signaling. The functional consequences of this include suppression of the purinergic component of inhibitory neuromuscular and neurovascular transmission, increased release of purines from immune and epithelial cells, loss of enteric neurons to damage through P2X(7) purinoceptors, and enhanced activation of pain fibres. The purinergic system represents an important target for drug therapies that may improve GI inflammation and its consequences.
Collapse
Affiliation(s)
- Jane A Roberts
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Ziganshina AP, Ziganshin BA, Ziganshin AU. Dual effects of ATP on isolated arteries of the bovine eye. Pharmacol Res 2012; 66:170-6. [PMID: 22521505 DOI: 10.1016/j.phrs.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 01/22/2023]
Abstract
Although the presence of purinoreceptors has been shown in many human and animal arteries, there is few data yet about their role in the arteries of the eye. The purpose of the present study was to evaluate the effects of several agonists of purinoreceptors on isolated arteries of the bovine eye. Responses of isolated preparations of bovine ophthalmic (OA) and posterior ciliary arteries (PCA) to agonists of purinoreceptors (ATP, α,β-methylene-ATP-α,β-meATP, 2-methylthioATP-2meSATP, uridine-5'-triphosphate-UTP) as well as agonists of adreno-, cholino-, adenosine and histamine receptors were recorded by a standard organ bath method. ATP induced contractions of the intact vessels but caused relaxation of α,β-meATP-pretreated arteries. Contractile responses of PCA to high concentrations of ATP and α,β-meATP were significantly stronger than responses of OA, as well as relaxative responses to ATP and adenosine were significantly stronger in PCA than in OA. We suggest that there are several subtypes of functionally active purinoreceptors in both OA and PCA, although the potency of agonists of purinoreceptors to produce mechanical responses is higher in PCA than in OA. Purinoreceptors can be potential targets for new drugs, treating vascular pathology of the eye.
Collapse
Affiliation(s)
- Anna P Ziganshina
- Kazan State Medical University, 49 Butlerov Str., Kazan 420012, Russia
| | | | | |
Collapse
|
22
|
Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol (1985) 2011; 111:1744-50. [PMID: 21940850 DOI: 10.1152/japplphysiol.00946.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Dept. of Biomedical Sciences, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
23
|
Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 2011; 31:9456-65. [PMID: 21715610 DOI: 10.1523/jneurosci.1460-11.2011] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HIV infection of the CNS is an early event after primary infection, resulting in neurological complications in a significant number of individuals despite antiretroviral therapy (ART). The main cells infected with HIV within the CNS are macrophages/microglia and a small fraction of astrocytes. The role of these few infected astrocytes in the pathogenesis of neuroAIDS has not been examined extensively. Here, we demonstrate that few HIV-infected astrocytes (4.7 ± 2.8% in vitro and 8.2 ± 3.9% in vivo) compromise blood-brain barrier (BBB) integrity. This BBB disruption is due to endothelial apoptosis, misguided astrocyte end feet, and dysregulation of lipoxygenase/cyclooxygenase, BK(Ca) channels, and ATP receptor activation within astrocytes. All of these alterations in BBB integrity induced by a few HIV-infected astrocytes were gap junction dependent, as blocking these channels protected the BBB from HIV-infected astrocyte-mediated compromise. We also demonstrated apoptosis in vivo of BBB cells in contact with infected astrocytes using brain tissue sections from simian immunodeficiency virus-infected macaques as a model of neuroAIDS, suggesting an important role for these few infected astrocytes in the CNS damage seen with HIV infection. Our findings describe a novel mechanism of bystander BBB toxicity mediated by low numbers of HIV-infected astrocytes and amplified by gap junctions. This mechanism of toxicity contributes to understanding how CNS damage is spread even in the current ART era and how minimal or controlled HIV infection still results in cognitive impairment in a large population of infected individuals.
