1
|
Ismaili D, Petersen J, Schulz C, Eschenhagen T, Koivumäki JT, Christ T. PDE8 Inhibition and Its Impact on ICa,L in Persistent Atrial Fibrillation: Evaluation of PDE8 as a Potential Drug Target. J Cardiovasc Pharmacol 2024; 84:606-612. [PMID: 39270009 DOI: 10.1097/fjc.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024]
Abstract
ABSTRACT Atrial fibrillation (AF) poses a significant therapeutic challenge with drug interventions showing only limited success. Phosphodiesterases (PDE) regulate cardiac electrical stability and may represent an interesting target. Recently, PDE8 inhibition was proposed as an antiarrhythmic intervention by increasing L-type Ca 2+ current (I Ca,L ) and action potential duration (APD). However, the effect size of PDE8 inhibition on I Ca,L and APD seems discrepant and effects on force are unknown. We investigated the impact of PDE8 inhibition on force using PF-04957325 in right atrial appendages, obtained from patients in sinus rhythm (SR) and with persistent AF (peAF) undergoing cardiac surgery. A computational model was used to predict the effects of PDE8 inhibition on APD in SR and peAF. Results showed no increase in force after exposure to increasing concentrations of the PDE8 inhibitor PF-04957325 in either SR or peAF tissues. Furthermore, PDE8 inhibition did not affect the potency or efficacy of norepinephrine-induced inotropic effects in either group. Arrhythmic events triggered by norepinephrine were observed in both SR and peAF, but their frequency remained unaffected by PF-04957325 treatment. Computational modeling predicted that the reported increase in I Ca,L induced by PDE8 inhibition would lead to substantial APD prolongation at all repolarization states, particularly in peAF. Our findings indicate that PDE8 inhibition does not significantly impact force or arrhythmogenicity in human atrial tissue.
Collapse
Affiliation(s)
- Djemail Ismaili
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Johannes Petersen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiovascular Surgery, University Heart and Vascular Center, Hamburg, Germany ; and
| | - Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
2
|
Zhou Z, Shao G, Shen Y, He F, Tu X, Ji J, Ao J, Chen X. Extreme-Phenotype Genome-Wide Association Analysis for Growth Traits in Spotted Sea Bass ( Lateolabrax maculatus) Using Whole-Genome Resequencing. Animals (Basel) 2024; 14:2995. [PMID: 39457925 PMCID: PMC11503831 DOI: 10.3390/ani14202995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Spotted sea bass (Lateolabrax maculatus) is an important marine economic fish in China, ranking third in annual production among marine fish. However, a declined growth rate caused by germplasm degradation has severely increased production costs and reduced economic benefits. There is an urgent need to develop the fast-growing varieties of L. maculatus and elucidate the genetic mechanisms underlying growth traits. Here, whole-genome resequencing technology combined with extreme phenotype genome-wide association analysis (XP-GWAS) was used to identify candidate markers and genes associated with growth traits in L. maculatus. Two groups of L. maculatus, consisting of 100 fast-growing and 100 slow-growing individuals with significant differences in body weight, body length, and carcass weight, underwent whole-genome resequencing. A total of 4,528,936 high-quality single nucleotide polymorphisms (SNPs) were used for XP-GWAS. These SNPs were evenly distributed across all chromosomes without large gaps, and the average distance between SNPs was only 175.8 bp. XP-GWAS based on the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (Blink) and Fixed and random model Circulating Probability Unification (FarmCPU) identified 50 growth-related markers, of which 17 were related to body length, 19 to body weight, and 23 to carcass weight. The highest phenotypic variance explained (PVE) reached 15.82%. Furthermore, significant differences were observed in body weight, body length, and carcass weight among individuals with different genotypes. For example, there were highly significant differences in body weight among individuals with different genotypes for four SNPs located on chromosome 16: chr16:13133726, chr16:13209537, chr16:14468078, and chr16:18537358. Additionally, 47 growth-associated genes were annotated. These genes are mainly related to the metabolism of energy, glucose, and lipids and the development of musculoskeletal and nervous systems, which may regulate the growth of L. maculatus. Our study identified growth-related markers and candidate genes, which will help to develop the fast-growing varieties of L. maculatus through marker-assisted breeding and elucidate the genetic mechanisms underlying the growth traits.
