1
|
Dongdem JT, Etornam AE, Beletaa S, Alidu I, Kotey H, Wezena CA. The β 3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv Pharmacol Pharm Sci 2024; 2024:2005589. [PMID: 39640497 PMCID: PMC11620816 DOI: 10.1155/2024/2005589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The discovery and characterization of the signal cascades of the β-adrenergic receptors have made it possible to effectively target the receptors for drug development. β-Adrenergic receptors are a class A rhodopsin type of G protein-coupled receptors (GPCRs) that are stimulated mainly by catecholamines and therefore mediate diverse effects of the parasympathetic nervous system in eliciting "fight or flight" type responses. They are detectable in several human tissues where they control a plethora of physiological processes and therefore contribute to the pathogenesis of several disease conditions. Given the relevance of the β-adrenergic receptor as a molecular target for many pathological conditions, this comprehensive review aims at providing an in-depth exploration of the recent advancements in β3-adrenergic receptor research. More importantly, we delve into the prospects of the β3-adrenergic receptor as a therapeutic target across a variety of clinical domains.
Collapse
Affiliation(s)
- Julius T. Dongdem
- Department of Chemical Pathology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Axandrah E. Etornam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Solomon Beletaa
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Issah Alidu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Hassan Kotey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Cletus A. Wezena
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region, Ghana
| |
Collapse
|
2
|
Drouillard D, Halyko M, Cinquegrani E, McAllister D, Peterson FC, Marchese A, Dwinell MB. CXCL12 chemokine dimer signaling modulates acute myelogenous leukemia cell migration through altered receptor internalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609725. [PMID: 39253415 PMCID: PMC11383031 DOI: 10.1101/2024.08.26.609725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acute myeloid leukemia (AML) is a malignancy of immature myeloid blast cells with stem-like and chemoresistant cells being retained in the bone marrow through CXCL12-CXCR4 signaling. Current CXCR4 inhibitors mobilize AML cells into the bloodstream where they become more chemosensitive have failed to improve patient survival, likely reflecting persistent receptor localization on target cells. Here we characterize the signaling properties of CXCL12-locked dimer (CXCL12-LD), a bioengineered variant of the dimeric CXCL12 structure. CXCL12-LD binding resulted in lower levels of G protein, β-arrestin, and intracellular calcium mobilization, consistent with the locked dimer being a partial agonist of CXCR4. Further, CXCL12-LD failed to induce chemotaxis in AML cells. Despite these partial agonist properties, CXCL12-LD increased CXCR4 internalization compared to wildtype and locked-monomer forms of CXCL12. Analysis of a previously published AML transcriptomic data showed CXCR4 positive AML cells co-express genes involved in chemoresistance and maintenance of a blast-like state. The CXCL12-LD partial agonist effectively mobilized stem cells into the bloodstream in mice suggesting a potential role for their use in targeting CXCR4. Together, our results suggest that enhanced internalization by CXCL12-LD partial agonist signaling can avoid pharmacodynamic tolerance and may identify new avenues to better target GPCRs.
Collapse
Affiliation(s)
- Donovan Drouillard
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Michael Halyko
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI, USA
| | | | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
| | | | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, USA
| | - Michael B. Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee WI, USA
| |
Collapse
|
3
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People's Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| |
Collapse
|
4
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Luscombe VB, Baena-López LA, Bataille CJR, Russell AJ, Greaves DR. Kinetic insights into agonist-dependent signalling bias at the pro-inflammatory G-protein coupled receptor GPR84. Eur J Pharmacol 2023; 956:175960. [PMID: 37543157 PMCID: PMC10804997 DOI: 10.1016/j.ejphar.2023.175960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
GPR84 is an orphan G-protein coupled receptor (GPCR) linked to inflammation. Strategies targeting GPR84 to prevent excessive inflammation in disease are hampered by a lack of understanding of its precise functional role. We have developed heterologous cell lines with low GPR84 expression levels that phenocopy the response of primary cells in a label-free cell electrical impedance (CEI) sensing system that measures cell morphology and adhesion. We then investigated the signalling profile and membrane localisation of GPR84 upon treatment with 6-OAU and DL-175, two agonists known to differentially influence immune cell function. When compared to 6-OAU, DL-175 was found to exhibit a delayed impedance response, a delayed and suppressed activation of Akt, which together correlated with an impaired ability to internalise GPR84 from the plasma membrane. The signalling differences were transient and occurred only at early time points in the low expressing cell lines, highlighting the importance of receptor number and kinetic readouts when evaluating signalling bias. Our findings open new ways to understand GPR84 signalling and evaluate the effect of newly developed agonists.
Collapse
Affiliation(s)
- Vincent B Luscombe
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom
| | - Luis Alberto Baena-López
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom
| | - Carole J R Bataille
- Department of Chemistry, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom; Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, Oxfordshire, OX1 3TA, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, South Parks Rd, University of Oxford, Oxford, Oxfordshire, OX1 3RE, United Kingdom.
| |
Collapse
|
6
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
7
|
Courault P, Lancelot S, Costes N, Colom M, Le Bars D, Redoute J, Gobert F, Dailler F, Isal S, Iecker T, Newman-Tancredi A, Merida I, Zimmer L. [ 18F]F13640: a selective agonist PET radiopharmaceutical for imaging functional 5-HT 1A receptors in humans. Eur J Nucl Med Mol Imaging 2023; 50:1651-1664. [PMID: 36656363 PMCID: PMC10119077 DOI: 10.1007/s00259-022-06103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [18F]F13640 binds preferentially to functional 5-HT1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT1A receptors by [18F]F13640 in humans and describe a simplified model for its quantification. METHODS PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) (n = 9) and test-retest protocol (n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). RESULTS [18F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test-retest parameters and the prolonged binding kinetics of [18F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. CONCLUSION The favorable brain labeling and kinetic profile of [18F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [18F]F13640's kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. TRIAL REGISTRATION Trial Registration EudraCT 2017-002,722-21.
Collapse
Affiliation(s)
- Pierre Courault
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | - Sophie Lancelot
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP, Bron, France
| | - Nicolas Costes
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,CERMEP, Bron, France
| | | | - Didier Le Bars
- Hospices Civils de Lyon (HCL), Lyon, France.,CERMEP, Bron, France
| | | | - Florent Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France
| | | | - Sibel Isal
- Hospices Civils de Lyon (HCL), Lyon, France
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center, Lyon, France. .,Hospices Civils de Lyon (HCL), Lyon, France. .,CERMEP, Bron, France.
| |
Collapse
|
8
|
Witkin JM. The romantic age of pharmacological science. Pharmacol Biochem Behav 2022; 214:173354. [DOI: 10.1016/j.pbb.2022.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
|
9
|
Functional Selectivity of Coumarin Derivates Acting via GPR55 in Neuroinflammation. Int J Mol Sci 2022; 23:ijms23020959. [PMID: 35055142 PMCID: PMC8779649 DOI: 10.3390/ijms23020959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Clinical studies demonstrate a reduction of the mentioned diseases’ symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.
Collapse
|
10
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
11
|
Abstract
There is increasing appreciation that G-protein-coupled receptors (GPCRs) can initiate diverse cellular responses by activating multiple G proteins, arrestins, and other biochemical effectors. Structurally different ligands targeting the same receptor are thought to stabilize the receptor in multiple distinct active conformations such that specific subsets of signaling effectors are engaged at the exclusion of others, creating a bias toward a particular outcome, which has been referred to as ligand-induced selective signaling, biased agonism, ligand-directed signaling, and functional selectivity, among others. The potential involvement of functional selectivity in mammalian olfactory signal transduction has received little attention, notwithstanding the fact that mammalian olfactory receptors comprise the largest family of mammalian GPCRs. This position review considers the possibility that, although such complexity in G-protein function may have been lost in the specialization of olfactory receptors to serve as sensory receptors, the ability of olfactory receptor neurons (ORNs) to function as signal integrators and growing appreciation that this functionality is widespread in the receptor population suggest otherwise. We pose that functional selectivity driving 2 opponent inputs have the potential to generate an output that reflects the balance of ligand-dependent signaling, the direction of which could be either suppressive or synergistic and, as such, needs to be considered as a mechanistic basis for signal integration in mammalian ORNs.