Collapse
|
24
|
Jankowski M, Szamocka E, Kowalski R, Angielski S, Szczepańska-Konkel M. The effects of P2X receptor agonists on renal sodium and water excretion in anaesthetized rats. Acta Physiol (Oxf) 2011; 202:193-201. [PMID: 21392268 DOI: 10.1111/j.1748-1716.2011.02276.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate in vivo effects of P2X receptor activation on sodium and water excretion in urine. METHODS The clearance experiments were carried out in anaesthetized rats during intravenous infusion (2 μmol kg(-1) + 20 nmol (kg min)(-1) , v = 40 μL min(-1)) of P2X receptors agonists: α,β-methylene ATP (α,β-meATP) and β,γ-methylene ATP (β,γ-meATP). Cortical blood flow (CBF) was estimated by laser Doppler flux during intrarenal artery infusion of β,γ-meATP (20 nmol (kg min)(-1) , v = 2 μL min(-1)). Influence of α,β-meATP and β,γ-meATP on the activity of Na-K-ATPase was investigated in isolated proximal tubules. RESULTS Intravenous infusion of β,γ-meATP resulted in a marked, progressively increasing diuresis and this effect was accompanied by a progressive increase in the sodium excretion rate. The glomerular filtration rate was unaffected. The effects of β,γ-meATP were abolished by P2 receptor antagonist PPADS (70 nmol (kg min)(-1)). CBF increased by 16 ± 2% during renal artery infusion of β,γ-meATP. Furthermore, α,β-meATP and β,γ-meATP increased 1.5-fold lithium clearance (C(Li)). Sodium excretion, expressed as a fraction of the distal delivery (C(Na) C(Li) (-1)), increased 1.5-fold during infusion of α,β-meATP or β,γ-meATP. Both agonists at 10(-6) (M) produced a statistical significant decrement in the ouabain-sensitive ATPase activity about 16-20% and these effects were blocked in the presence of PPADS. CONCLUSION Activation of P2X receptors increased renal sodium and water excretion. Mechanistically, P2X agonists increased renal perfusion and inhibited sodium reabsorption via an Na-K-ATPase-dependent mechanism.
Collapse
Affiliation(s)
- M Jankowski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Poland.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The pharmacological concept of specifically targeting purinoceptors (receptors for ATP and related nucleotides) has emerged over the last two decades in the quest for novel, differentiated therapeutics. Investigations from many laboratories have established a prominent role for ATP in the functional regulation of most tissue and organ systems, including the urinary tract, under normal and pathophysiological conditions. In the particular case of the urinary tract, ATP signaling via P2X1 receptors participates in the efferent control of detrusor smooth muscle excitability, and this function may be heightened in disease and aging. Perhaps of greater interest, ATP also appears to be involved in bladder sensation, operating via activation of P2X3-containing receptors on sensory afferent neurones, both on peripheral terminals within the urinary tract tissues (e.g., ureters, bladder) and on central synapses in the dorsal horn of the spinal cord. Such findings are based on results from classical pharmacological and localization studies in nonhuman and human tissues, gene knockout mice, and studies using recently identified pharmacological antagonists - some of which have progressed as candidate drug molecules. Based on recent advances in this field, it is apparent that the development of selective antagonists for these receptors will occur that could lead to therapies offering better relief of storage, voiding, and sensory symptoms for patients, while minimizing the systemic side effects that curb the clinical effectiveness of current urologic medicines.
Collapse
|
26
|
Souza CGD, Böhmer AE, Müller AP, Oses JP, Viola GG, Lesczinski DN, Souza DGD, Knorr L, Moreira JD, Lhullier F, Souza DO, Perry MLS. Effects of a highly palatable diet on lipid and glucose parameters, nitric oxide, and ectonucleotidases activity. Appl Physiol Nutr Metab 2010; 35:591-7. [PMID: 20962914 DOI: 10.1139/h10-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has reached epidemic proportions worldwide and is stimulated by the ready availability of food rich in fat and sugar (highly palatable diet). This type of diet increases the risks of obesity-associated pathologies, such as insulin resistance and cardiovascular disease. Nitric oxide, a potent endogenous vasodilator, is decreased in these pathologies, mostly as a result of insulin resistance. Ectonucleotidases are ecto and soluble enzymes that regulate the availability of the nucleotides ATP, ADP, and AMP and the nucleoside adenosine in the vascular system, thereby affecting vasoconstriction, vasodilatation, and platelet aggregation homeostasis. The aim of this study was to evaluate the effects of a highly palatable diet on serum lipid and glucose parameters, nitric oxide, and ectonucleotidase activity. Forty male Wistar rats were fed 1 of 2 diets for either 45 days or 4 months: standard chow (SC, n = 10) or a highly palatable diet enriched with sucrose (HP, n = 10). Body mass, visceral fat mass, glucose tolerance, cholesterol (total, high-density lipoprotein (HDL) and non-HDL), serum triacylglycerol, liver triacylglycerol, and free glycerol were increased in the HP group after 45 days and after 4 months, whereas insulin levels were not different between the groups at either time. Furthermore, levels of nitric oxide metabolites and ATP, ADP, and AMP hydrolysis were significantly lower in the HP group (p < 0.05) after 4 months. In conclusion, the consumption of the HP diet for 4 months induced overall corporal and metabolic changes, and decreased nitric oxide metabolites and ectonucleotidase activity, thereby promoting an appropriate environment for the development of cardiovascular diseases, without apparent changes in insulin levels.
