1
|
Pedram K, Shon DJ, Tender GS, Mantuano NR, Northey JJ, Metcalf KJ, Wisnovsky SP, Riley NM, Forcina GC, Malaker SA, Kuo A, George BM, Miller CL, Casey KM, Vilches-Moure JG, Ferracane MJ, Weaver VM, Läubli H, Bertozzi CR. Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nat Biotechnol 2024; 42:597-607. [PMID: 37537499 PMCID: PMC11018308 DOI: 10.1038/s41587-023-01840-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/22/2023] [Indexed: 08/05/2023]
Abstract
Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms. Engineering of a bacterial mucin-selective protease yielded a variant for fusion to a cancer antigen-binding nanobody. The resulting conjugate selectively degraded mucins on cancer cells, promoted cell death in culture models of mucin-driven growth and survival, and reduced tumor growth in mouse models of breast cancer progression. This work establishes a blueprint for the development of biologics that degrade specific protein glycoforms on target cells.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Gabrielle S Tender
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natalia R Mantuano
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kevin J Metcalf
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Simon P Wisnovsky
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Giovanni C Forcina
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Stacy A Malaker
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Angel Kuo
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlyn L Miller
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Heinz Läubli
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
2
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi IS, Sun J, Politi K, Levantini E, Zhang W, Kobayashi SS, Zhang WC. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. Br J Cancer 2023; 128:1647-1664. [PMID: 36810913 PMCID: PMC10133251 DOI: 10.1038/s41416-023-02196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lung cancer cells overexpress mucin 1 (MUC1) and active subunit MUC1-CT. Although a peptide blocks MUC1 signalling, metabolites targeting MUC1 are not well studied. AICAR is a purine biosynthesis intermediate. METHODS Cell viability and apoptosis were measured in AICAR-treated EGFR-mutant and wild-type lung cells. AICAR-binding proteins were evaluated by in silico and thermal stability assays. Protein-protein interactions were visualised by dual-immunofluorescence staining and proximity ligation assay. AICAR-induced whole transcriptomic profile was determined by RNA sequencing. EGFR-TL transgenic mice-derived lung tissues were analysed for MUC1 expression. Organoids and tumours from patients and transgenic mice were treated with AICAR alone or in combination with JAK and EGFR inhibitors to evaluate treatment effects. RESULTS AICAR reduced EGFR-mutant tumour cell growth by inducing DNA damage and apoptosis. MUC1 was one of the leading AICAR-binding and degrading proteins. AICAR negatively regulated JAK signalling and JAK1-MUC1-CT interaction. Activated EGFR upregulated MUC1-CT expression in EGFR-TL-induced lung tumour tissues. AICAR reduced EGFR-mutant cell line-derived tumour formation in vivo. Co-treating patient and transgenic mouse lung-tissue-derived tumour organoids with AICAR and JAK1 and EGFR inhibitors reduced their growth. CONCLUSIONS AICAR represses the MUC1 activity in EGFR-mutant lung cancer, disrupting protein-protein interactions between MUC1-CT and JAK1 and EGFR.
Collapse
Affiliation(s)
- Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Alice Rodriguez-Fuguet
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
| | - Jiao Sun
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Levantini
- Harvard Stem Cell Institute, 330 Brookline Avenue, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, 56124, Pisa, Italy
| | - Wei Zhang
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8575, Japan
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA.
| |
Collapse
|
4
|
p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23158602. [PMID: 35955735 PMCID: PMC9369150 DOI: 10.3390/ijms23158602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.
Collapse
|
5
|
Radziejewska I, Supruniuk K, Czarnomysy R, Buzun K, Bielawska A. Anti-Cancer Potential of Afzelin towards AGS Gastric Cancer Cells. Pharmaceuticals (Basel) 2021; 14:973. [PMID: 34681197 PMCID: PMC8539446 DOI: 10.3390/ph14100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Afzelin demonstrates anti-inflammatory and anti-cancer properties. Our purpose was to assess its influence on apoptosis, Bax, caspases, MUC1, cancer-related carbohydrate antigens, enzymes participating in their formation, and galectin-3 in AGS gastric cancer cells. A total of 60 and 120 μM afzelin was used in all experiments. Flow cytometry was applied to determine apoptotic response. Western blotting and RT PCR were used to detect the expression of mentioned factors. Flavonoid at higher concentration revealed slight apoptotic respond. Bax, caspase-3, -8, -9 increased upon afzelin action. Stimulatory effect of the flavonoid on MUC1 cytoplasmic tail and extracellular domain in cell lysates and on MUC1 gene was revealed. MUC1 release into the culture medium was inhibited by the flavonoid. The 60 μM afzelin dose stimulated GalNAcTL5 protein expression and inhibited C1GalT1. ST6GalNAcT mRNA was inhibited by both flavonoid doses. ST3GalT was inhibited by 120 μM afzelin on protein and mRNA level. Lewisa/b protein was reduced by both afzelin concentrations. FUT3 and FUT4 mRNA was inhibited by 120 μM dose of afzelin. Galectin-3 protein increased in cell lysates and decreased in culture supernatant by 60 and 120 μM flavonoid. Galectin-3 gene expression was stimulated by two used concentrations of afzelin in comparison to control. We conclude that afzelin can be considered as the potential anti-cancer agent, supporting conventional cancer treatment.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Katarzyna Supruniuk
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland;
| | - Kamila Buzun
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (K.B.); (A.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (K.B.); (A.B.)
| |
Collapse
|
6
|
Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis 2021; 41:1173-1183. [PMID: 32710608 DOI: 10.1093/carcin/bgaa082] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a highly prevalent consequence of changes in environmental and lifestyle factors that contribute to the development of cancer. The basis for this critical association has largely remained unclear. The MUC1 gene evolved in mammals to protect epithelia from the external environment. The MUC1-C subunit promotes responses found in wound healing and cancer. MUC1-C induces EMT, epigenetic reprogramming, dedifferentiation and pluripotency factor expression, which when prolonged in chronic inflammation promote cancer progression. As discussed in this review, MUC1-C also drives drug resistance and immune evasion, and is an important target for cancer therapeutics now under development.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Khodabakhsh F, Merikhian P, Eisavand MR, Farahmand L. Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell Int 2021; 21:200. [PMID: 33836774 PMCID: PMC8033681 DOI: 10.1186/s12935-021-01899-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
VEGF and its receptor family (VEGFR) members have unique signaling transduction system that play significant roles in most pathological processes, such as angiogenesis in tumor growth and metastasis. VEGF-VEGFR complex is a highly specific mitogen for endothelial cells and any de-regulation of the angiogenic balance implicates directly in endothelial cell proliferation and migration. Moreover, it has been shown that overexpressing Mucin 1 (MUC1) on the surface of many tumor cells resulting in upregulation of numerous signaling transduction cascades, such as growth and survival signaling pathways related to RTKs, loss of cell-cell and cell-matrix adhesion, and EMT. It promotes gene transcription of pro-angiogenic proteins such as HIF-1α during periods of oxygen scarcity (hypoxia) to enhance tumor growth and angiogenesis stimulation. In contrast, the cytoplasmic domain of MUC1 (MUC1-C) inhibits apoptosis, which in turn, impresses upon cell fate. Besides, it has been established that reduction in VEGF expression level correlated with silencing MUC1-C level indicating the anti-angiogenic effect of MUC1 downregulation. This review enumerates the role of MUC1-C oncoprotein and VEGF in angiogenesis and metastasis and describes several signaling pathways by which MUC1-C would mediate the pro-angiogenic activities of cancer cells.