Collapse
Affiliation(s)
- Zhaolong Zhou
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Guangming Shao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Yibo Shen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Fengjiao He
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xiaomei Tu
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jiawen Ji
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Jingqun Ao
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
| | - Xinhua Chen
- Fuzhou Institute of Oceanography, State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (G.S.); (Y.S.); (F.H.); (X.T.); (J.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
3
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
4
|
Zaccolo M, Kovanich D. Nanodomain cAMP signalling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2024:10.1152/physrev.00013.2024. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
3', 5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signalling pathway, how they organized are inside the intracellular space and how they achieve exquisite regulation of signalling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalised cAMP signaling and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Mukherjee S, Roy S, Mukherjee S, Harikishore A, Bhunia A, Mandal AK. 14-3-3 interaction with phosphodiesterase 8A sustains PKA signaling and downregulates the MAPK pathway. J Biol Chem 2024; 300:105725. [PMID: 38325743 PMCID: PMC10926215 DOI: 10.1016/j.jbc.2024.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.
Collapse
Affiliation(s)
| | - Somesh Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | - Atin K Mandal
- Department of Biological Sciences, Bose Institute, Kolkata, India.
| |
Collapse
|
6
|
Gong T, Mu Q, Xu Y, Wang W, Meng L, Feng X, Liu W, Ao Z, Zhang Y, Chen X, Xu H. Expression of the umami taste receptor T1R1/T1R3 in porcine testis of: Function in regulating testosterone synthesis and autophagy in Leydig cells. J Steroid Biochem Mol Biol 2024; 236:106429. [PMID: 38035949 DOI: 10.1016/j.jsbmb.2023.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Testosterone is a vital male hormone responsible for male sexual characteristics. The taste receptor family 1 subunit 3 (T1R3) regulates testosterone synthesis and autophagy in non-taste cells, and the links with the taste receptor family 1 subunit 1 (T1R1) for umami perception. However, little is known about these mechanisms. Thus, we aimed to determine the relationship between the umami taste receptor (T1R1/T1R3) and testosterone synthesis or autophagy in testicular Leydig cells of the Xiang pig. There was a certain proportion of spermatogenic tubular dysplasia in the Xiang pig at puberty, in which autophagy was enhanced, and the testosterone level was increased with a weak expression of T1R3. Silenced T1R3 decreased testosterone level and intracellular cyclic adenosine monophosphate (cAMP) content and inhibited the messenger RNA (mRNA) expression levels of testosterone synthesis enzyme genes [steroidogenic acute regulatory protein (StAR), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (3β-HSD1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and hydroxysteroid 17-beta dehydrogenase 3 (17β-HSD3)]. In addition, T1R3 increased the number of acidic autophagy bubbles and upregulated the expression levels of autophagy markers [Microtubule-associated protein 1 A/1B-light chain 3 (LC3) and Beclin-1] in testicular Leydig cells of the Xiang pig. Using an umami tasting agonist (10 mM L-glutamate for 6 h), the activation of T1R1/T1R3 enhanced the testosterone synthesis ability by increasing the intracellular cAMP level and upregulated the expression levels of StAR, 3β-HSD1, CYP17A1 and 17β-HSD3 in Leydig cells. Furthermore, the number of acidic autophagy bubbles decreased in the T1R1/T1R3-activated group with the downregulation of the expression levels of the autophagy markers, including LC3 and Beclin-1. These data suggest that the function of T1R1/T1R3 expressed in testicular Leydig cells of the Xiang pig is related to testosterone synthesis and autophagy.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Qiannan Buyi and Miao Autonomous Prefecture Bureau of Agriculture and Rural Affairs, PR China
| | - Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Lijie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
7
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
8
|
Vo KC, Ruga L, Psathaki OE, Franzkoch R, Distler U, Tenzer S, Hensel M, Hegemann P, Gupta N. Plasticity and therapeutic potential of cAMP and cGMP-specific phosphodiesterases in Toxoplasma gondii. Comput Struct Biotechnol J 2022; 20:5775-5789. [PMID: 36382189 PMCID: PMC9619220 DOI: 10.1016/j.csbj.