Collapse
Affiliation(s)
- Carolina Guerini de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2600 anexo, CEP 90035003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Paffett ML, Riddle MA, Kanagy NL, Resta TC, Walker BR. Altered protein kinase C regulation of pulmonary endothelial store- and receptor-operated Ca2+ entry after chronic hypoxia. J Pharmacol Exp Ther 2010; 334:753-60. [PMID: 20576798 DOI: 10.1124/jpet.110.165563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is associated with decreased basal pulmonary artery endothelial cell (EC) Ca(2+), which correlates with reduced store-operated Ca(2+) (SOC) entry. Protein kinase C (PKC) attenuates SOC entry in ECs. Therefore, we hypothesized that PKC has a greater inhibitory effect on EC SOC and receptor-operated Ca(2+) entry after CH. To test this hypothesis, we assessed SOC in the presence or absence of the nonselective PKC inhibitor GF109203X [2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide] in freshly isolated, Fura-2-loaded ECs obtained from intrapulmonary arteries of control and CH rats (4 weeks at 0.5 atm). We found that SOC entry and 1-oleoyl-2-acetyl-sn-glycerol (OAG)- and ATP-induced Ca(2+) influx were attenuated in ECs from CH rats versus controls, and GF109203X restored SOC and OAG responses to the level of controls. In contrast, nonselective PKC inhibition with GF109203X or the selective PKC(epsilon) inhibitor myristoylated V1-2 attenuated ATP-induced Ca(2+) entry in ECs from control but not CH pulmonary arteries. ATP-induced Ca(2+) entry was also attenuated by the T-type voltage-gated Ca(2+) channel (VGCC) inhibitor mibefradil in control cells. Consistent with the presence of endothelial T-type VGCC, we observed depolarization-induced Ca(2+) influx in control cells that was inhibited by mibefradil. This response was largely absent in ECs from CH arteries. We conclude that CH enhances PKC-dependent inhibition of SOC- and OAG-induced Ca(2+) entry. Furthermore, these data suggest that CH may reduce the ATP-dependent Ca(2+) entry that is mediated, in part, by PKCepsilon and mibefradil-sensitive Ca(2+) channels in control cells.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | |
Collapse
|
28
|
Kauffenstein G, Drouin A, Thorin-Trescases N, Bachelard H, Robaye B, D'Orléans-Juste P, Marceau F, Thorin E, Sévigny J. NTPDase1 (CD39) controls nucleotide-dependent vasoconstriction in mouse. Cardiovasc Res 2010; 85:204-13. [PMID: 19640930 DOI: 10.1093/cvr/cvp265] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS Extracellular nucleotides are vasoactive molecules. The concentrations of these molecules are regulated by ectonucleotidases. In this study, we investigated the role of the blood vessel ectonucleotidase NTPDase1, in the vasoconstrictor effect of nucleotides using Entpd1(-/-) mice. METHODS AND RESULTS Immunofluorescence, enzyme histochemistry, and HPLC analysis were used to evaluate both NTPDase expression and activity in arteries and isolated vascular smooth muscle cells (VSMCs). Vascular reactivity was evaluated in vitro and mean arterial blood pressure was recorded in anesthetized mice after nucleotide i.v. infusion. Expression of nucleotide receptors in VSMCs was determined by RT-PCR. Entpd1(-/-) mice displayed a dramatic deficit of nucleotidase activity in blood vessel wall in situ and in VSMCs in comparison to control mice. In aortic rings from Entpd1(-/-) mice, UDP and UTP induced a potent and long-lasting constriction contrasting with the weak response obtained in wild-type rings. This constriction occurred through activation of P2Y(6) receptor and was independent of other uracil nucleotide-responding receptors (P2Y(2) and P2Y(4)). UDP infusion in vivo increased blood pressure and this effect was potentiated in Entpd1(-/-) mice. In addition, pressurized mesenteric arteries from Entpd1(-/-) mice displayed an enhanced myogenic response, consistent with higher local concentrations of endogenously released nucleotides. This effect was inhibited by the P2 receptor antagonist RB-2. CONCLUSION NTPDase1 is the major enzyme regulating nucleotide metabolism at the surface of VSMCs and thus contributes to the local regulation of vascular tone by nucleotides.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, QC, Canada G1V 4G2