Collapse
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran
| | - Mohammad Reza Eisavand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Ave., Vanak Sq., Tehran, Iran.
| |
Collapse
|
8
|
Pham TH, Page YL, Percevault F, Ferrière F, Flouriot G, Pakdel F. Apigenin, a Partial Antagonist of the Estrogen Receptor (ER), Inhibits ER-Positive Breast Cancer Cell Proliferation through Akt/FOXM1 Signaling. Int J Mol Sci 2021; 22:ijms22010470. [PMID: 33466512 PMCID: PMC7796491 DOI: 10.3390/ijms22010470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 80% of breast cancer (BC) cases express the estrogen receptor (ER), and 30-40% of these cases acquire resistance to endocrine therapies over time. Hyperactivation of Akt is one of the mechanisms by which endocrine resistance is acquired. Apigenin (Api), a flavone found in several plant foods, has shown beneficial effects in cancer and chronic diseases. Here, we studied the therapeutic potential of Api in the treatment of ER-positive, endocrine therapy-resistant BC. To achieve this objective, we stably overexpressed the constitutively active form of the Akt protein in MCF-7 cells (named the MCF-7/Akt clone). The proliferation of MCF-7/Akt cells is partially independent of estradiol (E2) and exhibits an incomplete response to the anti-estrogen agent 4-hydroxytamoxifen, demonstrating the resistance of these cells to hormone therapy. Api exerts an antiproliferative effect on the MCF-7/Akt clone. Api inhibits the proliferative effect of E2 by inducing G2/M phase cell cycle arrest and apoptosis. Importantly, Api inhibits the Akt/FOXM1 signaling pathway by decreasing the expression of FOXM1, a key transcription factor involved in the cell cycle. Api also alters the expression of genes regulated by FOXM1, including cell cycle-related genes, particularly in the MCF-7/Akt clone. Together, our results strengthen the therapeutic potential of Api for the treatment of endocrine-resistant BC.
Collapse
|
9
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, Yu J, Woods EC, Kramer JR, Westerlind U, Dorigo O, Bertozzi CR. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci U S A 2019; 116:7278-7287. [PMID: 30910957 PMCID: PMC6462054 DOI: 10.1073/pnas.1813020116] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE's unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.
Collapse
Affiliation(s)
- Stacy A Malaker
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | | | - Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA 94143
| | - Venkatesh Krishnan
- Stanford Women's Cancer Center, Division of Gynecologic Oncology, Stanford University, Stanford, CA 94305
| | - Christian Pett
- Leibniz-Institut für Analytische Wissenschaften (ISAS), 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften (ISAS), 44227 Dortmund, Germany
| | - Elliot C Woods
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jessica R Kramer
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften (ISAS), 44227 Dortmund, Germany
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Oliver Dorigo
- Stanford Women's Cancer Center, Division of Gynecologic Oncology, Stanford University, Stanford, CA 94305
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305;
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
11
|
Endo S, Nishimura N, Kawano Y, Ueno N, Ueno S, Tatetsu H, Komohara Y, Takeya M, Hata H, Mitsuya H, Masao M, Okuno Y. MUC1/KL-6 expression confers an aggressive phenotype upon myeloma cells. Biochem Biophys Res Commun 2018; 507:246-252. [PMID: 30420285 DOI: 10.1016/j.bbrc.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
The sialic glycoprotein, MUC1, is known to be involved in the pathogenesis of various types of cancers. KL-6 is one of the surface antigens of MUC1 and also a marker of interstitial pneumonitis. A fraction of patients with myeloma (3.9%) have elevated serum KL-6 levels without any evidence of interstitial pneumonitis and their myeloma cells have high MUC1 expression. We established a myeloma cell line designated EMM1 from a patient with multiple myeloma accompanied with elevated serum KL-6. EMM1 cells expressed high levels of MUC1 compared with other myeloma cell lines. Knockdown of MUC1 in EMM1 cells induced cell cycle arrest during S phase and apoptosis, suggesting that the MUC1 expression is involved in accelerated growth of EMM1 cells. RNA-seq analysis suggests that MUC1 expression activates k-ras and TNFα-induced NFκB pathways in EMM1 cells. We injected EMM1 cells subcutaneously into Rag2-/-Jak3-/- Balb/c mice to establish a mouse xenograft model. These mice had aggressive tumor growth that was accompanied by high serum KL-6 levels. In addition, MUC1 knockdown in EMM1 cells led to inhibited tumor growth. These findings demonstrate that MUC1 serves as a potential target for developing drugs for treatment of patients with KL-6+ myeloma, and EMM1 cells and EMM1-engrafted mice are useful tools for the development of such novel agents.