Collapse
Affiliation(s)
- Barry W Ache
- Whitney Laboratory, Departments of Biology and Neuroscience, and Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Yuan CY, Zhou V, Sauber G, Stollenwerk T, Komorowski R, López A, Tolón RM, Romero J, Hillard CJ, Drobyski WR. Signaling through the type 2 cannabinoid receptor regulates the severity of acute and chronic graft-versus-host disease. Blood 2021; 137:1241-1255. [PMID: 33027805 PMCID: PMC7933769 DOI: 10.1182/blood.2020004871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Graft-versus-host disease (GVHD) pathophysiology is a complex interplay between cells that comprise the adaptive and innate arms of the immune system. Effective prophylactic strategies are therefore contingent upon approaches that address contributions from both immune cell compartments. In the current study, we examined the role of the type 2 cannabinoid receptor (CB2R), which is expressed on nearly all immune cells, and demonstrated that absence of the CB2R on donor CD4+ or CD8+ T cells or administration of a selective CB2R pharmacological antagonist exacerbated acute GVHD lethality. This was accompanied primarily by the expansion of proinflammatory CD8+ T cells, indicating that constitutive CB2R expression on T cells preferentially regulated CD8+ T-cell alloreactivity. Using a novel CB2ReGFP reporter mouse, we observed significant loss of CB2R expression on T cells, but not macrophages, during acute GVHD, indicative of differential alterations in receptor expression under inflammatory conditions. Therapeutic targeting of the CB2R with the agonists Δ9-tetrahydrocannabinol (THC) and JWH-133 revealed that only THC mitigated lethal T cell-mediated acute GVHD. Conversely, only JWH-133 was effective in a sclerodermatous chronic GVHD model where macrophages contributed to disease biology. In vitro, both THC and JWH-133 induced arrestin recruitment and extracellular regulated kinase phosphorylation via CB2R, but THC had no effect on CB2R-mediated inhibition of adenylyl cyclase. This study shows that the CB2R plays a critical role in the regulation of GVHD and suggests that effective therapeutic targeting is dependent upon agonist signaling characteristics and receptor selectivity in conjunction with the composition of pathogenic immune effector cells.
Collapse
Affiliation(s)
| | | | | | | | - Richard Komorowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI; and
| | - Alicia López
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Rosa María Tolón
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | |
Collapse
|
13
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
14
|
Gudin J, Fudin J. A Narrative Pharmacological Review of Buprenorphine: A Unique Opioid for the Treatment of Chronic Pain. Pain Ther 2020; 9:41-54. [PMID: 31994020 PMCID: PMC7203271 DOI: 10.1007/s40122-019-00143-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Buprenorphine is a Schedule III opioid analgesic with unique pharmacodynamic and pharmacokinetic properties that may be preferable to those of Schedule II full μ-opioid receptor agonists. The structure of buprenorphine allows for multimechanistic interactions with opioid receptors μ, δ, κ, and opioid receptor-like 1. Buprenorphine is considered a partial agonist with very high binding affinity for the μ-opioid receptor, an antagonist with high binding affinity for the δ- and κ-opioid receptors, and an agonist with low binding affinity for the opioid receptor-like 1 receptor. Partial agonism at the μ-opioid receptor does not provide partial analgesia, but rather analgesia equivalent to that of full μ-opioid receptor agonists. In addition, unlike full μ-opioid receptor agonists, buprenorphine may have a unique role in mediating analgesic signaling at spinal opioid receptors while having less of an effect on brain receptors, potentially limiting classic opioid-related adverse events such as euphoria, addiction, or respiratory depression. The pharmacokinetic properties of buprenorphine are also advantageous in a clinical setting, where metabolic and excretory pathways allow for use in patients requiring concomitant medications, the elderly, and those with renal or hepatic impairment. The unique pharmacodynamic and pharmacokinetic properties of buprenorphine translate to an effective analgesic with a potentially favorable safety profile compared with that of full μ-opioid receptor agonists for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jeffrey Gudin
- Department of Anesthesiology, Englewood Hospital and Medical Center, 350 Engle St, Englewood, NJ, 07631, USA.
- Department of Anesthesia and Perioperative Care, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA.
| | - Jeffrey Fudin
- Western New England University College of Pharmacy and Health Sciences, 1215 Wilbraham Road, Springfield, MA, 01119, USA
- Albany College of Pharmacy & Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA
- Remitigate, LLC, 357 Delaware Avenue #214, Delmar, NY, 12054, USA
| |
Collapse
|
15
|
Zhu X, Finlay DB, Glass M, Duffull SB. Evaluation of the profiles of CB 1 cannabinoid receptor signalling bias using joint kinetic modelling. Br J Pharmacol 2020; 177:3449-3463. [PMID: 32293708 DOI: 10.1111/bph.15066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Biased agonism describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a single receptor. Signalling is affected by rapid agonist-induced receptor internalisation. Hence, the conventional use of equilibrium models may not be optimal, because (i) receptor numbers vary with time and, in addition, (ii) some pathways may show non-monotonic profiles over time. EXPERIMENTAL APPROACH Data were available from internalisation, cAMP inhibition and phosphorylation of ERK (pERK) of the cannabinoid-1 (CB1 ) receptor using a concentration series of six CB1 ligands (CP55,940, WIN55,212-2, anandamide, 2-arachidonylglycerol, Δ9 -tetrahydrocannabinol and BAY59,3074). The joint kinetic model of CB1 signalling was developed to simultaneously describe the time-dependent activities in three signalling pathways. Based on the insights from the kinetic model, fingerprint profiles of CB1 ligand bias were constructed and visualised. KEY RESULTS A joint kinetic model was able to capture the signalling profiles across all pathways for the CB1 receptor simultaneously for a system that was not at equilibrium. WIN55,212-2 had a similar pattern as 2-arachidonylglycerol (reference). The other agonists displayed bias towards internalisation compared to cAMP inhibition. However, only Δ9 -tetrahydrocannabinol and BAY59,3074 demonstrated bias in the pERK-cAMP pathway comparison. Furthermore, all the agonists exhibited little preference between internalisation and pERK. CONCLUSION AND IMPLICATIONS This is the first joint kinetic assessment of biased agonism at a GPCR (e.g. CB1 receptor) under non-equilibrium conditions. Kinetic modelling is a natural method to handle time-varying data when traditional equilibria are not present and enables quantification of ligand bias.
Collapse
Affiliation(s)
- Xiao Zhu
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Nafziger AN, Arscott KA, Cochrane K, Skobieranda F, Burt DA, Fossler MJ. The Influence of Renal or Hepatic Impairment on the Pharmacokinetics, Safety, and Tolerability of Oliceridine. Clin Pharmacol Drug Dev 2019; 9:639-650. [PMID: 31697049 PMCID: PMC7383509 DOI: 10.1002/cpdd.750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Oliceridine is a G protein–biased ligand at the μ‐opioid receptor in development for treatment of moderate to severe acute pain. A phase 1, open‐label, single‐dose study investigated the pharmacokinetics and safety of oliceridine 0.5 mg intravenous (IV) in subjects with end‐stage renal disease (ESRD, n = 9) versus 1 mg in healthy controls (n = 8). A second phase 1, open‐label, single‐dose study investigated the pharmacokinetics and safety of a 0.5‐mg IV dose in hepatic impairment (mild, n = 10; moderate, n = 10; severe, n = 6) versus 1 mg in healthy controls (n = 8). The controls were sex and age (±10 years) matched. In ESRD versus healthy subjects, no difference in clearance was observed between ESRD patients and subjects with normal renal function. Oliceridine clearance and AUC were not affected by hepatic impairment. Half‐life (hours; GM [%CV]) increased in subjects with moderate (4.3 [44.1]) and severe (5.8 [41.2]) impairment versus mild impairment (2.6 [20.0]) and healthy subjects (2.1 [11.3]). Volume of distribution was increased with the degree of hepatic impairment. All adverse events were mild and generally consistent with the known safety profile of oliceridine. No dose adjustment is needed in patients with renal impairment or in patients with mild or moderate hepatic impairment. Initial dose reduction should be considered in severe hepatic impairment, and patients may require fewer doses of oliceridine due to the longer half‐life observed in these patients.