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Toxoplasma gondii is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP. TgPDE1 and TgPDE9, with a Km of 18 μM and 31 μM, respectively, are primed to hydrolyze cGMP, whereas TgPDE2 is highly specific to cAMP (Km, 14 μM). Immuno-electron microscopy revealed various subcellular distributions of TgPDE1, 2, and 9, including in the inner membrane complex, apical pole, plasma membrane, cytosol, dense granule, and rhoptry, indicating spatial control of signaling within tachyzoites. Notably, despite shared apical location and dual-catalysis, TgPDE8 and TgPDE9 are fully dispensable for the lytic cycle and show no functional redundancy. In contrast, TgPDE1 and TgPDE2 are individually required for optimal growth, and their collective loss is lethal to the parasite. In vitro phenotyping of these mutants revealed the roles of TgPDE1 and TgPDE2 in proliferation, gliding motility, invasion and egress of tachyzoites. Moreover, our enzyme inhibition assays in conjunction with chemogenetic phenotyping underpin TgPDE1 as a target of commonly-used PDE inhibitors, BIPPO and zaprinast. Finally, we identified a retinue of TgPDE1 and TgPDE2-interacting kinases and phosphatases, possibly regulating the enzymatic activity. In conclusion, our datasets on the catalytic function, physiological relevance, subcellular localization and drug inhibition of key phosphodiesterases highlight the previously-unanticipated plasticity and therapeutic potential of cyclic nucleotide signaling in T. gondii.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- Apicomplexa
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- DHFR-TS, dihydrofolate reductase – thymidylate synthase
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyl transferase
- IMC, inner membrane complex
- Lytic cycle
- MoI, multiplicity of infection
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- Phosphodiesterase
- S. C., selection cassette
- TEM, transmission electron microscopy
- Tachyzoite
- cAMP & cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Liberta Ruga
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Olympia Ekaterini Psathaki
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Rico Franzkoch
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Michael Hensel
- University of Osnabrück, Center of Cellular Nanoanalytics (CellNanOs), Integrated Bioimaging Faciltiy (iBiOs), Germany
| | - Peter Hegemann
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
9
|
The Urokinase-Type Plasminogen Activator Contributes to cAMP-Induced Steroidogenesis in MA-10 Leydig Cells. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leydig cells produce androgens which are essential for male sex differentiation and reproductive functions. Steroidogenesis, as well as expression of several genes in Leydig cells, are stimulated by LH/cAMP and repressed by AMP/AMPK. One of those genes is Plau, which codes for the urokinase-type plasminogen activator (uPA), a secreted serine protease. The role of uPA and the regulation of Plau expression in Leydig cells remain unknown. Using siRNA-mediated knockdown, uPA was required for maximal cAMP-induced STAR and steroid hormone production in MA-10 Leydig cells. Analysis of Plau mRNA levels and promoter activity revealed that its expression is strongly induced by cAMP; this induction is blunted by AMPK. The cAMP-responsive region was located, in part, in the proximal Plau promoter that contains a species-conserved GC box at −56 bp. The transcription factor Krüppel-like factor 6 (KLF6) activated the Plau promoter. Mutation of the GC box at −56 bp abolished KLF6-mediated activation and significantly reduced cAMP-induced Plau promoter activity. These data define a role for uPA in Leydig cell steroidogenesis and provide insights into the regulation of Plau gene expression in these cells.
Collapse
|
10
|
Limoncella S, Lazzaretti C, Paradiso E, D'Alessandro S, Barbagallo F, Pacifico S, Guerrini R, Tagliavini S, Trenti T, Santi D, Simoni M, Sola M, Di Rocco G, Casarini L. Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Mol Cell Endocrinol 2022; 542:111527. [PMID: 34875337 DOI: 10.1016/j.mce.2021.111527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Type 5 phosphodiesterase (PDE5) blockade by inhibitors (PDE5i) results in intracellular cyclic guanosine monophosphate (cGMP) increase and smooth muscle relaxation and are used for the treatment of men erectile dysfunction. Although they have high specificity for PDE5, these inhibitors are suspected to cross-interact also with cyclic adenosine monophosphate (cAMP)-specific PDEs, inducing the intracellular accumulation of this cyclic nucleotide and related testosterone increase, positively impacting male reproductive parameters. However, the link between the use of PDE5i and the activation of cAMP-mediated steroidogenesis is still unclear. We have investigated whether three PDE5i, sildenafil, tadalafil and vardenafil, cross-interacts with the high affinity cAMP-specific enzymes type 8A and 8B PDEs (PDE8A and PDE8B), in live, transfected mouse Leydig tumor (mLTC1) and human embryonic kidney (HEK293) cell lines in vitro. The PDE5i-induced production of cAMP-dependent testosterone and its precursor progesterone was evaluated as well. We have developed PDE8A/B biosensors and modified cyclic nucleotides confirming enzyme binding to cAMP, but not to cGMP, in our cell models. cAMP binding to PDE8A/B was displaced upon cell treatment with PDE5i, revealing that sildenafil, tadalafil and vardenafil have similar effectiveness in live cells, in vitro. The cross-interaction between PDE5i and PDE8A/B supports the gonadotropin-enhanced intracellular cAMP increase, occurring together with cGMP increase, as well as steroid synthesis. Indeed, we found that Leydig cell treatment by PDE5i increases progesterone and testosterone production triggered by gonadotropins. We demonstrated that PDE5i may interact with the cAMP-specific PDE8A and PDE8B, possibly inducing intracellular cAMP and sex steroid hormone increase. These findings support clinical data suggesting that PDE5i might increase testosterone levels in men.