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kauffenstein G, Fürstenau CR, D'Orléans-Juste P, Sévigny J. The ecto-nucleotidase NTPDase1 differentially regulates P2Y1 and P2Y2 receptor-dependent vasorelaxation. Br J Pharmacol 2010; 159:576-85. [PMID: 20067476 DOI: 10.1111/j.1476-5381.2009.00566.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Extracellular nucleotides produce vasodilatation through endothelial P2 receptor activation. As these autacoids are actively metabolized by the ecto-nucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), we studied the effects of this cell surface enzyme on nucleotide-dependent vasodilatation. EXPERIMENTAL APPROACH Vascular NTPDase expression and activity were evaluated by immunohistochemistry and histochemistry. The vascular effects of nucleotides were tested in vivo by monitoring mean arterial pressure, and in vitro comparing reactivity of aortic rings using wild-type and Entpd1(-/-) (lacking NTPDase1) mice. KEY RESULTS The absence of NTPDase1 in Entpd1(-/-) mice led to a dramatic drop in endothelial nucleotidase activity. This deficit was associated with an exacerbated decrease in blood pressure after nucleotide injection. Following ATP injection, mean arterial pressure was decreased in Entpd1(+/+) and Entpd1(-/-) mice by 5.0 and 17%, respectively, and by 0.1 and 19% after UTP injection (10 nmole.kg(-1) both). In vitro, the concentration-response curves of relaxation to ADP and ATP were shifted to the left, revealing a facilitation of endothelial P2Y1 and P2Y2 receptor activation in Entpd1(-/-) mice. EC(50) values in Entpd1(+/+) versus Entpd1(-/-) aortic rings were 14 microM versus 0.35 microM for ADP, and 29 microM versus 1 microM for ATP. In Entpd1(-/-) aortas, P2Y1 receptors were more extensively desensitized than P2Y2 receptors. Relaxations to the non-hydrolysable analogues ADPbetaS (P2Y1) and ATPgammaS (P2Y2) were equivalent in both genotypes confirming the normal functionality of these P2Y receptors in mutant mice. CONCLUSIONS AND IMPLICATIONS NTPDase1 controls endothelial P2Y receptor-dependent relaxation, regulating both agonist level and P2 receptor reactivity.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
30
|
Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 2009; 15:452-60. [PMID: 19781996 DOI: 10.1016/j.molmed.2009.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 01/30/2023]
Abstract
The protected transport of nitric oxide (NO) by hemoglobin (Hb) links the metabolic activity of working tissue to the regulation of its local blood supply through hypoxic vasodilation. This physiologic mechanism is allosterically coupled to the O(2) saturation of Hb and involves the covalent binding of NO to a cysteine residue in the beta-chain of Hb (Cys beta93) to form S-nitrosohemoglobin (SNO-Hb). Subsequent S-transnitrosation, the transfer of NO groups to thiols on the RBC membrane and then in the plasma, preserves NO vasodilator activity for delivery to the vascular endothelium. This SNO-Hb paradigm provides insight into the respiratory cycle and a new therapeutic focus for diseases involving abnormal microcirculatory perfusion. In addition, the formation of S-nitrosothiols in other proteins may regulate an array of physiological functions.
Collapse
Affiliation(s)
- Barry W Allen
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
31
|
Alkayed F, Boudaka A, Shiina T, Takewaki T, Shimizu Y. P2X purinoceptors mediate an endothelium-dependent hyperpolarization in longitudinal smooth muscle of anterior mesenteric artery in young chickens. Br J Pharmacol 2009; 158:888-95. [PMID: 19694725 DOI: 10.1111/j.1476-5381.2009.00356.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The chicken anterior mesenteric artery contains an outer longitudinal smooth muscle layer, whose neural regulation remains to be elucidated. ATP evokes a depolarization in the smooth muscle through P2Y purinoceptors. However, there may be an additional inhibitory regulation because blockade of P2Y purinoceptors converts the depolarization to hyperpolarization. The objective of the present study was to examine the mechanism underlying this hyperpolarization. EXPERIMENTAL APPROACH Membrane potentials of longitudinal smooth muscle of the chicken mesenteric artery were recorded with a microelectrode technique. Perivascular nerves were stimulated by applying electrical field stimulation (EFS). KEY RESULTS EFS induced a hyperpolarization in preparations obtained from 5-week-old chickens, whereas it evoked a depolarization in those from 12-week-old chickens. The EFS-evoked hyperpolarization in 5-week-old chickens was blocked by a non-specific purinoceptor antagonist, suramin, and by a specific P2X purinoceptor antagonist, pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid. Desensitization of the P2X purinoceptor with its agonist alpha,beta-MeATP significantly suppressed EFS-evoked hyperpolarization. Blockade of the P2Y purinoceptor did not affect EFS-evoked hyperpolarization. The application of the NOS inhibitor Nomega-nitro-L-arginine methyl ester or the removal of the endothelium inhibited the hyperpolarization. The application of the nitric oxide (NO) donor sodium nitroprusside mimicked the hyperpolarization. Reverse transcriptase-PCR showed that P2X purinoceptors are expressed in the endothelium of the anterior mesenteric artery. CONCLUSIONS AND IMPLICATIONS Hyperpolarization in the longitudinal smooth muscle of the chicken anterior mesenteric artery was induced by ATP. ATP released from perivascular nerves may act on P2X purinoceptors in the endothelium and thereby stimulate NO production.