Collapse
|
17
|
Makita N, Manaka K, Sato J, Iiri T. V2 vasopressin receptor mutations. VITAMINS AND HORMONES 2019; 113:79-99. [PMID: 32138955 DOI: 10.1016/bs.vh.2019.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
V2 vasopressin receptor (V2R) is a member of the G protein-coupled receptor (GPCR) family in which many disease-causing mutations have been identified and thus generated much interest. Loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI) whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). The mechanisms underlying a V2R loss-of-function can be theoretically classified as either protein expression, localization (ER retention) or functional disorders. Functional analyses have revealed however that these mechanisms are likely to be complex. Strikingly, V2R mutations at the same site can result in opposite phenotypes, e.g., R137H and R137L/C cause NDI and NSIAD, respectively. These findings support the notion that the constitutive activation of GPCRs might be often associated with their instability and denaturation. Thus, functional analysis of disease-causing V2R mutations may not only reveal potential new treatment strategies using pharmacochaperones for NDI and inverse agonists for NSIAD, but also provide a greater understanding of the physiological functions of GPCRs and highlight the new paradigms, i.e., biased agonism and protean agonism.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo, Tokyo, Japan.
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, The University of Tokyo, Tokyo, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo, Tokyo, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, The University of Tokyo, Tokyo, Japan; Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
18
|
James IE, Skobieranda F, Soergel DG, Ramos KA, Ruff D, Fossler MJ. A First-in-Human Clinical Study With TRV734, an Orally Bioavailable G-Protein-Biased Ligand at the μ-Opioid Receptor. Clin Pharmacol Drug Dev 2019; 9:256-266. [PMID: 31286645 DOI: 10.1002/cpdd.721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 11/08/2022]
Abstract
TRV734 is an orally bioavailable G-protein-biased ligand at the μ-opioid receptor. In nonclinical studies it was potently analgesic while causing less gastrointestinal dysfunction than morphine, suggesting unique benefits in acute pain management. A 2-part, first-in-human study was conducted with ascending doses of TRV734 to explore its tolerability, pharmacokinetics, and pharmacodynamics in healthy volunteers. TRV734 was well tolerated over the dose range 2 to 250 mg when administered orally. Plasma TRV734 maximum concentration and area under the plasma concentration-time curve generally increased with dose, while time to maximum concentration was similar across doses (0.5-1.3 h). The half-life increased with dose from 10 mg through 150 mg (0.75-2.28 h) but was similar from 150 mg through 250 mg. Pupil constriction, confirming central nervous system μ-opioid receptor engagement, correlated with higher plasma TRV734 concentrations; the greatest reductions in pupil diameter occurring between 0 and 4 hours after dosing (-2.9 mm/h, with reduction peaking at 1 hour, and returning to baseline by 8 hours). Following administration of TRV734 125 mg under fasted or fed conditions, there was no significant difference in bioavailability when given as a solution or drug in capsule to fasted subjects. When drug in capsule was given to subjects following a high-fat meal, absorption was slowed, resulting in decreased peak concentrations, but area under the plasma concentration-time curve was not affected.
Collapse
Affiliation(s)
| | | | - David G Soergel
- Trevena, Inc, Chesterbrook, PA, USA.,Novartis, East Hanover, NJ, USA
| | - Kimberly A Ramos
- Trevena, Inc, Chesterbrook, PA, USA.,Intact Vascular, Wayne, PA, USA
| | - Dennis Ruff
- ICON Early Phase Services, San Antonio, TX, USA
| | | |
Collapse
|
19
|
Zhao Y, Bijlsma EY, ter Heegde F, Verdouw MP, Garssen J, Newman-Tancredi A, Groenink L. Activation of somatodendritic 5-HT 1A autoreceptors reduces the acquisition and expression of cued fear in the rat fear-potentiated startle test. Psychopharmacology (Berl) 2019; 236:1171-1185. [PMID: 30539269 PMCID: PMC6591185 DOI: 10.1007/s00213-018-5124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Fear conditioning is an important factor in the etiology of anxiety disorders. Previous studies have demonstrated a role for serotonin (5-HT)1A receptors in fear conditioning. However, the relative contribution of somatodendritic 5-HT1A autoreceptors and post-synaptic 5-HT1A heteroreceptors in fear conditioning is still unclear. OBJECTIVE To determine the role of pre- and post-synaptic 5-HT1A receptors in the acquisition and expression of cued and contextual conditioned fear. METHODS We studied the acute effects of four 5-HT1A receptor ligands in the fear-potentiated startle test. Male Wistar rats were injected with the 5-HT1A receptors biased agonists F13714 (0-0.16 mg/kg, IP), which preferentially activates somatodendritic 5-HT1A autoreceptors, or F15599 (0-0.16 mg/kg, IP), which preferentially activates cortical post-synaptic 5-HT1A heteroreceptors, with the prototypical 5-HT1A receptor agonist R(+)8-OH-DPAT (0-0.3 mg/kg, SC) or the 5-HT1A receptor antagonist WAY100,635 (0-1.0 mg/kg, SC). RESULTS F13714 (0.16 mg/kg) and R(+)-8-OH-DPAT (0.03 mg/kg) injected before training reduced cued fear acquisition. Pre-treatment with F15599 or WAY100,635 had no effect on fear learning. In the fear-potentiated startle test, F13714 (0.04-0.16 mg/kg) and R(+)-8-OH-DPAT (0.1-0.3 mg/kg) reduced the expression of cued and contextual fear, whereas F15599 had no effect. WAY100,635 (0.03-1.0 mg/kg) reduced the overall startle response. CONCLUSIONS The current findings indicate that activation of somatodendritic 5-HT1A autoreceptors reduces cued fear learning, whereas 5-HT1A receptors seem not involved in contextual fear learning. Moreover, activation of somatodendritic 5-HT1A autoreceptors may reduce cued and contextual fear expression, whereas we found no evidence for the involvement of cortical 5-HT1A heteroreceptors in the expression of conditioned fear.
Collapse
Affiliation(s)
- Yulong Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth Y. Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Freija ter Heegde
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Monika P. Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus (BCRM), UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
20
|
van Gastel J, Hendrickx JO, Leysen H, Santos-Otte P, Luttrell LM, Martin B, Maudsley S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front Pharmacol 2018; 9:1369. [PMID: 30546309 PMCID: PMC6280185 DOI: 10.3389/fphar.2018.01369] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
G protein coupled receptors (GPCRs) were first characterized as signal transducers that elicit downstream effects through modulation of guanine (G) nucleotide-binding proteins. The pharmacotherapeutic exploitation of this signaling paradigm has created a drug-based field covering nearly 50% of the current pharmacopeia. Since the groundbreaking discoveries of the late 1990s to the present day, it is now clear however that GPCRs can also generate productive signaling cascades through the modulation of β-arrestin functionality. β-Arrestins were first thought to only regulate receptor desensitization and internalization - exemplified by the action of visual arrestin with respect to rhodopsin desensitization. Nearly 20 years ago, it was found that rather than controlling GPCR signal termination, productive β-arrestin dependent GPCR signaling paradigms were highly dependent on multi-protein complex formation and generated long-lasting cellular effects, in contrast to G protein signaling which is transient and functions through soluble second messenger systems. β-Arrestin signaling was then first shown to activate mitogen activated protein kinase signaling in a G protein-independent manner and eventually initiate protein transcription - thus controlling expression patterns of downstream proteins. While the possibility of developing β-arrestin biased or functionally selective ligands is now being investigated, no additional research has been performed on its possible contextual specificity in treating age-related disorders. The ability of β-arrestin-dependent signaling to control complex and multidimensional protein expression patterns makes this therapeutic strategy feasible, as treating complex age-related disorders will likely require therapeutics that can exert network-level efficacy profiles. It is our understanding that therapeutically targeting G protein-independent effectors such as β-arrestin will aid in the development of precision medicines with tailored efficacy profiles for disease/age-specific contextualities.
Collapse
Affiliation(s)
- Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC, United States
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
21
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Igonet S, Raingeval C, Cecon E, Pučić-Baković M, Lauc G, Cala O, Baranowski M, Perez J, Jockers R, Krimm I, Jawhari A. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci Rep 2018; 8:8142. [PMID: 29802269 PMCID: PMC5970182 DOI: 10.1038/s41598-018-26113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A2AR that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A2AR in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.