Collapse
Affiliation(s)
- Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | | | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Hoffman CS. Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Front Pharmacol 2022; 12:833156. [PMID: 35111072 PMCID: PMC8802716 DOI: 10.3389/fphar.2021.833156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) have been proven to be targets for which highly selective and potent drugs can be developed. Mammalian genomes possess 21 genes whose products are pharmacologically grouped into 11 families; however related genes from pathogenic organisms display sufficient divergence from the mammalian homologs such that PDE inhibitors to these enzymes could be used to treat parasitic infections without acting on the related human PDEs. We have developed a platform for expressing cloned PDEs in the fission yeast Schizosaccharomyces pombe, allowing for inexpensive, but robust screening for small molecule inhibitors that are cell permeable. Such compounds typically display the expected biological activity when tested in cell culture, including anti-inflammatory properties for PDE4 and PDE7 inhibitors. The genetic pliability of S. pombe also allows for molecular genetic screens to identify mutations in target PDE genes that confer some resistance to these inhibitors as a way of investigating the PDE-inhibitor interaction. This screening method is readily accessible to academic laboratories as it does not require the purification of large quantities of a target protein. This allows for the discovery and profiling of PDE inhibitors to treat inflammation or of inhibitors of targets such as pathogen PDEs for which there may not be a sufficient financial motivation for pharmaceutical companies to identify selective PDE inhibitors using more traditional in vitro enzyme-based screening methods.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
12
|
Campolo F, Capponi C, Tarsitano MG, Tenuta M, Pozza C, Gianfrilli D, Magliocca F, Venneri MA, Vicini E, Lenzi A, Isidori AM, Barbagallo F. cAMP-specific phosphodiesterase 8A and 8B isoforms are differentially expressed in human testis and Leydig cell tumor. Front Endocrinol (Lausanne) 2022; 13:1010924. [PMID: 36277728 PMCID: PMC9585345 DOI: 10.3389/fendo.2022.1010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) signaling pathway is the master regulator of endocrine tissue function. The level, compartmentalization and amplitude of cAMP response are finely regulated by phosphodiesterases (PDEs). PDE8 is responsible of cAMP hydrolysis and its expression has been characterized in all steroidogenic cell types in rodents including adrenal and Leydig cells in rodents however scarce data are currently available in humans. Here we demonstrate that human Leydig cells express both PDE8A and PDE8B isoforms. Interestingly, we found that the expression of PDE8B but not of PDE8A is increased in transformed Leydig cells (Leydig cell tumors-LCTs) compared to non-tumoral cells. Immunofluorescence analyses further reveals that PDE8A is also highly expressed in specific spermatogenic stages. While the protein is not detected in spermatogonia it accumulates nearby the forming acrosome, in the trans-Golgi apparatus of spermatocytes and spermatids and it follows the fate of this organelle in the later stages translocating to the caudal part of the cell. Taken together our findings suggest that 1) a specific pool(s) of cAMP is/are regulated by PDE8A during spermiogenesis pointing out a possible new role of this PDE8 isoform in key events governing the differentiation and maturation of human sperm and 2) PDE8B can be involved in Leydig cell transformation.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Capponi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Magliocca
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mary A. Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Vicini
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Faculty of Medicine and Surgery, Kore University of Enna, Enna, Italy
- *Correspondence: Federica Barbagallo,
| |
Collapse
|
13
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|
14
|
Nonsense variant of NR0B1 causes hormone disorders associated with congenital adrenal hyperplasia. Sci Rep 2021; 11:16066. [PMID: 34373561 PMCID: PMC8352982 DOI: 10.1038/s41598-021-95642-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is a rare X-linked recessive inherited disease that is considered a major cause of steroidogenesis disorder and is associated with variants or complete deletion of the NR0B1 gene. The DAX-1 protein (encoded by NR0B1) is a vertebrate-specific orphan nuclear receptor and is also a transcriptional factor for adrenal and reproductive development. CAH usually causes adrenal insufficiency in infancy and early childhood, leading to hypogonadotropic hypogonadism in adulthood; however, few adult cases have been reported to date. In this study, we examined a Chinese family with one adult patient with CAH, and identified a putative variant of NR0B1 gene via next-generation sequencing (NGS), which was confirmed with Sanger sequencing. A novel nonsense variant (c.265C>T) was identified in the NR0B1 gene, which caused the premature termination of DAX-1 at residue 89 (p.G89*). Furthermore, mutant NR0B1 gene displayed a partial DAX-1 function, which may explain the late pathogenesis in our case. Additionally, qPCR revealed the abnormal expression of four important genes identified from ChIP-seq, which were associated with energy homeostasis and steroidogenesis, and were influenced by the DAX-1 mutant. In addition, hormone disorders can be caused by DAX-1 mutant and partially recovered by siRNA of PPARGC1A. Herein, we identified a novel nonsense variant (c.265C>T) of NR0B1 in a 24-year-old Chinese male who was suffering from CAH. This mutant DAX-1 protein was found to have disordered energy homeostasis and steroidogenesis based on in vitro studies, which was clinically consistent with the patient’s phenotypic features.