Collapse
Affiliation(s)
- Shinya Endo
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nao Nishimura
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yawara Kawano
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Niina Ueno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shikiko Ueno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiro Tatetsu
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiroyuki Hata
- Division of Informative Clinical Sciences, Faculty of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Matsuoka Masao
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Okuno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
12
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
13
|
Ono E, Uede T. Implication of Soluble Forms of Cell Adhesion Molecules in Infectious Disease and Tumor: Insights from Transgenic Animal Models. Int J Mol Sci 2018; 19:ijms19010239. [PMID: 29342882 PMCID: PMC5796187 DOI: 10.3390/ijms19010239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Cell adhesion molecules (CAMs) are surface ligands, usually glycoproteins, which mediate cell-to-cell adhesion. They play a critical role in maintaining tissue integrity and mediating migration of cells, and some of them also act as viral receptors. It has been known that soluble forms of the viral receptors bind to the surface glycoproteins of the viruses and neutralize them, resulting in inhibition of the viral entry into cells. Nectin-1 is one of important CAMs belonging to immunoglobulin superfamily and herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family. Both CAMs also act as alphaherpesvirus receptor. Transgenic mice expressing the soluble form of nectin-1 or HVEM showed almost complete resistance against the alphaherpesviruses. As another CAM, sialic acid-binding immunoglobulin-like lectins (Siglecs) that recognize sialic acids are also known as an immunoglobulin superfamily member. Siglecs play an important role in the regulation of immune cell functions in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer. Siglec-9 is one of Siglecs and capsular polysaccharide (CPS) of group B Streptococcus (GBS) binds to Siglec-9 on neutrophils, leading to suppress host immune response and provide a survival advantage to the pathogen. In addition, Siglec-9 also binds to tumor-produced mucins such as MUC1 to lead negative immunomodulation. Transgenic mice expressing the soluble form of Siglec-9 showed significant resistance against GBS infection and remarkable suppression of MUC1 expressing tumor proliferation. This review describes recent developments in the understanding of the potency of soluble forms of CAMs in the transgenic mice and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.
Collapse
Affiliation(s)
- Etsuro Ono
- Department of Biomedicine, Center of Biomedical Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
14
|
Seo HS, Ku JM, Choi HS, Woo JK, Lee BH, Kim DS, Song HJ, Jang BH, Shin YC, Ko SG. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol Rep 2017; 38:715-724. [PMID: 28656316 PMCID: PMC5562081 DOI: 10.3892/or.2017.5752] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P-glycoprotein (P-gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin-resistant breast cancer cells (MCF-7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF-7/ADR cells and parental MCF-7 cells. This growth inhibition was related to the accumulation of cells in the sub-G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated proteins (MRPs) in MCF-7/ADR cells. Apigenin also downregulated the expression of P-gp. Apigenin reversed drug efflux from MCF-7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p-STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP-9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF-1α inhibitor decreased cell growth in MCF-7 and MCF-7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance.
Collapse
Affiliation(s)
- Hye-Sook Seo
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Mo Ku
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Hyeong Sim Choi
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Kyu Woo
- College of Veterinary Medicine, Seoul National University, Gwanak‑gu, Seoul 08826, Republic of Korea
| | - Byung Hoon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Doh Sun Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Hyun Jong Song
- Department of Applied Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Bo-Hyoung Jang
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Cheol Shin
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Bar-Natan M, Stroopinsky D, Luptakova K, Coll MD, Apel A, Rajabi H, Pyzer AR, Palmer K, Reagan MR, Nahas MR, Leaf RK, Jain S, Arnason J, Ghobrial IM, Anderson KC, Kufe D, Rosenblatt J, Avigan D. Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1. Br J Haematol 2017; 176:929-938. [PMID: 28107546 PMCID: PMC5800979 DOI: 10.1111/bjh.14493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023]
Abstract
Multiple myeloma (MM) is a lethal haematological malignancy that arises in the context of a tumour microenvironment that promotes resistance to apoptosis and immune escape. In the present study, we demonstrate that co-culture of MM cells with stromal cells results in increased resistance to cytotoxic and biological agents as manifested by decreased rates of cell death following exposure to alkylating agents and the proteosome inhibitor, bortezomib. To identify the mechanism of increased resistance, we examined the effect of the co-culture of MM cells with stroma cells, on expression of the MUC1 oncogene, known to confer tumour cells with resistance to apoptosis and necrosis. Co-culture of stroma with MM cells resulted in increased MUC1 expression by tumour cells. The effect of stromal cell co-culture on MUC1 expression was not dependent on cell contact and was therefore thought to be due to soluble factors secreted by the stromal cells into the microenvironment. We demonstrated that MUC1 expression was mediated by interleukin-6 and subsequent up-regulation of the JAK-STAT pathway. Interestingly, the effect of stromal cell co-culture on tumour resistance was partially reversed by silencing of MUC1 in MM cells, consistent with the potential role of MUC1 in mediating resistance to cytotoxic-based therapies.
Collapse
Affiliation(s)
| | | | | | - Maxwell D. Coll
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Arie Apel
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Hasan Rajabi
- Dana Farber Cancer Institute, Harvard Medical School and
| | | | - Kristen Palmer
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Michaela R. Reagan
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Myrna R. Nahas
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | | | - Salvia Jain
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jon Arnason
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Irene M. Ghobrial
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Donald Kufe
- Dana Farber Cancer Institute, Harvard Medical School and
| | | | - David Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
16
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Mechanisms that Increase Stability of Estrogen Receptor Alpha in Breast Cancer. Clin Breast Cancer 2016; 17:1-10. [PMID: 27561704 DOI: 10.1016/j.clbc.2016.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor alpha (ER) is a transcriptional regulator that controls the expression of genes related to cellular proliferation and differentiation in normal mammary tissue. However, the expression, abundance, and activity of this receptor are increased in 70% of breast cancers. The ER upregulation is facilitated by several molecular mechanisms, including protein stability, which represents an important strategy to maintain an active and functional repertoire of ER. Several proteins interact and protect ER from degradation by the ubiquitin-proteasome system. Through diverse mechanisms, these proteins prevent polyubiquitination and degradation of ER, leading to an increase in ER protein levels; consequently, estrogen signaling and its physiologic effects are enhanced in breast cancer cells. Thus, increased protein stability seems to be one of the main reasons that ER is upregulated in breast cancer. Here, we highlight findings on the proteins and mechanisms that participate directly or indirectly in ER stability and their relevance to breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|
17
|
Abstract
Mucin1 (MUC1) is a transmembrane oncogenic protein that plays a central role in malignant transformation and disease evolution, including cell proliferation, survival, self-renewal, and metastatic invasion. MUC1 has been shown to interact with diverse effectors such as β-catenin, receptor tyrosine kinases, and c-Abl, which are of importance in the pathogenesis of various hematological malignancies. In myeloid leukemia, MUC1 has been shown to have an essential role in leukemia stem-cell function, the induction of reactive oxygen species (ROS), and the promotion of terminal myeloid differentiation. As such, MUC1 is an attractive therapeutic target in hematologic malignancies. Targeting MUC1 has been shown to be an effective approach for inducing cell death in tumor in in vivo and in vitro models. Furthermore, MUC1 inhibition is synergistic with other therapeutic agents in the treatment of hematologic disorders. This review will explore the role of MUC1 in hematological malignancies, and strategies for targeting this oncoprotein.