Collapse
Affiliation(s)
| | - Claire Raingeval
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Gordan Lauc
- GENOS, Borongajska cesta 83h, 10000, Zagreb, Croatia
| | - Olivier Cala
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Maciej Baranowski
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Krimm
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
23
|
Jastrzębska-Więsek M, Partyka A, Rychtyk J, Śniecikowska J, Kołaczkowski M, Wesołowska A, Varney MA, Newman-Tancredi A. Activity of Serotonin 5-HT 1A Receptor Biased Agonists in Rat: Anxiolytic and Antidepressant-like properties. ACS Chem Neurosci 2018; 9:1040-1050. [PMID: 29266914 DOI: 10.1021/acschemneuro.7b00443] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although serotonin 5-HT1A receptors constitute attractive therapeutic targets, there is a lack of potential clinical candidates that have a high degree of selectivity and full agonist efficacy. Recently, novel 5-HT1A receptor "biased agonists" F15599 (also known as NLX-101) and F13714 have been reported that exhibit distinctive properties for in vitro signaling, neurochemical, electrophysiological effects, and in brain imaging. The present study characterized their effects in rat models of anxiety (elevated plus-maze, EPM, and Vogel tests), in depressive-like behavior (forced swim test), and on the induction of the three serotonergic behaviors (forepaw treading, flat body posture, and lower lip retraction). The prototypical 5-HT1A receptor ligands (±)8-OH-DPAT and buspirone were tested as comparators. In the elevated plus-maze, F15599, F13714, and (±)8-OH-DPAT dose-dependently increased the amount and percentage of time spent in the open arms with minimal effective doses (MED) of 5 mg/kg p.o., 2.5 mg/kg p.o. and 1.25 mg/kg s.c., respectively. The effects of the three agonists were abolished by pretreatment with the selective 5-HT1A receptor antagonist, WAY100635 (0.63 mg/kg s.c.). Buspirone did not show significant activity in the EPM. In contrast, in the Vogel test only buspirone was active, significantly increasing the number of licks and shocks accepted (active dose: 1.25 mg/kg s.c.). However, WAY100635 failed to reverse the effects of buspirone in this test, suggesting that they were not 5-HT1A receptor-mediated. In the forced swim test, F15599, F13714, and (±)8-OH-DPAT were potently active, abolishing immobility (MED: 0.63 mg/kg p.o., 0.63 mg/kg p.o. and 0.16 mg/kg s.c., respectively). Buspirone was not active. In measures of serotonergic behavior, F13714 and (±)8-OH-DPAT robustly elicited all three signs of serotonergic behaviors, whereas F15599 and buspirone elicited only lower-lip retraction. Taken together, these observations highlight the distinct profiles of activity of 5-HT1A agonists and suggest that the novel biased agonist F15599 combines pronounced activity in a test of anxiety (elevated plus-maze) with potent antidepressant-like effects and low propensity to induce serotonergic behaviors. These data suggest that selective biased agonists could constitute promising pharmacotherapeutics for mood disorders.
Collapse
Affiliation(s)
| | - Anna Partyka
- Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Joanna Rychtyk
- Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Joanna Śniecikowska
- Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Marcin Kołaczkowski
- Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Anna Wesołowska
- Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Mark A. Varney
- Neurolixis Inc., 34145 Pacific Coast Highway #504, Dana Point, California 92629, United States
| | - Adrian Newman-Tancredi
- Neurolixis Inc., 34145 Pacific Coast Highway #504, Dana Point, California 92629, United States
| |
Collapse
|
24
|
Chun LS, Vekariya RH, Free RB, Li Y, Lin DT, Su P, Liu F, Namkung Y, Laporte SA, Moritz AE, Aubé J, Frankowski KJ, Sibley DR. Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D 2 Dopamine Receptor. Front Synaptic Neurosci 2018. [PMID: 29515433 PMCID: PMC5826336 DOI: 10.3389/fnsyn.2018.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is known to elicit effects through activating two major signaling pathways mediated by either G proteins (Gi/o) or β-arrestins. However, the specific role of each pathway in physiological or therapeutic activities is not known with certainty. One approach to the dissection of these pathways is through the use of drugs that can selectively modulate one pathway vs. the other through a mechanism known as functional selectivity or biased signaling. Our laboratory has previously described a G protein signaling-biased agonist, MLS1547, for the D2R using a variety of in vitro functional assays. To further evaluate the biased signaling activity of this compound, we investigated its ability to promote D2R internalization, a process known to be mediated by β-arrestin. Using multiple cellular systems and techniques, we found that MLS1547 promotes little D2R internalization, which is consistent with its inability to recruit β-arrestin. Importantly, we validated these results in primary striatal neurons where the D2R is most highly expressed suggesting that MLS1547 will exhibit biased signaling activity in vivo. In an effort to optimize and further explore structure-activity relationships (SAR) for this scaffold, we conducted an iterative chemistry campaign to synthesize and characterize novel analogs of MLS1547. The resulting analysis confirmed previously described SAR requirements for G protein-biased agonist activity and, importantly, elucidated new structural features that are critical for agonist efficacy and signaling bias of the MLS1547 scaffold. One of the most important determinants for G protein-biased signaling is the interaction of a hydrophobic moiety of the compound with a defined pocket formed by residues within transmembrane five and extracellular loop two of the D2R. These results shed new light on the mechanism of biased signaling of the D2R and may lead to improved functionally-selective molecules.
Collapse
Affiliation(s)
- Lani S Chun
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Rakesh H Vekariya
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yun Li
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Da-Ting Lin
- Neural Engineering Unit, Behavior Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Ping Su
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Molecular Neuroscience, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Stephane A Laporte
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC, Canada
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Aubé
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - Kevin J Frankowski
- Department of Medicinal Chemistry and Specialized Chemistry Center, University of Kansas, Lawrence, KS, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Costain WJ, Rasquinha I, Comas T, Hewitt M, Aylsworth A, Rouleau Y, Marleau V, Soo EC, Tauskela JS. Analysis of the pharmacological properties of JWH-122 isomers and THJ-2201, RCS-4 and AB-CHMINACA in HEK293T cells and hippocampal neurons. Eur J Pharmacol 2018; 823:96-104. [PMID: 29408093 DOI: 10.1016/j.ejphar.2018.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 11/15/2022]
Abstract
Synthetic cannabinoids are marketed as legal alternatives to Δ9-THC, and are a growing worldwide concern as these drugs are associated with severe adverse effects. Unfortunately, insufficient information regarding the physiological and pharmacological effects of emerging synthetic cannabinoids (ESCs) makes their regulation by government authorities difficult. One strategy used to evade regulation is to distribute isomers of regulated synthetic cannabinoids. This study characterized the pharmacological properties of a panel of ESCs in comparison to Δ9-THC, as well as six JWH-122 isomers relative to its parent compound (JWH-122-4). Two cell-based assays were used to determine the potency and efficacy of ESCs and a panel of reference cannabinoids. HEK293T cells were transfected with human cannabinoid receptor 1 (CB1) and pGloSensor-22F, and the inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live cells. All ESCs examined were classified as agonists, with the following rank order of potency: Win 55,212-2 > CP 55,940 > JWH-122-4 > Δ9-THC ≈ RCS-4 ≈ THJ-2201 > JWH-122-5 > JWH-122-7 > JWH-122-2 ≈ AB-CHMINACA > JWH-122-8 > JWH-122-6 > JWH-122-3. Evaluation of ESC-stimulated Ca2+ transients in cultured rat primary hippocampal neurons confirmed the efficacy of four of the most potent ESCs (JWH-122-4, JWH-122-5, JWH-122-7 and AB-CHMINACA). This work helps regulatory agencies make informed decisions concerning these poorly characterized recreational drugs.