Collapse
|
15
|
Beavo JA, Golkowski M, Shimizu-Albergine M, Beltejar MC, Bornfeldt KE, Ong SE. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Mol Pharmacol 2021; 99:342-357. [PMID: 33574048 PMCID: PMC8058506 DOI: 10.1124/molpharm.120.000197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Collapse
Affiliation(s)
- Joseph A Beavo
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Martin Golkowski
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Masami Shimizu-Albergine
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Michael-Claude Beltejar
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Karin E Bornfeldt
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Shao-En Ong
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Turner MJ, Abbott-Banner K, Thomas DY, Hanrahan JW. Cyclic nucleotide phosphodiesterase inhibitors as therapeutic interventions for cystic fibrosis. Pharmacol Ther 2021; 224:107826. [PMID: 33662448 DOI: 10.1016/j.pharmthera.2021.107826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cystic Fibrosis (CF) lung disease results from mutations in the CFTR anion channel that reduce anion and fluid secretion by airway epithelia. Impaired secretion compromises airway innate defence mechanisms and leads to bacterial colonization, excessive inflammation and tissue damage; thus, restoration of CFTR function is the goal of many CF therapies. CFTR channels are activated by cyclic nucleotide-dependent protein kinases. The second messengers 3'5'-cAMP and 3'5'-cGMP are hydrolysed by a large family of cyclic nucleotide phosphodiesterases that provide subcellular spatial and temporal control of cyclic nucleotide-dependent signalling. Selective inhibition of these enzymes elevates cyclic nucleotide levels, leading to activation of CFTR and other downstream effectors. Here we examine members of the PDE family that are likely to regulate CFTR-dependent ion and fluid secretion in the airways and discuss other actions of PDE inhibitors that can influence cyclic nucleotide-regulated mucociliary transport, inflammation and bronchodilation. Finally, we review PDE inhibitors and the potential benefits they could provide as CF therapeutics.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada.
| | | | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada; Cystic Fibrosis Translational Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Leal LF, Szarek E, Berthon A, Nesterova M, Faucz FR, London E, Mercier C, Abu-Asab M, Starost MF, Dye L, Bilinska B, Kotula-Balak M, Antonini SR, Stratakis CA. Pde8b haploinsufficiency in mice is associated with modest adrenal defects, impaired steroidogenesis, and male infertility, unaltered by concurrent PKA or Wnt activation. Mol Cell Endocrinol 2021; 522:111117. [PMID: 33338547 DOI: 10.1016/j.mce.2020.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 11/26/2022]
Abstract
PDE8B, PRKAR1A and the Wnt/β-catenin signaling are involved in endocrine disorders. However, how PDEB8B interacts with both Wnt and protein kinase A (PKA) signaling in vivo remains unknown. We created a novel Pde8b knockout mouse line (Pde8b-/-); Pde8b haploinsufficient (Pde8b+/-) mice were then crossed with mice harboring: (1) constitutive beta-catenin activation (Pde8b+/-;ΔCat) and (2) Prkar1a haploinsufficieny (Pde8b+/-;Prkar1a+/-). Adrenals and testes from mice (3-12-mo) were evaluated in addition to plasma corticosterone, aldosterone and Dkk3 concentrations, and the examination of expression of steroidogenesis-, Wnt- and cAMP/PKA-related genes. Pde8b-/- male mice were infertile with down-regulation of the Wnt/β-catenin pathway which did not change significantly in the Pde8b+/-;ΔCat mice. Prkar1a haploinsufficiency also did not change the phenotype significantly. In vitro studies showed that PDE8B knockdown upregulated the Wnt pathway and increased proliferation in CTNNB1-mutant cells, whereas it downregulated the Wnt pathway in PRKAR1A-mutant cells. These data support an overall weak, if any, role for PDE8B in adrenocortical tumorigenesis, even when co-altered with Wnt signaling or PKA upregulation; on the other hand, PDE8B appears to play a significant role in male fertility.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adaptor Proteins, Signal Transducing/blood
- Adrenal Glands/drug effects
- Adrenal Glands/pathology
- Adrenal Glands/physiopathology
- Aldosterone/blood
- Animals
- Cell Line
- Cell Proliferation/drug effects
- Corticosterone/blood
- Crosses, Genetic
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dexamethasone/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Haploinsufficiency/genetics
- Infertility, Male/blood
- Infertility, Male/genetics
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spermatogenesis/drug effects
- Spermatogenesis/genetics
- Steroids/biosynthesis
- Testis/drug effects
- Testis/ultrastructure
- Wnt Proteins/metabolism
- beta Catenin/metabolism
- Mice
Collapse
Affiliation(s)
- Leticia Ferro Leal
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA; Departments of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Sao Paulo, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Eva Szarek
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Nesterova