Collapse
Affiliation(s)
- Dina Stroopinsky
- a Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Donald Kufe
- b Dana Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - David Avigan
- a Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
18
|
Raina D, Agarwal P, Lee J, Bharti A, McKnight CJ, Sharma P, Kharbanda S, Kufe D. Characterization of the MUC1-C Cytoplasmic Domain as a Cancer Target. PLoS One 2015; 10:e0135156. [PMID: 26267657 PMCID: PMC4534190 DOI: 10.1371/journal.pone.0135156] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/17/2015] [Indexed: 01/27/2023] Open
Abstract
Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly expressed in diverse human carcinomas and certain hematologic malignancies. The oncogenic MUC1 transmembrane C-terminal subunit (MUC1-C) functions in part by transducing growth and survival signals from cell surface receptors. However, little is known about the structure of the MUC1-C cytoplasmic domain as a potential drug target. Using methods for structural predictions, our results indicate that a highly conserved CQCRRK sequence, which is adjacent to the cell membrane, forms a small pocket that exposes the two cysteine residues for forming disulfide bonds. By contrast, the remainder of the MUC1-C cytoplasmic domain has no apparent structure, consistent with an intrinsically disordered protein. Our studies thus focused on targeting the MUC1 CQCRRK region. The results show that L- and D-amino acid CQCRRK-containing peptides bind directly to the CQC motif. We further show that the D-amino acid peptide, designated GO-203, blocks homodimerization of the MUC1-C cytoplasmic domain in vitro and in transfected cells. Moreover, GO-203 binds directly to endogenous MUC1-C in breast and lung cancer cells. Colocalization studies further demonstrate that GO-203 predominantly binds to MUC1-C at the cell membrane. These findings support the further development of agents that target the MUC1-C cytoplasmic domain CQC motif and thereby MUC1-C function in cancer cells.
Collapse
Affiliation(s)
- Deepak Raina
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, United States of America
- Genus Oncology, Boston, MA, 02118, United States of America
| | | | - James Lee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, United States of America
| | - Ajit Bharti
- Boston University School of Medicine, Department of Medicine, Boston, MA, 02118, United States of America
| | - C. James McKnight
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, MA, 02118, United States of America
| | | | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, United States of America
- Genus Oncology, Boston, MA, 02118, United States of America
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, United States of America
| |
Collapse
|
19
|
The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells. Mol Cell Biochem 2015; 408:103-13. [PMID: 26112902 PMCID: PMC4768227 DOI: 10.1007/s11010-015-2486-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022]
Abstract
New strategy of cancer’s targeting treatment is combining monoclonal antibodies with chemotherapeutic agents. An important goal of targeted therapy appears to be a transmembrane glycoprotein type I—mucin 1 (MUC1), which is overexpressed in tumors of epithelial origin, especially in breast cancer. The goal of the study was to check the effect of monoclonal antibody against MUC1 with novel platinum(II) complex (Pt12) on selected aspects of apoptosis in human MDA-MB-231 breast cancer cells. The number of apoptotic and necrotic cells was measured using annexin V binding assay. The decrease of mitochondrial membrane potential (MMP) and DNA fragmentation was analyzed. Finally, the influence of novel platinum(II) complex (Pt12) used with anti-MUC1 on the concentration of selected markers of apoptosis such as Bax, caspase-8, -9, and caspase-3 was performed using ELISA. The results from combined treatment were compared with those obtained using monotherapy. In our study, we proved that anti-MUC1 used in combination with Pt12 strongly induced apoptosis in MDA-MB-231 breast cancer cell line. The effect was stronger than treatment with Pt12, cisplatin, anti-MUC1, and anti-MUC1 used with cisplatin. We also observed the highest decrease of MMP and the strongest DNA fragmentation after such a combined treatment. The results obtained from ELISA showed increased concentration of Bax, caspases-8, -9, -3 compared to monotherapy. Our study proved that Pt12 together with anti-MUC1 strongly induced apoptosis in estrogen-negative breast cancer cell line (MDA-MB-231). The apoptosis may go through extrinsic pathway associated with caspase-8 as well as intrinsic pathway connected with caspase-9.
Collapse
|
20
|
Multivalent aptamer/gold nanoparticle-modified graphene oxide for mass spectrometry-based tumor tissue imaging. Sci Rep 2015; 5:10292. [PMID: 25973571 PMCID: PMC4431351 DOI: 10.1038/srep10292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
The protein mucin1 (MUC1) is an attractive target for cancer biomarkers because it is overexpressed in most adenocarcinomas. In this study, we exploited a MUC1-binding aptamer (AptMUC1) as a targeting agent for nanoparticle-based imaging systems coupled with laser desorption/ionization mass spectrometry (LDI-MS). We found that AptMUC1-conjugated gold nanoparticles immobilized, through hydrophobic and π–π interactions, on graphene oxide (AptMUC1–Au NPs/GO) bound effectively to MUC1 units on tumor cell membranes. The ultrahigh density and high flexibility of AptMUC1 on the GO surface enhanced the platform’s cooperative and multivalent binding affinity for MUC1 on cell membranes. After we had labeled MUC1-overexpressing MCF-7 cells (human breast adenocarcinoma cell line) with AptMUC1–Au NPs/GO, we used LDI-MS to monitor Au cluster ions ([Aun]+; n = 1–3), resulting in the detection of as few as 100 MCF-7 cells. We also employed this AptMUC1–Au NPs/GO–LDI-MS system to analyze four different MUC1 expression cell lines. In addition, the AptMUC1–Au NPs/GO platform could be used further as a labeling agent for tumor tissue imaging when coupled with LDI-MS. Thus, Apt–Au NPs/GO can function as a highly amplified signal transducer through the formation of large Au clusters ions during LDI-MS analysis.
Collapse
|
21
|
Chiu WJ, Ling TK, Chiang HP, Lin HJ, Huang CC. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8622-8630. [PMID: 25855859 DOI: 10.1021/acsami.5b00731] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we describe the use of pulsed laser desorption/ionization mass spectrometry (LDI-MS) for the detection of tumor cells through the analysis of gold cluster ions [Aun](+) from aptamer-modified gold nanofilms (Au NFs). We observed not only the transformation of the Au NFs into gold nanoparticles (Au NPs) but also the formation of gaseous gold cluster ions ([Au(n)](+); n = 1-5) under irradiation with a nanosecond pulsed laser. The size and density of the formed Au NPs and the abundance of [Au(n)](+) ions were both highly dependent on the thickness of the Au NFs (10-100 nm). Thin Au NFs tended to form highly dense Au NPs on the substrate and favored the desorption and ionization of gold cluster ions. The signal intensities of the [Au(n)](+) species, monitoring using mass spectrometry, decreased upon increasing the thickness of the Au NF from 10 to 100 nm and after modification with thiolated DNA. Furthermore, we found that Au NFs modified with mucin1-binding aptamer (AptMUC1-Au NFs) could selectively enrich MCF-7 cells (human breast adenocarcinoma cell line) in blood samples; coupled with LDI-MS analysis of the [Au(n)](+) ions, we could detect MCF-7 cells selectively in blood samples at abundances as low as 10 cells. This approach offers the advantages of high sensitivity, selectivity, and throughput for the detection of circulating tumor cells, and has great potential for use as a powerful analytical platform for clinical diagnoses of tumor metastasis.