Collapse
Affiliation(s)
- Willard J Costain
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6.
| | - Ingrid Rasquinha
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Tanya Comas
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Melissa Hewitt
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Amy Aylsworth
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Yanouchka Rouleau
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | - Vincent Marleau
- Analytical and Forensic Services Division, Contraband Drug Analysis, Canada Border Services Agency, 79 Bentley Avenue, 2nd Floor, Ottawa, Ontario, Canada K1A 0L8
| | - Evelyn C Soo
- Health Products and Food Branch, Biologics and Genetic Therapies Directorate, Health Canada, 150 Tunney's Pasture Driveway #1605-676, Ottawa, Ontario, Canada K1A 0K9
| | - Joseph S Tauskela
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
26
|
Brox R, Milanos L, Saleh N, Baumeister P, Buschauer A, Hofmann D, Heinrich MR, Clark T, Tschammer N. Molecular Mechanisms of Biased and Probe-Dependent Signaling at CXC-Motif Chemokine Receptor CXCR3 Induced by Negative Allosteric Modulators. Mol Pharmacol 2018; 93:309-322. [PMID: 29343553 DOI: 10.1124/mol.117.110296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Our recent explorations of allosteric modulators with improved properties resulted in the identification of two biased negative allosteric modulators, BD103 (N-1-{[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimi-din2yl]ethyl}-4-(4-fluorobutoxy)-N-[(1-methylpiperidin-4-yl)methyl}]butanamide) and BD064 (5-[(N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl-2-[4-fluoro-3-(trifluoromethyl)phenyl]acetamido)methyl]-2-fluorophenyl}boronic acid), that exhibited probe-dependent inhibition of CXC-motif chemokine receptor CXCR3 signaling. With the intention to elucidate the structural mechanisms underlying their selectivity and probe dependence, we used site-directed mutagenesis combined with homology modeling and docking to identify amino acids of CXCR3 that contribute to modulator binding, signaling, and transmission of cooperativity. With the use of allosteric radioligand RAMX3 ([3H]N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-2-[4-fluoro-3-(trifluoromethyl)phenyl]-N-[(1-methylpiperidin-4-yl)methyl]acetamide), we identified that F1313.32 and Y3087.43 contribute specifically to the binding pocket of BD064, whereas D1864.60 solely participates in the stabilization of binding conformation of BD103. The influence of mutations on the ability of negative allosteric modulators to inhibit chemokine-mediated activation (CXCL11 and CXCL10) was assessed with the bioluminescence resonance energy transfer-based cAMP and β-arrestin recruitment assay. Obtained data revealed complex molecular mechanisms governing biased and probe-dependent signaling at CXCR3. In particular, F1313.32, S3047.39, and Y3087.43 emerged as key residues for the compounds to modulate the chemokine response. Notably, D1864.60, W2686.48, and S3047.39 turned out to play a role in signal pathway selectivity of CXCL10, as mutations of these residues led to a G protein-active but β-arrestin-inactive conformation. These diverse effects of mutations suggest the existence of ligand- and pathway-specific receptor conformations and give new insights in the sophisticated signaling machinery between allosteric ligands, chemokines, and their receptors, which can provide a powerful platform for the development of new allosteric drugs with improved pharmacological properties.
Collapse
Affiliation(s)
- Regine Brox
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Lampros Milanos
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Noureldin Saleh
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Paul Baumeister
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Armin Buschauer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Dagmar Hofmann
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center (R.B., D.H., M.R.H., N.T.) and Computer Chemistry Center (L.M., N.S., T.C.), Friedrich Alexander University, Erlangen, Germany; and Institute of Pharmacy, University of Regensburg, Regensburg, Germany (P.B., A.B.)
| |
Collapse
|
27
|
Bock A, Schrage R, Mohr K. Allosteric modulators targeting CNS muscarinic receptors. Neuropharmacology 2017; 136:427-437. [PMID: 28935216 DOI: 10.1016/j.neuropharm.2017.09.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022]
Abstract
Muscarinic acetylcholine receptors are G protein-coupled receptors (GPCRs) which are broadly expressed in the central nervous system (CNS) and other tissues in the periphery. They emerge as important drug targets for a number of diseases including Alzheimer's disease, Parkinson's disease, and schizophrenia. Muscarinic receptors are divided into five subtypes (M1-M5) of which M1-M4 have been crystalized. All subtypes possess at least one allosteric binding site which is located in the extracellular region of the receptor on top of the ACh (i.e. orthosteric) binding site. The former can be specifically targeted by chemical compounds (mostly small molecules) and binding of such allosteric modulators affects the affinity and/or efficacy of orthosteric ligands. This allows highly specific modulation of GPCR function and, from a drug discovery point of view, may be advantageous in terms of subtype selectivity and biased signaling. There is a plethora of allosteric modulators for all five muscarinic receptor subtypes. This review presents the basic principles of allosteric modulation of GPCRs on both the molecular and structural level focusing on allosteric modulators of the muscarinic receptor family. Further we discuss dualsteric (i.e. bitopic orthosteric/allosteric) ligands emphasizing their potential in modulating muscarinic receptor dynamics and signaling. The common mechanisms of muscarinic receptor allosteric modulation have been proven to be generalizable and are at play at many, if not all GPCRs. Given this paradigmatic role of muscarinic receptors we suggest that also new developments in muscarinic allosteric modulation may also be extended to other members of the GPCR superfamily. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Andreas Bock
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
28
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
29
|
Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 2017; 7:940. [PMID: 28424471 PMCID: PMC5430435 DOI: 10.1038/s41598-017-01078-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) have been considered biologically equivalent because of their structural similarities and their binding to the same receptor; the LH/CGR. However, accumulating evidence suggest that LH/CGR differentially responds to the two hormones triggering differential intracellular signaling and steroidogenesis. The mechanistic basis of such differential responses remains mostly unknown. Here, we compared the abilities of recombinant rhLH and rhCG to elicit cAMP, β-arrestin 2 activation, and steroidogenesis in HEK293 cells and mouse Leydig tumor cells (mLTC-1). For this, BRET and FRET technologies were used allowing quantitative analyses of hormone activities in real-time and in living cells. Our data indicate that rhLH and rhCG differentially promote cell responses mediated by LH/CGR revealing interesting divergences in their potencies, efficacies and kinetics: rhCG was more potent than rhLH in both HEK293 and mLTC-1 cells. Interestingly, partial effects of rhLH were found on β-arrestin recruitment and on progesterone production compared to rhCG. Such a link was further supported by knockdown experiments. These pharmacological differences demonstrate that rhLH and rhCG act as natural biased agonists. The discovery of novel mechanisms associated with gonadotropin-specific action may ultimately help improve and personalize assisted reproduction technologies.
Collapse
|
30
|
Rovati GE, Capra V, Shaw VS, Malik RU, Sivaramakrishnan S, Neubig RR. The DRY motif and the four corners of the cubic ternary complex model. Cell Signal 2017; 35:16-23. [PMID: 28347873 DOI: 10.1016/j.cellsig.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Recent structural data on GPCRs using a variety of spectroscopic approaches suggest that GPCRs adopt a dynamic conformational landscape, with ligands stabilizing subsets of these states to activate one or more downstream signaling effectors. A key outstanding question posed by this emerging dynamic structural model of GPCRs is what states, active, inactive, or intermediate are captured by the numerous crystal structures of GPCRs complexed with a variety of agonists, partial agonists, and antagonists. In the early nineties the discovery of inverse agonists and constitutive activity led to the idea that the active receptor state (R⁎) is an intrinsic property of the receptor itself rather than of the RG complex, eventually leading to the formulation of the cubic ternary complex model (CTC). Here, by a careful analysis of a series of data obtained with a number of mutants of the highly conserved E/DRY motif, we show evidences for the existence of all the receptor states theorized by the CTC, four 'uncoupled (R, R⁎ and HR and HR⁎), and, consequently four 'coupled' (RG, R⁎G, HRG and HR⁎G). The E/DRY motif located at the cytosolic end of transmembrane helix III of Class A GPCRs has been widely studied and analyzed because it forms a network of interactions believed to lock receptors in the inactive conformation (R), and, thus, to play a key role in receptor activation. Our conclusions are supported by recent crystal and NMR spectra, as well as by results obtained with two prototypical GPCRs using a new FRET technology that de-couples G protein binding to the receptor from signal transduction. Thus, despite its complexity and limitations, we propose that the CTC is a useful framework to reconcile pharmacological, biochemical and structural data.