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edra London
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Mercier
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mones Abu-Asab
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew F Starost
- National Institutes of Health, Division of Veterinary Resources, Bethesda, MD, 20892, USA
| | - Louis Dye
- Program in Developmental Endocrinology and Genetics, Microscopy and Imaging Core Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa, Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza, Krakow, Poland
| | - Sonir R Antonini
- Departments of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, 14049-900, Sao Paulo, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology & Genetics (PDEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
20
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
21
|
Vo KC, Günay-Esiyok Ö, Liem N, Gupta N. The protozoan parasite Toxoplasma gondii encodes a gamut of phosphodiesterases during its lytic cycle in human cells. Comput Struct Biotechnol J 2020; 18:3861-3876. [PMID: 33335684 PMCID: PMC7720076 DOI: 10.1016/j.csbj.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Toxoplasma genome harbors at least 18 phosphodiesterases encoded by distinct genes. Most parasite PDEs lack regulatory modules and are quite divergent from their human orthologs. Acutely-infectious tachyzoite stage of T. gondii expresses 11 PDEs with varied localizations. PDE8 and PDE9 are closely-related dual-substrate specific proteins residing in the apical pole. Homology modeling of PDE8 and PDE9 reveals a conserved 3D topology and substrate pocket. PDE9 is dispensable in tachyzoites, signifying a functional redundancy with PDE8.
Cyclic nucleotide signaling is pivotal to the asexual reproduction of Toxoplasma gondii, however little do we know about the phosphodiesterase enzymes in this widespread obligate intracellular parasite. Here, we identified 18 phosphodiesterases (TgPDE1-18) in the parasite genome, most of which form apicomplexan-specific clades and lack archetypal regulatory motifs often found in mammalian PDEs. Genomic epitope-tagging in the tachyzoite stage showed the expression of 11 phosphodiesterases with diverse subcellular distributions. Notably, TgPDE8 and TgPDE9 are located in the apical plasma membrane to regulate cAMP and cGMP signaling, as suggested by their dual-substrate catalysis and structure modeling. TgPDE9 expression can be ablated with no apparent loss of growth fitness in tachyzoites. Likewise, the redundancy in protein expression, subcellular localization and predicted substrate specificity of several other PDEs indicate significant plasticity and spatial control of cyclic nucleotide signaling during the lytic cycle. Our findings shall enable a rational dissection of signaling in tachyzoites by combinatorial mutagenesis. Moreover, the phylogenetic divergence of selected Toxoplasma PDEs from human counterparts can be exploited to develop parasite-specific inhibitors and therapeutics.
Collapse
Key Words
- 3′IT, 3′-insertional tagging
- AC, adenylate cyclase
- Apicomplexa
- Bradyzoite
- COS, crossover sequence
- CRISPR, clustered regularly interspaced short palindromic repeats
- EES, entero-epithelial stages
- FPKM, fragments per kilobase of exon model per million
- GC, guanylate cyclase
- GMQE, Global Model Quality Estimation
- HFF, human foreskin fibroblast
- HXGPRT, hypoxanthine-xanthine-guanine phosphoribosyltransferase
- IMC, inner membrane complex
- Lytic cycle
- MAEBL, merozoite adhesive erythrocytic binding ligand
- MOI, multiplicity of infection
- OCRE, octamer repeat
- PDE, phosphodiesterase
- PKA, protein kinase A
- PKG, protein kinase G
- PM, plasma membrane
- QMEAN, Quality Model Energy Analysis
- Tachyzoite
- cAMP and cGMP signaling
- sgRNA, single guide RNA
- smHA, spaghetti monster-HA
Collapse
Affiliation(s)
- Kim Chi Vo
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Özlem Günay-Esiyok
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nicolas Liem
- Experimental Biophysics, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Institute of Biology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| |
Collapse
|
22
|
Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 2020; 21:ijms21207493. [PMID: 33050653 PMCID: PMC7590010 DOI: 10.3390/ijms21207493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Low-molecular-weight agonists of luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR), which interact with LHCGR transmembrane allosteric site and, in comparison with gonadotropins, more selectively activate intracellular effectors, are currently being developed. Meanwhile, their effects on testicular steroidogenesis have not been studied. The purpose of this work is to perform a comparative study of the effects of 5-amino-N-tert-butyl-4-(3-(1-methylpyrazole-4-carboxamido)phenyl)-2-(methylthio)thieno[2,3-d] pyrimidine-6-carboxamide (TP4/2), a LHCGR allosteric agonist developed by us, and hCG on adenylyl cyclase activity in rat testicular membranes, testosterone levels, testicular steroidogenesis and spermatogenesis in young (four-month-old), aging (18-month-old) and diabetic male Wistar rats. Type 1 diabetes was