Collapse
Affiliation(s)
| | | | | | | | - Chih-Ching Huang
- ⊥School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
22
|
Abstract
MUC1 is a glycoprotein that is overexpressed in tumor cells. In normal cells it forms a protective layer against microbes and toxic chemicals, besides providing lubrication on ductal surfaces. Oversecretion of MUC1 provide cancer cells with invasiveness, metastasis, and resistance to death induced by reactive oxygen species. MUC1 is made up of 2 heterodimers, MUC1-N and MUC1-C. MUC1-N is heavily glycosylated at 5 regions of the variable N-tandem repeats. MUC1-C is divisible into extracellular, intracellular, and cytoplasmic domain (MUC1-C/CD). The extracellular domain serves as a docking site for epidermal growth factor receptors and other receptor kinases; the transmembrane domain serves to relay messages from extracellular to MUC1-C/CD. The MUC1-C/CD has 5 phosphorylating sites that on interacting with the SH2 domain of specific proteins can stimulate tumor growth. Therapies targeting MUC1 consists of monoclonal antibodies (MAb), vaccines, or small molecules (aptamers). MAb therapies are mainly aimed at MUC1-N with little success, however, new generation of MAb are being developed for MUC1-C. Vaccines (peptide, carbohydrate, glycopeptide, DNA, and dendritic cell) have been developed that recognizes the aberrant glycosylated region of the variable N-tandem repeats in MUC1-N, whereas new generation vaccines are aimed at the cytoplasmic region of MUC1-C. Aptamers (peptides that resemble DNA, RNA) have been used for blocking the dimerization of CQC region and the 5 phosphorylating region of MUC1-C. In addition, aptamers have been used as cytotoxic drug carriers. However, none of the therapies for MUC1 are currently in clinical application, as they need further refinement and evaluation.
Collapse
|
23
|
Macha MA, Krishn SR, Jahan R, Banerjee K, Batra SK, Jain M. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treat Rev 2015; 41:277-88. [PMID: 25624117 DOI: 10.1016/j.ctrv.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to the pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy.
Collapse
Affiliation(s)
- Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Seo HS, Sikder MA, Lee HJ, Ryu J, Lee CJ. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells. Biomol Ther (Seoul) 2014; 22:525-31. [PMID: 25489420 PMCID: PMC4256032 DOI: 10.4062/biomolther.2014.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/19/2023] Open
Abstract
In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Hyo-Seok Seo
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Mohamed Asaduzzaman Sikder
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Jiho Ryu
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| |
Collapse
|
25
|
Tomioka Y, Morimatsu M, Nishijima KI, Usui T, Yamamoto S, Suyama H, Ozaki K, Ito T, Ono E. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice. Biochem Biophys Res Commun 2014; 450:532-7. [DOI: 10.1016/j.bbrc.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
|
26
|
Sikder MA, Lee HJ, Ryu J, Park SH, Kim JO, Hong JH, Seok JH, Lee CJ. Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells. Tuberc Respir Dis (Seoul) 2014; 76:120-6. [PMID: 24734099 PMCID: PMC3982238 DOI: 10.4046/trd.2014.76.3.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/30/2013] [Accepted: 01/23/2014] [Indexed: 12/17/2022] Open
Abstract
Background We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.
Collapse
Affiliation(s)
- Md Asaduzzaman Sikder
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jiho Ryu
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Su Hyun Park
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju-Ock Kim
- Pulmonology Section, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jang-Hee Hong
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Choong Jae Lee
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
27
|
Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A 2013; 110:E2153-62. [PMID: 23697369 DOI: 10.1073/pnas.1303726110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavonoids constitute the largest class of dietary phytochemicals, adding essential health value to our diet, and are emerging as key nutraceuticals. Cellular targets for dietary phytochemicals remain largely unknown, posing significant challenges for the regulation of dietary supplements and the understanding of how nutraceuticals provide health value. Here, we describe the identification of human cellular targets of apigenin, a flavonoid abundantly present in fruits and vegetables, using an innovative high-throughput approach that combines phage display with second generation sequencing. The 160 identified high-confidence candidate apigenin targets are significantly enriched in three main functional categories: GTPase activation, membrane transport, and mRNA metabolism/alternative splicing. This last category includes the heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2), a factor involved in splicing regulation, mRNA stability, and mRNA transport. Apigenin binds to the C-terminal glycine-rich domain of hnRNPA2, preventing hnRNPA2 from forming homodimers, and therefore, it perturbs the alternative splicing of several human hnRNPA2 targets. Our results provide a framework to understand how dietary phytochemicals exert their actions by binding to many functionally diverse cellular targets. In turn, some of them may modulate the activity of a large number of downstream genes, which is exemplified here by the effects of apigenin on the alternative splicing activity of hnRNPA2. Hence, in contrast to small-molecule pharmaceuticals designed for defined target specificity, dietary phytochemicals affect a large number of cellular targets with varied affinities that, combined, result in their recognized health benefits.
Collapse
|
28
|
Garbar C, Mascaux C, Curé H, Bensussan A. Muc1/Cd227 immunohistochemistry in routine practice is a useful biomarker in breast cancers. J Immunoassay Immunochem 2013; 34:232-45. [PMID: 23656244 DOI: 10.1080/15321819.2012.699491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over-expression of MUC1/CD227 is observed in 90% of breast tumors. Classical morphologic description and semi-quantitative digital measurement of MUC1 were performed from immunohistochemical stained slides of 123 routine histological samples. Measures of MUC1 expression showed statistical differences between non tumoral (NT) breast tissue and Ductal Carcinoma In Situ (DCIS) or infiltrating carcinoma (IC), p < 0.0001. Loss of MUC1 was correlated with high Ki67 index (p = 0.001) and loss of hormonal receptors (p = 0.03), whereas no correlations were found with HER2 expression. High-grade DCIS or IC showed increasing loss of apical polarised and cytoplasmic expression of MUC1.