Collapse
Affiliation(s)
- F Alkayed
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | | | |
Collapse
|
32
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
33
|
Neshat S, deVries M, Barajas-Espinosa AR, Skeith L, Chisholm SP, Lomax AE. Loss of purinergic vascular regulation in the colon during colitis is associated with upregulation of CD39. Am J Physiol Gastrointest Liver Physiol 2009; 296:G399-405. [PMID: 19074640 DOI: 10.1152/ajpgi.90450.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Evidence from patients with inflammatory bowel disease (IBD) and animal models suggests that inflammation alters blood flow to the mucosa, which precipitates mucosal barrier dysfunction. Impaired purinergic sympathetic regulation of submucosal arterioles, the resistance vessels of the splanchnic vasculature, is one of the defects identified during IBD and in mouse models of IBD. We hypothesized that this may be a consequence of upregulated catabolism of ATP during colitis. In vivo and in vitro video microscopy techniques were employed to measure the effects of purinergic agonists and inhibitors of CD39, an enzyme responsible for extracellular ATP catabolism, on the diameter of colonic submucosal arterioles from control mice and mice with dextran sodium sulfate [DSS, 5% (wt/vol)] colitis. Using a luciferase-based ATP assay, we examined the degradation of ATP and utilized real-time PCR, Western blotting, and immunohistochemistry to examine the expression and localization of CD39 during colitis. Arterioles from mice with DSS colitis did not constrict in response to ATP (10 microM) but did constrict in the presence of its nonhydrolyzable analog alpha,beta-methylene ATP (1 microM). alpha,beta-Methylene ADP (100 microM), an inhibitor of CD39, restored ATP-induced vasoconstriction in arterioles from mice with DSS-induced colitis. CD39 protein and mRNA expression was markedly increased during colitis. Immunohistochemical analysis demonstrated that, in addition to vascular CD39, F4/80-immunoreactive macrophages accounted for a large proportion of submucosal CD39 staining during colitis. These data implicate upregulation of CD39 in impaired sympathetic regulation of gastrointestinal blood flow during colitis.
Collapse
Affiliation(s)
- S Neshat
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O(2) in the perioperative period reduces the incidence of postoperative infections. Correction of wound pO(2) may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO(2) favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising.
Collapse
Affiliation(s)
- Chandan K Sen
- The Comprehensive Wound Center, Department of Surgery and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
35
|
Mortensen SP, González-Alonso J, Bune LT, Saltin B, Pilegaard H, Hellsten Y. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol Regul Integr Comp Physiol 2008; 296:R1140-8. [PMID: 19118095 DOI: 10.1152/ajpregu.90822.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation and 2) the expression and distribution of purinergic P(2) receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5-7 min of femoral intra-arterial infusion of ATP [0.45-2.45 micromol/min] in 19 healthy male subjects with and without coinfusion of N(G)-monomethyl-l-arginine (l-NMMA; NO formation inhibitor; 12.3 +/- 0.3 (SE) mg/min), indomethacin (INDO; prostaglandin formation blocker; 613 +/- 12 microg/min), and/or theophylline (adenosine receptor blocker; 400 +/- 26 mg). During control conditions, ATP infusion increased leg blood flow (LBF) from baseline conditions by 1.82 +/- 0.14 l/min. When ATP was coinfused with either l-NMMA, INDO, or l-NMMA + INDO combined, the increase in LBF was reduced by 14 +/- 6, 15 +/- 9, and 39 +/- 8%, respectively (all P < 0.05), and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O(2) extraction. Infusion of theophylline did not alter the ATP-induced leg hyperemia or systemic variables. Real-time PCR analysis of the mRNA content from the vastus lateralis muscle of eight subjects showed the highest expression of P(2Y2) receptors of the 10 investigated P(2) receptor subtypes. Immunohistochemistry showed that P(2Y2) receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P(2X1) receptors were located in the endothelium and the sacrolemma. Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP-induced vasodilation in human skeletal muscle. The expression and localization of the nucleotide selective P(2Y2) and P(2X1) receptors suggest that these receptors may mediate ATP-induced vasodilation in skeletal muscle.