caused by a single streptozotocin (50 mg/kg) injection. TP4/2 (20 mg/kg/day) and hCG (20 IU/rat/day) were administered for 5 days. TP4/2 was less effective in adenylyl cyclase stimulation and ability to activate steroidogenesis when administered once into rats. On the 3rd–5th day, TP4/2 and hCG steroidogenic effects in young adult, aging and diabetic rats were comparable. Unlike hCG, TP4/2 did not inhibit LHCGR gene expression and did not hyperstimulate the testicular steroidogenesis system, moderately increasing steroidogenic proteins gene expression and testosterone production. In aging and diabetic testes, TP4/2 improved spermatogenesis. Thus, during five-day administration, TP4/2 steadily stimulates testicular steroidogenesis, and can be used to prevent androgen deficiency in aging and diabetes.
Collapse
|
23
|
Yang Y, Zhou C, Zhang T, Li Q, Mei J, Liang J, Li Z, Li H, Xiang Q, Zhang Q, Zhang L, Huang Y. Conversion of Fibroblast into Functional Leydig-like Cell Using Defined Small Molecules. Stem Cell Reports 2020; 15:408-423. [PMID: 32735821 PMCID: PMC7419716 DOI: 10.1016/j.stemcr.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have demonstrated that fibroblasts can be directly converted into functional Leydig cells by transcription factors. However, the transgenic approach used in these studies raises safety concerns for its future application. Here, we report that fibroblasts can be directly reprogrammed into Leydig-like cells by exposure to a combination of forskolin, 20α-hydroxycholesterol, luteinizing hormone, and SB431542. These chemical compound-induced Leydig-like cells (CiLCs) express steroidogenic genes and have a global gene expression profile similar to that of progenitor Leydig cells, although not identical. In addition, these cells can survive in testis and produce testosterone in a circadian rhythm. This induction strategy is applicable to reprogramming human periodontal ligament fibroblasts toward Leydig-like cells. These findings demonstrated fibroblasts can be directly converted into Leydig-like cells by pure chemical compounds. This strategy overcomes the limitations of conventional transgenic-based reprogramming and provides a simple, effective approach for Leydig cell-based therapy while simultaneously preserving the hypothalamic-pituitary-gonadal axis. Direct induction of fibroblasts into Leydig-like cells (CiLCs) by chemicals CiLCs were modulated by HPG axis and produced testosterone in a diurnal rhythm Conversion process toward CiLCs did not pass through an intermediate state
Collapse
Affiliation(s)
- Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Chenxing Zhou
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Tiantian Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Quan Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Hanhao Li
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Bioparmaceutical R&D Center of Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou 510440, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine of, Guangzhou 510632, China.
| |
Collapse
|
24
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
25
|
Lounas A, Vernoux N, Germain M, Tremblay ME, Richard FJ. Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells. Sci Rep 2019; 9:12493. [PMID: 31462694 PMCID: PMC6713761 DOI: 10.1038/s41598-019-48886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.
Collapse
Affiliation(s)
- Amel Lounas
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - Marc Germain
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
26
|
Zhou J, Hou Y, Zhang Z, Xing X, Zou X, Zhong L, Huang H, Zhang Z, Sun J. Conversion of human fibroblasts into functional Leydig-like cells by small molecules and a single factor. Biochem Biophys Res Commun 2019; 516:1-7. [PMID: 31182281 DOI: 10.1016/j.bbrc.2019.05.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/30/2019] [Indexed: 01/20/2023]
Abstract
Reprogramming fibroblasts into Leydig cells (LCs) offers a promising source for cell-based therapy for male hypogonadism. Recently, it has been achieved by forced expression of multiple transcription factors (TFs). However, for ultimate safe and convenient application, small molecules would be a revolutionary and desirable method to reduce or eliminate the genetic manipulations. Here, we report a defined small-molecule cocktail that enables the highly efficient conversion of human fibroblasts into functional LCs with only one transcription factor. These induced cells resembled human LCs with respect to morphology, marker gene expression and secretary function of testosterone. This study lays a foundation for future pharmacological reprogramming and provides a unique venue for investigating mechanisms underlying reprogramming.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Hua Huang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Zhen Zhang
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
27
|
Regulation of Leydig cell steroidogenesis: intriguing network of signaling pathways and mitochondrial signalosome. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J Mol Cell Cardiol 2019; 131:112-121. [PMID: 31028775 DOI: 10.1016/j.yjmcc.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.