Collapse
|
29
|
Jin C, Rajabi H, Rodrigo CM, Porco JA, Kufe D. Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 2013; 32:2179-88. [PMID: 22689062 PMCID: PMC3443512 DOI: 10.1038/onc.2012.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022]
Abstract
The oncogenic MUC1 C-terminal subunit (MUC1-C) subunit is aberrantly overexpressed in most human breast cancers by mechanisms that are not well understood. The present studies demonstrate that stimulation of non-malignant MCF-10A cells with epidermal growth factor (EGF) or heregulin (HRG) results in marked upregulation of MUC1-C translation. Growth factor-induced MUC1-C translation was found to be mediated by PI3KAKT, and not by MEKERK1/2, signaling. We also show that activation of the mammalian target of rapamycin complex 1 (mTORC1)ribosomal protein S6 kinase 1 (S6K1) pathway decreases tumor suppressor programmed cell death protein 4 (PDCD4), an inhibitor of the eIF4A RNA helicase, and contributes to the induction of MUC1-C translation. In concert with these results, treatment of growth factor-stimulated MCF-10A cells with the eIF4A RNA helicase inhibitors, silvestrol and CR-1-31-B, blocked increases in MUC1-C abundance. The functional significance of the increase in MUC1-C translation is supported by the demonstration that MUC1-C, in turn, forms complexes with EGF receptor (EGFR) and promotes EGFR-mediated activation of the PI3KAKT pathway and the induction of growth. Compared with MCF-10A cells, constitutive overexpression of MUC1-C in breast cancer cells was unaffected by EGF stimulation, but was blocked by inhibiting PI3KAKT signaling. The overexpression of MUC1-C in breast cancer cells was also inhibited by blocking eIF4A RNA helicase activity with silvestrol and CR-1-31-B. These findings indicate that EGF-induced MUC1-C expression is mediated by the PI3KAKT pathway and the eIF4A RNA helicase, and that this response promotes EGFR signaling in an autoinductive loop. The findings also indicate that targeting the eIF4A RNA helicase is a novel approach for blocking MUC1-C overexpression in breast cancer cells.
Collapse
Affiliation(s)
- C Jin
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
30
|
Kharbanda A, Rajabi H, Jin C, Raina D, Kufe D. Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Mol Cancer Res 2013; 11:714-23. [PMID: 23538857 DOI: 10.1158/1541-7786.mcr-12-0668] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tamoxifen resistance of estrogen receptor-positive (ER+) breast cancer cells has been linked in part to activation of receptor tyrosine kinases, such as HER2, and the PI3K-AKT pathway. Mucin 1 (MUC1) is aberrantly overexpressed in about 90% of human breast cancers, and the oncogenic MUC1-C subunit is associated with ERα. The present studies using HER2 overexpressing BT-474 breast cancer cells, which are constitutively resistant to tamoxifen, demonstrate that silencing MUC1-C is associated with (i) downregulation of p-HER2 and (ii) sensitivity to tamoxifen-induced growth inhibition and loss of clonogenic survival. In contrast, overexpression of MUC1-C in tamoxifen-sensitive MCF-7 breast cancer cells resulted in upregulation of p-AKT and tamoxifen resistance. We show that MUC1-C forms complexes with ERα on the estrogen-responsive promoter of Rab31 and that MUC1-C blocks tamoxifen-induced decreases in ERα occupancy. MUC1-C also attenuated tamoxifen-induced decreases in (i) recruitment of the coactivator CREB binding protein, (ii) Rab31 promoter activation, and (iii) Rab31 mRNA and protein levels. The importance of MUC1-C is further supported by the demonstration that targeting MUC1-C with the cell-penetrating peptide inhibitor, GO-203, sensitized tamoxifen-resistant cells to tamoxifen treatment. Moreover, we show that targeting MUC1-C in combination with tamoxifen is highly synergistic in the treatment of tamoxifen-resistant breast cancer cells. Combined, these findings indicate that MUC1-C contributes to tamoxifen resistance.
Collapse
Affiliation(s)
- Akriti Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
31
|
Sikder MA, Lee HJ, Mia MZ, Park SH, Ryu J, Kim JH, Min SY, Hong JH, Seok JH, Lee CJ. Inhibition of TNF-α-induced MUC5AC mucin gene expression and production by wogonin through the inactivation of NF-κB signaling in airway epithelial cells. Phytother Res 2013; 28:62-8. [PMID: 23463646 DOI: 10.1002/ptr.4954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
Abstract
In this study, we investigated whether wogonin significantly affects MUC5AC mucin gene expression and production in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with wogonin for 30 min and then stimulated with tumor necrosis factor-α (TNF-α) for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA, respectively. We found that incubation of NCI-H292 cells with wogonin significantly inhibited mucin production and down-regulated MUC5AC gene expression induced by TNF-α in a dose-dependent fashion. To elucidate the action mechanism of wogonin, effect of wogonin on TNF-α-induced NF-κB signaling pathway was investigated by western blot analysis. Wogonin inhibited NF-κB activation induced by TNF-α. Inhibition of IKK by wogonin led to the suppression of IκB phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene expression. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Wogonin also inhibited the gene products involved in cell survival (Bcl-2) and proliferation (cyclooxygenase-2). These results suggest that wogonin inhibits the NF-κB signaling pathway, which may explain its role in the inhibition of MUC5AC mucin gene expression and production.