Collapse
Affiliation(s)
- Stefan P Mortensen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Section 7652, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Diesen DL, Hess DT, Stamler JS. Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circ Res 2008; 103:545-53. [PMID: 18658051 DOI: 10.1161/circresaha.108.176867] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Red blood cells (RBCs) have been ascribed an essential role in matching blood flow to local metabolic demand during hypoxic vasodilation. The vasodilatory function of RBCs evidently relies on the allosteric properties of hemoglobin (Hb), which couple the conformation of Hb to tissue oxygen tension (Po(2)) and thereby provide a basis for the graded vasodilatory activity that is inversely proportional to Hb oxygen saturation. Although a large body of evidence indicates that the Po(2)-coupled allosteric transition from R (oxy)-state to T (deoxy)-state subserves the release from Hb of vasodilatory nitric oxide (NO) bioactivity, it has not yet been determined whether the NO-based signal is a necessary and sufficient source of RBC-mediated vasoactivity and it has been suggested that ATP or nitrite may also contribute. We demonstrate here by bioassay that untreated human RBCs rapidly and substantially relax thoracic aorta from both rabbit and mouse at low Po(2) (approximately 1% O(2)) but not at high Po(2) (approximately 21% O(2)). RBC-mediated vasorelaxation is inhibited by prior depletion of S-nitroso-Hb, potentiated by low-molecular-weight thiols, and dependent on cGMP. Furthermore, these relaxations are largely endothelium-independent and unaffected by NO synthase inhibition or nitrite. Robust relaxations by RBCs are also elicited in the absence of endothelial, neuronal or inducible NO synthase. Finally, contractions that appear following resolution of RBC-mediated relaxations are dependent on NO derived from RBCs as well as the endothelium. Our results suggest that an S-nitrosothiol-based signal originating from RBCs mediates hypoxic vasodilation by RBCs, and that vasorelaxation by RBCs dominates NO-based vasoconstriction under hypoxic conditions.
Collapse
Affiliation(s)
- Diana L Diesen
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
37
|
Bar I, Guns PJ, Metallo J, Cammarata D, Wilkin F, Boeynams JM, Bult H, Robaye B. Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 2008; 74:777-84. [PMID: 18523137 DOI: 10.1124/mol.108.046904] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2Y receptors are G-protein-coupled receptors activated by extracellular nucleotides. The P2Y(6) receptor is selectively activated by UDP, and its transcript has been detected in numerous organs, including the spleen, thymus, intestine, blood leukocytes, and aorta. To investigate the biological functions of this receptor, we generated P2Y(6)-null mice by gene targeting. The P2Y(6) knockout (KO) mice are viable and are not distinguishable from the wild-type (WT) mice in terms of growth or fertility. In thioglycollate-elicited macrophages, the production of inositol phosphate in response to UDP stimulation was lost, indicating that P2Y(6) is the unique UDP-responsive receptor expressed by mouse macrophages. Furthermore, the amount of interleukin-6 and macrophage-inflammatory protein-2, but not tumor necrosis factor-alpha, released in response to lipopolysaccharide stimulation was significantly enhanced in the presence of UDP, and this effect was lost in the P2Y(6) KO macrophages. The endothelium-dependent relaxation of the aorta by UDP was abolished in KO P2Y(6) mice. The contractile effect of UDP on the aorta, observed when endothelial nitric-oxide synthase is blocked, was also abolished in P2Y(6)-null mice. In conclusion, we generated P2Y(6)-deficient mice and have shown that these mice have a defective response to UDP in macrophages, endothelial cells, and vascular smooth muscle cells. These observations might be relevant to several physiopathological conditions such as atherosclerosis or hypertension.
Collapse
Affiliation(s)
- Isabelle Bar
- Institute of Interdisciplinary Research, Institute of Biology and Molecular Medicine, Universite' Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|