Collapse
Affiliation(s)
- G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| | - Valérie Capra
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; Department of Health Science, University of Milan, Milano, Italy.
| | - Vincent S Shaw
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Rabia U Malik
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology & Development, College of Biological Sciences, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
31
|
Xu W, Wang X, Tocker AM, Huang P, Reith MEA, Liu-Chen LY, Smith AB, Kortagere S. Functional Characterization of a Novel Series of Biased Signaling Dopamine D3 Receptor Agonists. ACS Chem Neurosci 2017; 8:486-500. [PMID: 27801563 PMCID: PMC5813806 DOI: 10.1021/acschemneuro.6b00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dopamine receptors play an integral role in controlling brain physiology. Importantly, subtype selective agonists and antagonists of dopamine receptors with biased signaling properties have been successful in treating psychiatric disorders with a low incidence of side effects. To this end, we recently designed and developed SK609, a dopamine D3 receptor (D3R) selective agonist that has atypical signaling properties. SK609 has shown efficacy in reversing akinesia and reducing L-dopa-induced dyskinesia in a hemiparkinsonian rats. In the current study, we demonstrate that SK609 has high selectivity for D3R with no binding affinity on D2R high- or low-affinity state when tested at a concentration of 10 μM. In addition, SK609 and its analogues do not induce desensitization of D3R as determined by repeated agonist treatment response in phosphorylation of ERK1/2 functional assay. Most significantly, SK609 and its analogues preferentially signal through the G-protein-dependent pathway and do not recruit β-arrestin-2, suggesting a functional bias toward the G-protein-dependent pathway. Structure-activity relationship (SAR) studies using analogues of SK609 demonstrate that the molecules bind at the orthosteric site by maintaining the conserved salt bridge interactions with aspartate 110 on transmembrane 3 and aryl interactions with histidine 349 on transmembrane 6, in addition to several hydrophobic interactions with residues from transmembranes 5 and 6. The compounds follow a strict SAR with reference to the three pharmacophore elements: substituted phenyl ring, length of the linker connecting phenyl ring and amine group, and orientation and hydrophobic branching groups at the amine among SK609 analogues for efficacy and functional selectivity. These features of SK609 and the analogues suggest that biased signaling is an inherent property of this series of molecules.
Collapse
Affiliation(s)
- Wei Xu
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania 19129, United States
| | - Xiaozhao Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19102, United States
| | - Aaron M. Tocker
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania 19129, United States
| | - Peng Huang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Maarten E. A. Reith
- Department of Psychiatry, Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York 10016, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19102, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Philadelphia, Pennsylvania 19129, United States
- Institute for Molecular Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| |
Collapse
|
32
|
Hothersall JD, Torella R, Humphreys S, Hooley M, Brown A, McMurray G, Nickolls SA. Residues W320 and Y328 within the binding site of the μ-opioid receptor influence opiate ligand bias. Neuropharmacology 2017; 118:46-58. [PMID: 28283391 DOI: 10.1016/j.neuropharm.2017.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
The development of G protein-biased agonists for the μ-opioid receptor (MOR) offers a clear drug discovery rationale for improved analgesia and reduced side-effects of opiate pharmacotherapy. However, our understanding of the molecular mechanisms governing ligand bias is limited, which hinders our ability to rationally design biased compounds. We have investigated the role of MOR binding site residues W320 and Y328 in controlling bias, by receptor mutagenesis. The pharmacology of a panel of ligands in a cAMP and a β-arrestin2 assay were compared between the wildtype and mutated receptors, with bias factors calculated by operational analysis using ΔΔlog(τ/KA) values. [3H]diprenorphine competition binding was used to estimate affinity changes. Introducing the mutations W320A and Y328F caused changes in pathway bias, with different patterns of change between ligands. For example, DAMGO increased relative β-arrestin2 activity at the W320A mutant, whilst its β-arrestin2 response was completely lost at Y328F. In contrast, endomorphin-1 gained activity with Y328F but lost activity at W320A, in both pathways. For endomorphin-2 there was a directional shift from cAMP bias at the wildtype towards more β-arrestin2 bias at W320A. We also observe clear uncoupling between mutation-driven changes in function and binding affinity. These findings suggest that the mutations influenced the balance of pathway activation in a ligand-specific manner, thus identifying residues in the MOR binding pocket that govern ligand bias. This increases our understanding of how ligand/receptor binding interactions can be translated into agonist-specific pathway activation.
Collapse
Affiliation(s)
- J Daniel Hothersall
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom; Heptares Therapeutics, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, United Kingdom.
| | - Rubben Torella
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Sian Humphreys
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Monique Hooley
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Alastair Brown
- Heptares Therapeutics, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, United Kingdom
| | - Gordon McMurray
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Sarah A Nickolls
- Pfizer, Neuroscience and Pain Research Unit UK, The Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| |
Collapse
|
33
|
Borroto-Escuela DO, Carlsson J, Ambrogini P, Narváez M, Wydra K, Tarakanov AO, Li X, Millón C, Ferraro L, Cuppini R, Tanganelli S, Liu F, Filip M, Diaz-Cabiale Z, Fuxe K. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. Front Cell Neurosci 2017; 11:37. [PMID: 28270751 PMCID: PMC5318393 DOI: 10.3389/fncel.2017.00037] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and ventral striatum. The excitatory modulation by A2AR agonists of the ventral striato-pallidal GABA anti-reward system via targeting the A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complex holds high promise as a new way to treat cocaine use disorders. Neuromodulation of neuronal networks in schizophrenia via DA, adenosine, glutamate, 5-HT and neurotensin peptides and oxytocin, involving A2AR-D2R, D2R-NMDAR, A2AR-D2R-mGluR5, D2R-5-HT2A and D2R-oxytocinR heteroreceptor complexes opens up a new world of D2R protomer targets in the listed heterocomplexes for treatment of positive, negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden; Department of Biomolecular Science, Section of Physiology, University of UrbinoUrbino, Italy; Observatorio Cubano de Neurociencias, Grupo Bohío-EstudioYaguajay, Cuba
| | - Jens Carlsson
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre (BMC), Uppsala University Uppsala, Sweden
| | - Patricia Ambrogini
- Department of Biomolecular Science, Section of Physiology, University of Urbino Urbino, Italy
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Kraków, Poland
| | - Alexander O Tarakanov
- St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences Saint Petersburg, Russia
| | - Xiang Li
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Carmelo Millón
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Science, Section of Physiology, University of Urbino Urbino, Italy
| | - Sergio Tanganelli
- Department of Medical Sciences, University of Ferrara Ferrara, Italy
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Kraków, Poland
| | - Zaida Diaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
34
|
Benredjem B, Dallaire P, Pineyro G. Analyzing biased responses of GPCR ligands. Curr Opin Pharmacol 2017; 32:71-76. [DOI: 10.1016/j.coph.2016.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
|
35
|
Priestley R, Glass M, Kendall D. Functional Selectivity at Cannabinoid Receptors. CANNABINOID PHARMACOLOGY 2017; 80:207-221. [DOI: 10.1016/bs.apha.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Seemann WK, Wenzel D, Schrage R, Etscheid J, Bödefeld T, Bartol A, Warnken M, Sasse P, Klöckner J, Holzgrabe U, DeAmici M, Schlicker E, Racké K, Kostenis E, Meyer R, Fleischmann BK, Mohr K. Engineered Context-Sensitive Agonism: Tissue-Selective Drug Signaling through a G Protein-Coupled Receptor. J Pharmacol Exp Ther 2016; 360:289-299. [PMID: 28082514 DOI: 10.1124/jpet.116.237149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/10/2016] [Indexed: 11/22/2022] Open
Abstract
Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a postreceptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M2-receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue toward postreceptor pharmacologic selectivity, which even works in target tissues operated by the same subtype of pharmacologic receptor.