Collapse
Affiliation(s)
- Md Asaduzzaman Sikder
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Poirot M, Silvente-Poirot S, Weichselbaum RR. Cholesterol metabolism and resistance to tamoxifen. Curr Opin Pharmacol 2012; 12:683-9. [DOI: 10.1016/j.coph.2012.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
|
33
|
Rajabi H, Ahmad R, Jin C, Joshi MD, Guha M, Alam M, Kharbanda S, Kufe D. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate 2012; 72:1659-68. [PMID: 22473899 PMCID: PMC3413781 DOI: 10.1002/pros.22519] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/29/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND The mucin 1 (MUC1) heterodimeric oncoprotein is overexpressed in human prostate cancers with aggressive pathologic and clinical features. However, few insights are available regarding the functional role of MUC1 in prostate cancer. METHODS Effects of MUC1-C on androgen receptor (AR) expression were determined by RT-PCR, immunoblotting and AR promoter activation. Coimmunoprecipitations, direct binding assays, and chromatin immunoprecipitation (ChIP) studies were performed to assess the interaction between MUC1-C and AR. Cells were analyzed for invasion, growth in androgen-depleted medium, and sensitivity to MUC1-C inhibitors. RESULTS The present studies in androgen-dependent LNCaP and LAPC4 prostate cancer cells demonstrate that the oncogenic MUC1-C subunit suppresses AR expression. The results show that MUC1-C activates a posttranscriptional mechanism involving miR-135b-mediated downregulation of AR mRNA levels. The results further demonstrate that MUC1-C forms a complex with AR through a direct interaction between the MUC1-C cytoplasmic domain and the AR DNA-binding domain (DBD). In addition, MUC1-C associates with AR in a complex that occupies the PSA promoter. The interaction between MUC1-C and AR is associated with induction of the epithelial-mesenchymal transition (EMT) and increased invasion. MUC1-C also conferred growth in androgen-depleted medium and resistance to bicalutamide treatment. Moreover, expression of MUC1-C resulted in sensitivity to the MUC1-C inhibitor GO-203 with inhibition of growth in vitro. GO-203 treatment also inhibited growth of established tumor xenografts in nude mice. CONCLUSIONS These findings indicate that MUC1-C suppresses AR expression in prostate cancer cells and confers a more aggressive androgen-independent phenotype that is sensitive to MUC1-C inhibition.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Uchida Y, Raina D, Kharbanda S, Kufe D. Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biol Ther 2012; 14:127-34. [PMID: 23114713 DOI: 10.4161/cbt.22634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mucin 1 (MUC1) is a heterodimeric glycoprotein that is aberrantly overexpressed in most human breast cancers. The oncogenic MUC1-C subunit promotes survival and blocks the apoptotic response to genotoxic anticancer agents. In the present studies, human MCF-7 and ZR-75-1 breast cancer cells were treated with the MUC1-C inhibitor, GO-203, a cell-penetrating peptide that blocks MUC1-C homodimerization and thereby its oncogenic function. Treatment with GO-203 was found to promote the apoptotic response of MCF-7 and ZR-75-1 cells to the therapeutic drugs taxol and doxorubicin (DOX). This effect was (1) attenuated by a pan-caspase inhibitor, and (2) mediated, at least in part, by activation of the effector caspase-7 and cleavage of the downstream substrate PARP. Further analysis of the interaction between GO-203 and taxol using isobolograms, which evaluate the nature of the interaction of two drugs, demonstrated that the combination is highly synergistic. These results were supported by combination index (CI) analysis with values of less than 1. GO-203 was also highly synergistic with DOX in studies of both MCF-7 and ZR-75-1 breast cancer cells. These findings indicate that blocking MUC1-C function could be effective in combination with taxol and DOX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yasumitsu Uchida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
35
|
Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 2012; 32:1073-81. [PMID: 22580612 DOI: 10.1038/onc.2012.158] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucin 1 (MUC1) is a heterodimeric protein formed by two subunits that is aberrantly overexpressed in human breast cancer and other cancers. Historically, much of the early work on MUC1 focused on the shed mucin subunit. However, more recent studies have been directed at the transmembrane MUC1-C-terminal subunit (MUC1-C) that functions as an oncoprotein. MUC1-C interacts with EGFR (epidermal growth factor receptor), ErbB2 and other receptor tyrosine kinases at the cell membrane and contributes to activation of the PI3KAKT and mitogen-activated protein kinase kinase (MEK)extracellular signal-regulated kinase (ERK) pathways. MUC1-C also localizes to the nucleus where it activates the Wnt/β-catenin, signal transducer and activator of transcription (STAT) and NF (nuclear factor)-κB RelA pathways. These findings and the demonstration that MUC1-C is a druggable target have provided the experimental basis for designing agents that block MUC1-C function. Notably, inhibitors of the MUC1-C subunit have been developed that directly block its oncogenic function and induce death of breast cancer cells in vitro and in xenograft models. On the basis of these findings, a first-in-class MUC1-C inhibitor has entered phase I evaluation as a potential agent for the treatment of patients with breast cancers who express this oncoprotein.
Collapse
Affiliation(s)
- D W Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1. PLoS One 2012; 7:e36753. [PMID: 22586492 PMCID: PMC3346745 DOI: 10.1371/journal.pone.0036753] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/12/2012] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases and integrins play an essential role in tumor cell invasion and metastasis. We previously showed that EGF and other growth factors induce human carcinoma cell invasion and metastasis mediated by integrin αvβ5 that is prevented by Src blockade [1]. MUC1, a transmembrane glycoprotein, is expressed in most epithelial tumors as a heterodimer consisting of an extracellular and a transmembrane subunit. The MUC1 cytoplasmic domain of the transmembrane subunit (MUC1.CD) translocates to the nucleus where it promotes the transcription of a metastatic gene signature associated with epithelial to mesenchymal transition. Here, we demonstrate a requirement for MUC1 in carcinoma cell metastasis dependent on EGFR and Src without affecting primary tumor growth. EGF stimulates Src-dependent MUC1 cleavage and nuclear localization leading to the expression of genes linked to metastasis. Moreover, expression of MUC1.CD results in its nuclear localization and is sufficient for transcription of the metastatic gene signature and tumor cell metastasis. These results demonstrate that EGFR and Src activity contribute to carcinoma cell invasion and metastasis mediated by integrin αvβ5 in part by promoting proteolytic cleavage of MUC1 and highlight the ability of MUC1.CD to promote metastasis in a context-dependent manner. Our findings may have implications for the use and future design of targeted therapies in cancers known to express EGFR, Src, or MUC1.
Collapse
|
37
|
Panchamoorthy G, Rehan H, Kharbanda A, Ahmad R, Kufe D. A monoclonal antibody against the oncogenic mucin 1 cytoplasmic domain. Hybridoma (Larchmt) 2012; 30:531-5. [PMID: 22149278 DOI: 10.1089/hyb.2011.0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly overexpressed in diverse human carcinomas and certain hematologic malignancies. The transmembrane MUC1-C subunit confers tumorigenicity and is a target for anti-cancer drug development. In this regard, the MUC1-C cytoplasmic domain interacts with multiple effectors that have been linked to transformation. Here we report on the generation of a mouse monoclonal antibody (MAb) against the human MUC1-C cytoplasmic domain (MUC1-CD). This IgG1 MAb, designated anti-MUC1-CD, reacts with the NYGQLDIFP epitope. We show that anti-MUC1-CD is useful in immunoblotting and immunoprecipitation experiments. In addition, anti-MUC1-CD can be used to detect expression of the MUC1-C subunit in formalin-fixed, paraffin-embedded tissues. The MUC1-C inhibitor has entered Phase I evaluation for patients with refractory solid tumors. The present results indicate that the anti-MUC1-CD antibody could be useful as a biomarker to identify patients with tumors that may be responsive to MUC1-C inhibitors.