Collapse
Affiliation(s)
- Wiebke K Seemann
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Daniela Wenzel
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Justine Etscheid
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Theresa Bödefeld
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Anna Bartol
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Mareille Warnken
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Philipp Sasse
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Jessica Klöckner
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Ulrike Holzgrabe
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Marco DeAmici
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Eberhard Schlicker
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Kurt Racké
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Evi Kostenis
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Rainer Meyer
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Bernd K Fleischmann
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Bonn, Germany (W.K.S., R.S., J.E., T.B., A.B., K.M.); Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany (D.W., P.S., B.K.F.); Institute of Pharmacology & Toxicology, University of Bonn, Bonn, Germany (M.W., E.S., K.R.); Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Würzburg, Würzburg, Germany (J.K., U.H.); Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica 'Pietro Pratesi,' Università degli Studi di Milano, Milano, Italy (M.D.); Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany (E.K.); Institute of Physiology II, University of Bonn, Bonn, Germany (R.M.); Center of Pharmacology, University of Cologne, Cologne, Germany (W.K.S.)
| |
Collapse
|
37
|
Makita N, Sato T, Yajima-Shoji Y, Sato J, Manaka K, Eda-Hashimoto M, Ootaki M, Matsumoto N, Nangaku M, Iiri T. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem 2016; 291:22460-22471. [PMID: 27601473 DOI: 10.1074/jbc.m116.733220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/05/2016] [Indexed: 11/06/2022] Open
Abstract
Disease-causing mutations in G protein-coupled receptor (GPCR) genes, including the V2 vasopressin receptor (V2R) gene, often cause misfolded receptors, leading to a defect in plasma membrane trafficking. A novel V2R mutation, T273M, identified in a boy with partial nephrogenic diabetes insipidus (NDI), shows intracellular localization and partial defects similar to the two mutants we described previously (10). Although non-peptide V2R antagonists have been shown to rescue the membrane localization of V2R mutants, their level of functional rescue is weak. Interestingly, it has been reported that a non-peptide agonist, OPC51803, activates misfolded V2R mutants intracellularly without degradation, thus potentially serving as a therapeutic agent against NDI (14). In our current experiments, however, a peptide antagonist blocked arginine vasopressin (AVP)- or OPC51803-stimulated cAMP accumulation both in COS-7 and MDCK cells, suggesting that OPC51803 mainly stimulates cell surface V2R mutants. In addition, our analyses revealed that OPC51803 works not only as a non-peptide agonist that causes activation/β-arrestin-dependent desensitization of V2R mutants expressed at the plasma membrane but also as a pharmacochaperone that promotes the endoplasmic reticulum-retained mutant maturation and trafficking to the plasma membrane. The ratio of the pharmacochaperone effect to the desensitization effect likely correlates negatively with the residual function of the tested mutants, suggesting that OPC5 has a more favorable effect on the V2R mutants with a less residual function. We speculated that the canceling of the desensitization effect of OPC51803 by the pharmacochaperone effect after long-term treatment may produce sustainable signaling, and thus pharmacochaperone agonists such as OPC51803 may serve as promising therapeutics for NDI caused by misfolded V2R mutants.
Collapse
Affiliation(s)
- Noriko Makita
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan,
| | - Tomohiko Sato
- the Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562 Japan, and
| | - Yuki Yajima-Shoji
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan
| | - Junichiro Sato
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan
| | - Katsunori Manaka
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan
| | - Makiko Eda-Hashimoto
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan
| | - Masanori Ootaki
- the Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Naoki Matsumoto
- the Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Masaomi Nangaku
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan
| | - Taroh Iiri
- From the Department of Endocrinology and Nephrology, University of Tokyo, Tokyo 113-8655, Japan, .,the Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
38
|
Costain WJ, Tauskela JS, Rasquinha I, Comas T, Hewitt M, Marleau V, Soo EC. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons. Eur J Pharmacol 2016; 786:234-245. [DOI: 10.1016/j.ejphar.2016.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|
39
|
French JA, Taylor JH, Mustoe AC, Cavanaugh J. Neuropeptide diversity and the regulation of social behavior in New World primates. Front Neuroendocrinol 2016; 42:18-39. [PMID: 27020799 PMCID: PMC5030117 DOI: 10.1016/j.yfrne.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains.
Collapse
Affiliation(s)
- Jeffrey A French
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Jack H Taylor
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Aaryn C Mustoe
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jon Cavanaugh
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
40
|
Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, Peterson YK, Laporte SA, Luttrell LM. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 2016; 531:665-8. [PMID: 27007854 PMCID: PMC4973468 DOI: 10.1038/nature17154] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022]
Abstract
Arrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based 'signalsomes'. Although the dominant function(s) of arrestins vary between receptors, the mechanism whereby different GPCRs specify these divergent functions is unclear. Using a panel of intramolecular fluorescein arsenical hairpin (FlAsH) bioluminescence resonance energy transfer (BRET) reporters to monitor conformational changes in β-arrestin2, here we show that GPCRs impose distinctive arrestin 'conformational signatures' that reflect the stability of the receptor-arrestin complex and role of β-arrestin2 in activating or dampening downstream signalling events. The predictive value of these signatures extends to structurally distinct ligands activating the same GPCR, such that the innate properties of the ligand are reflected as changes in β-arrestin2 conformation. Our findings demonstrate that information about ligand-receptor conformation is encoded within the population average β-arrestin2 conformation, and provide insight into how different GPCRs can use a common effector for different purposes. This approach may have application in the characterization and development of functionally selective GPCR ligands and in identifying factors that dictate arrestin conformation and function.
Collapse
Affiliation(s)
- Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Kathryn M. Appleton
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Erik G. Strungs
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Joshua Y. Kwon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Thomas A. Morinelli
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
| | - Yuri K. Peterson
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA 29425
| | - Stephane A. Laporte
- Departments of Medicine, Pharmacology and Therapeutics, and Anatomy and Cell Biology, McGill University Health Center Research Institute, McGill University, Quebec, CANADA H4A 3J1
| | - Louis M. Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA 29425
- Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA 29401
| |
Collapse
|
41
|
Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM. Recent updates on GPCR biased agonism. Pharmacol Res 2016; 112:49-57. [PMID: 26836887 DOI: 10.1016/j.phrs.2016.01.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most important targets for drug discovery and not surprisingly ∼40% of all drugs currently in the market act on these receptors. Currently, one of the most active areas in GPCRs signaling is biased agonism, a phenomenon that occurs when a given ligand is able to preferentially activate one (or some) of the possible signaling pathways. In this review, we highlight the most recent findings about biased agonism, including an extension of this concept to intracellular signaling, allosterism, strategies for assessment and interpretation, and perspectives of therapeutic applications for biased agonists.
Collapse
Affiliation(s)
- André S Pupo
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil.
| | - Diego A Duarte
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Vanessa Lima
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Larissa B Teixeira
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
42
|
Chakrabarti S, Madia PA, Gintzler AR. Selective up-regulation of functional mu-opioid receptor splice variants by chronic opioids. J Neurochem 2016; 136:1119-1130. [PMID: 26718622 DOI: 10.1111/jnc.13519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Abstract
We recently reported (Verzillo, et al. J. Neurochem: 130, 790-796, 2014) that chronic systemic morphine selectively up-regulates mRNA encoding two C-terminal μ-opioid receptor (MOR) splice variants, MOR-1C1 and MOR-1B2 (MOR-1B2/-1C1). Given the known disconnects between changes in levels of mRNA and corresponding protein, it is essential to directly demonstrate that chronic opioid treatment elevates functional MOR-1B2/-1C1 protein prior to inferring relevance of these MOR variants to spinal opioid tolerance mechanisms. Accordingly, we investigated the ability of chronic opioid exposure to up-regulate MOR protein in Chinese hamster ovary cells stably transfected with rat MOR variants MOR-1B2, MOR-1C1, or MOR-1 (considered to be the predominant MOR). Findings revealed that chronic treatment with the clinically relevant opioids morphine, oxycodone and hydrocodone substantially up-regulated membrane MOR-1B2/-1C1 protein. This up-regulation was abolished by the protein synthesis inhibitor cycloheximide, eliminating contributions from receptor redistribution. The increment in MOR-1B2/-1C1 protein was paralleled by a significant increment in opioid agonist-stimulated GTPγS-binding (reflective of increased aggregate MOR G protein coupling) indicating that up-regulated MOR-1B2/-1C1 represented functional receptors. Strikingly, these tolerance-associated adaptations of MOR-1B2/-1C1 differed considerably from those of MOR-1. Antithetical regulation of MOR-1B2/-1C1 and MOR-1 by chronic opioids has significant implications for the design of new therapeutic agents to counteract opioid analgesic tolerance and accompanying addiction. Since chronic opioids induce MOR-1B2/-1C1 up-regulation in spinal cord of males, but not females, elucidating cellular compartments and intracellular pathways mediating MOR-1B2/-1C1 up-regulation and defining their unique signaling attributes would enable a precision medicinal approach to pain management and addiction therapy. In the spinal cord of males, but not females, chronic morphine up-regulates mRNA encoding two mu-opioid receptor (MOR) variants, MOR-1B2 and MOR-1C1 (MOR-1B2/-1C1). We now demonstrate that chronic treatment with the clinically relevant opioids morphine, hydrocodone or oxycodone up-regulates MOR-1B2/-1C1 functional protein, which is dependent on de novo protein synthesis. Findings underscore the importance of unique signaling attributes of MOR variants to sexually dimorphic tolerance mechanisms.
Collapse
Affiliation(s)
- Sumita Chakrabarti
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York, USA
| | - Priyanka A Madia
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York, USA
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Brooklyn, New York, USA
| |
Collapse
|
43
|
Chidiac P. RGS proteins destroy spare receptors: Effects of GPCR-interacting proteins and signal deamplification on measurements of GPCR agonist potency. Methods 2016; 92:87-93. [DOI: 10.1016/j.ymeth.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
|
44
|
Maudsley S, Martin B, Janssens J, Etienne H, Jushaj A, van Gastel J, Willemsen A, Chen H, Gesty-Palmer D, Luttrell LM. Informatic deconvolution of biased GPCR signaling mechanisms from in vivo pharmacological experimentation. Methods 2016; 92:51-63. [PMID: 25986936 PMCID: PMC4646739 DOI: 10.1016/j.ymeth.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Ligands possessing different physico-chemical structures productively interact with G protein-coupled receptors generating distinct downstream signaling events due to their abilities to activate/select idiosyncratic receptor entities ('receptorsomes') from the full spectrum of potential receptor partners. We have employed multiple novel informatic approaches to identify and characterize the in vivo transcriptomic signature of an arrestin-signaling biased ligand, [D-Trp(12),Tyr(34)]-bPTH(7-34), acting at the parathyroid hormone type 1 receptor (PTH1R), across six different murine tissues after chronic drug exposure. We are able to demonstrate that [D-Trp(12),Tyr(34)]-bPTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated, in an arrestin signaling-dependent manner, across more tissues than that of the pluripotent endogenous PTH1R ligand, hPTH(1-34). This arrestin-focused response signature is strongly linked with the transcriptional regulation of cell growth and development. Our informatic deconvolution of a conserved arrestin-dependent transcriptomic signature from wild type mice demonstrates a conceptual framework within which the in vivo outcomes of biased receptor signaling may be further investigated or predicted.
Collapse
Affiliation(s)
- Stuart Maudsley
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Areta Jushaj
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Jaana van Gastel
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Ann Willemsen
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
45
|
Convertino M, Samoshkin A, Gauthier J, Gold MS, Maixner W, Dokholyan NV, Diatchenko L. μ-Opioid receptor 6-transmembrane isoform: A potential therapeutic target for new effective opioids. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:61-7. [PMID: 25485963 PMCID: PMC4646084 DOI: 10.1016/j.pnpbp.2014.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/04/2014] [Accepted: 11/20/2014] [Indexed: 01/19/2023]
Abstract
The μ-opioid receptor (MOR) is the primary target for opioid analgesics. MOR induces analgesia through the inhibition of second messenger pathways and the modulation of ion channels activity. Nevertheless, cellular excitation has also been demonstrated, and proposed to mediate reduction of therapeutic efficacy and opioid-induced hyperalgesia upon prolonged exposure to opioids. In this mini-perspective, we review the recently identified, functional MOR isoform subclass, which consists of six transmembrane helices (6 TM) and may play an important role in MOR signaling. There is evidence that 6 TM MOR signals through very different cellular pathways and may mediate excitatory cellular effects rather than the classic inhibitory effects produced by the stimulation of the major (7 TM) isoform. Therefore, the development of 6 TM and 7 TM MOR selective compounds represents a new and exciting opportunity to better understand the mechanisms of action and the pharmacodynamic properties of a new class of opioids.
Collapse
Affiliation(s)
- Marino Convertino
- Biochemistry and Biophysics Department, University of North Carolina, 120 Mason Farm Rd., CB #7260 Genetic Medicine, Chapel Hill, NC, USA, 27599
| | - Alexander Samoshkin
- The Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
| | - Josee Gauthier
- Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia St., CB #7455, KOHSB, Chapel Hill, NC, USA, 27599
| | - Michael S. Gold
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA, USA 15213
| | - William Maixner
- Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia St., CB #7455, KOHSB, Chapel Hill, NC 27599, USA.
| | - Nikolay V. Dokholyan
- Biochemistry and Biophysics Department, University of North Carolina, 120 Mason Farm Rd., CB #7260 Genetic Medicine, Chapel Hill, NC, USA, 27599.,CORRESPONDING AUTHORS: Dr. Luda Diatchenko, The Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1, Phone: +1 514 398-2878, . Dr. William Maixner, Center for Pain Research and Innovation, University of North Carolina, 385 S. Columbia St., CB #7455, KOHSB, Chapel Hill, NC, USA, 27599, Phone: +1 919 537-3289, . Dr. Nikolay V. Dokholyan, Biochemistry and Biophysics Department, University of North Carolina, 120 Mason Farm Rd., CB #7260 Genetic Medicine, Chapel Hill, NC, USA, 27599, Phone: +1 919 843-2513.
| | - Luda Diatchenko
- The Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada.
| |
Collapse
|
46
|
Polypharmacology Shakes Hands with Complex Aetiopathology. Trends Pharmacol Sci 2015; 36:802-821. [PMID: 26434643 DOI: 10.1016/j.tips.2015.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic diseases are due to deviations of fundamental physiological systems, with different pathologies being characterised by similar malfunctioning biological networks. The ensuing compensatory mechanisms may weaken the body's dynamic ability to respond to further insults and reduce the efficacy of conventional single target treatments. The multitarget, systemic, and prohomeostatic actions emerging for plant cannabinoids exemplify what might be needed for future medicines. Indeed, two combined cannabis extracts were approved as a single medicine (Sativex(®)), while pure cannabidiol, a multitarget cannabinoid, is emerging as a treatment for paediatric drug-resistant epilepsy. Using emerging cannabinoid medicines as an example, we revisit the concept of polypharmacology and describe a new empirical model, the 'therapeutic handshake', to predict efficacy/safety of compound combinations of either natural or synthetic origin.
Collapse
|
47
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
48
|
M'Kadmi C, Leyris JP, Onfroy L, Galés C, Saulière A, Gagne D, Damian M, Mary S, Maingot M, Denoyelle S, Verdié P, Fehrentz JA, Martinez J, Banères JL, Marie J. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling. J Biol Chem 2015; 290:27021-27039. [PMID: 26363071 DOI: 10.1074/jbc.m115.659250] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.
Collapse
Affiliation(s)
- Céline M'Kadmi
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Jean-Philippe Leyris
- the Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, BP 74103, 34091 Montpellier Cedex 05
| | - Lauriane Onfroy
- the Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, U1048, Université Toulouse III Paul Sabatier, Centre Hospitalier Universitaire de Toulouse, 31432 Toulouse, France
| | - Céline Galés
- the Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, U1048, Université Toulouse III Paul Sabatier, Centre Hospitalier Universitaire de Toulouse, 31432 Toulouse, France
| | - Aude Saulière
- the Institut des Maladies Métaboliques et Cardiovasculaires, INSERM, U1048, Université Toulouse III Paul Sabatier, Centre Hospitalier Universitaire de Toulouse, 31432 Toulouse, France
| | - Didier Gagne
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Sophie Mary
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Mathieu Maingot
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Séverine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05
| | - Jacky Marie
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05,.
| |
Collapse
|
49
|
Maillet EL, Milon N, Heghinian MD, Fishback J, Schürer SC, Garamszegi N, Mash DC. Noribogaine is a G-protein biased κ-opioid receptor agonist. Neuropharmacology 2015; 99:675-88. [PMID: 26302653 DOI: 10.1016/j.neuropharm.2015.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders.
Collapse
Affiliation(s)
- Emeline L Maillet
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA.
| | - Nicolas Milon
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Mari D Heghinian
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - James Fishback
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Stephan C Schürer
- University of Miami, Center for Computational Science, 1320 S, Dixie Highway, Gables One Tower #600.H, Locator Code 2965, Coral Gables, FL 33146-2926, USA; Miller School of Medicine, Molecular and Cellular Pharmacology, 14th Street CRB 650 (M-857), Miami, FL 33136, USA
| | - Nandor Garamszegi
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| | - Deborah C Mash
- DemeRx, Inc., R&D Laboratory, Life Science & Technology Park, 1951 NW 7th Ave, Suite 300, Miami, FL 33136, USA
| |
Collapse
|
50
|
Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochem J 2015; 470:155-67. [DOI: 10.1042/bj20150358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
Collapse
|