Collapse
Affiliation(s)
- Govind Panchamoorthy
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
38
|
Kim JO, Sikder MA, Lee HJ, Rahman M, Kim JH, Chang GT, Lee CJ. Phorbol Ester or Epidermal Growth-factor-induced MUC5AC Mucin Gene Expression and Production from Airway Epithelial Cells are Inhibited by Apigenin and Wogonin. Phytother Res 2012; 26:1784-8. [DOI: 10.1002/ptr.4650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/31/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Ju-Ock Kim
- Pulmonology Section, Department of Internal Medicine; Chungnam National University Hospital; Daejeon
| | | | - Hyun Jae Lee
- Department of Pharmacology, School of Medicine; Chungnam National University; Daejeon
| | - Mustafizur Rahman
- Department of Biochemistry and Molecular Biology; Dhaka University; Bangladesh
| | - Jang-Hyun Kim
- Department of Oriental Pediatrics; Dongguk Univ-Seoul, Graduate School of Oriental Medicine
| | - Gyu Tae Chang
- Department of Oriental Pediatrics, College of Oriental Medicine; KyungHee University; Seoul Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine; Chungnam National University; Daejeon
| |
Collapse
|
39
|
Albrecht H, Carraway KL. MUC1 and MUC4: switching the emphasis from large to small. Cancer Biother Radiopharm 2012; 26:261-71. [PMID: 21728842 DOI: 10.1089/cbr.2011.1017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The MUC1 and MUC4 membrane mucins are each composed of a large alpha (α) and a small beta (β) subunit. The α subunits are fully exposed at the cell surface and contain variable numbers of repeated amino acid sequences that are heavily glycosylated. In contrast, the β subunits are much smaller and are anchored within the cell membrane, with their amino-terminal portions exposed at the cell surface and their carboxy-terminal tails facing the cytosol. Studies over the last several years are challenging the long-held belief that α subunits play the predominant role in cancer by conferring cellular properties that allow tumor cells to evade immune recognition and destruction. Indeed, the β subunits of MUC1 and MUC4 have emerged as oncogenes, as they engage signaling pathways responsible for tumor initiation and progression. Thus, a switch in the emphasis from the large α to the small β subunits offers attractive possibilities for successful clinical application. Such a focus shift is further supported by the absence of allelic polymorphism and variable glycosylation in the β subunit as well as by the presence of the β subunit in most MUC1 and MUC4 isoforms expressed by tumors. MUC1α, also known as CA15.3, is a Food and Drug Administration-approved serum biomarker for breast cancer, but its use is no longer recommended by the American Society of Clinical Oncology. However, comparison of β subunit expression in normal and malignant breast tissues may offer a novel approach to the exploitation of membrane mucins as biomarkers, as MUC1β-induced gene signatures with prognostic and predictive values in breast cancer have been reported. Preclinical studies with peptides that interfere with MUC1β oncogenic functions also look promising.
Collapse
Affiliation(s)
- Huguette Albrecht
- Department of Public Health Sciences, University of California Davis Cancer Center, Sacramento, California 95817, USA.
| | | |
Collapse
|
40
|
Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 9:44-54. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, VA 23298-0297, USA.
| |
Collapse
|
41
|
The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2011. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
|
42
|
Constantinou PE, Danysh BP, Dharmaraj N, Carson DD. Transmembrane mucins as novel therapeutic targets. Expert Rev Endocrinol Metab 2011; 6:835-848. [PMID: 22201009 PMCID: PMC3245640 DOI: 10.1586/eem.11.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane-tethered mucin glycoproteins are abundantly expressed at the apical surfaces of simple epithelia, where they play important roles in lubricating and protecting tissues from pathogens and enzymatic attack. Notable examples of these mucins are MUC1, MUC4 and MUC16 (also known as cancer antigen 125). In adenocarcinomas, apical mucin restriction is lost and overall expression is often highly increased. High-level mucin expression protects tumors from killing by the host immune system, as well as by chemotherapeutic agents, and affords protection from apoptosis. Mucin expression can increase as the result of gene duplication and/or in response to hormones, cytokines and growth factors prevalent in the tumor milieu. Rises in the normally low levels of mucin fragments in serum have been used as markers of disease, such as tumor burden, for many years. Currently, several approaches are being examined that target mucins for immunization or nanomedicine using mucin-specific antibodies.
Collapse
Affiliation(s)
- Pamela E Constantinou
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Brian P Danysh
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Neeraja Dharmaraj
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Klinge CM, Radde BN, Imbert-Fernandez Y, Teng Y, Ivanova MM, Abner SM, Martin AL. Targeting the intracellular MUC1 C-terminal domain inhibits proliferation and estrogen receptor transcriptional activity in lung adenocarcinoma cells. Mol Cancer Ther 2011; 10:2062-71. [PMID: 21862684 DOI: 10.1158/1535-7163.mct-11-0381] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mucin 1 (MUC1) is a diagnostic factor and therapy target in lung adenocarcinoma. MUC1 C-terminal intracellular domain (CD) interacts with estrogen receptor (ER) α and increases gene transcription in breast cancer cells. Because lung adenocarcinoma cells express functional ERα and ERβ, we examined MUC1 expression and MUC1-ER interaction. Because blocking MUC1 CD with an inhibitory peptide (PMIP) inhibited breast tumor growth, we tested whether PMIP would inhibit lung adenocarcinoma cell proliferation. We report that MUC1 interacts with ERα and ERβ within the nucleus of H1793 lung adenocarcinoma cells in accordance with MUC1 expression. PMIP was taken up by H23 and H1793 cells and inhibited the proliferation of H1793, but not H23 cells, concordant with higher MUC1 protein expression in H1793 cells. Lower MUC1 protein expression in H23 does not correspond to microRNAs miR-125b and miR-145 that have been reported to reduce MUC1 expression. PMIP had no effect on the viability of normal human bronchial epithelial cells, which lack MUC1 expression. PMIP inhibited estradiol-activated reporter gene transcription and endogenous cyclin D1 and nuclear respiratory factor-1 gene transcription in H1793 cells. These results indicate MUC1-ER functional interaction in lung adenocarcinoma cells and that inhibiting MUC1 inhibits lung adenocarcinoma cell viability.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|