Collapse
|
29
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Casarini L, Riccetti L, Limoncella S, Lazzaretti C, Barbagallo F, Pacifico S, Guerrini R, Tagliavini S, Trenti T, Simoni M, Sola M, Di Rocco G. Probing the Effect of Sildenafil on Progesterone and Testosterone Production by an Intracellular FRET/BRET Combined Approach. Biochemistry 2018; 58:799-808. [PMID: 30532959 DOI: 10.1021/acs.biochem.8b01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Forster resonance energy transfer (FRET)-based biosensors have been recently applied to the study of biological pathways. In this study, a new biosensor was validated for the first time in live HEK293 and steroidogenic MLTC-1 cell lines for studying the effect of the PDE5 inhibitor on the hCG/LH-induced steroidogenic pathway. The sensor improves FRET between a donor (D), the fluorescein-like diarsenical probe that can covalently bind a tetracysteine motif fused to the PDE5 catalytic domain, and an acceptor (A), the rhodamine probe conjugated to the pseudosubstrate cGMPS. Affinity constant ( Kd) values of 5.6 ± 3.2 and 13.7 ± 0.8 μM were obtained with HEK293 and MLTC-1 cells, respectively. The detection was based on the competitive displacement of the cGMPS-rhodamine conjugate by sildenafil; the Ki values were 3.6 ± 0.3 nM (IC50 = 2.3 nM) in HEK293 cells and 10 ± 1.0 nM (IC50 = 3.9 nM) in MLTC-1 cells. The monitoring of both cAMP and cGMP by bioluminescence resonance energy transfer allowed the exploitation of the effects of PDE5i on steroidogenesis, indicating that sildenafil enhanced the gonadotropin-induced progesterone-to-testosterone conversion in a cAMP-independent manner.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy.,Center for Genome Research , University of Modena and Reggio Emilia , 41126 Modena , Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Federica Barbagallo
- Department of Experimental Medicine , University of Rome "La Sapienza" , 00185 Rome , Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , 44121 Ferrara , Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , 44121 Ferrara , Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy , Azienda USL of Modena , 41121 Modena , Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy , Azienda USL of Modena , 41121 Modena , Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy.,Center for Genome Research , University of Modena and Reggio Emilia , 41126 Modena , Italy.,Azienda , Ospedaliero-Universitaria di Modena , 41125 Modena , Italy
| | - Marco Sola
- Department of Life Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Giulia Di Rocco
- Department of Life Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| |
Collapse
|
31
|
Bergeron A, Guillemette C, Sirard MA, Richard FJ. Active 3'-5' cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of mural granulosa cells. Reprod Fertil Dev 2018; 29:778-790. [PMID: 26724956 DOI: 10.1071/rd15243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/26/2015] [Indexed: 01/21/2023] Open
Abstract
Lipids rafts are specialised membrane microdomains involved in cell signalling that can be isolated as detergent-resistant membranes (DRMs). The second messenger cyclic AMP (cAMP) has a central role in cell signalling in the ovary and its degradation is carried out by the phosphodiesterase (PDE) enzyme family. We hypothesised that PDEs could be functionally present in the lipid rafts of porcine mural granulosa cell membranes. PDE6C, PDE8A and PDE11A were detected by dot blot in the DRMs and the Triton-soluble fraction of the mural granulosa cells membrane and the cytosol. As shown by immunocytochemistry, PDEs showed clear immunostaining in mural granulosa cell membranes and the cytosol. Interestingly, cAMP-PDE activity was 18 times higher in the DRMs than in the Triton-soluble fraction of cell membranes and was 7.7 times higher in the cytosol than in the DRMs. cAMP-PDE activity in mural granulosa cells was mainly contributed by the PDE8 and PDE11 families. This study shows that PDEs from the PDE8 and PDE11 families are present in mural granulosa cells and that the cAMP-PDE activity is mainly contributed by the cytosol. In the cell membrane, the cAMP-PDE activity is mainly contributed by the DRMs. In addition, receptors for prostaglandin E2 and LH, two G-protein-coupled receptors, are present in lipid rafts and absent from the non-raft fraction of the granulosa cell membrane. These results suggest that in these cells, the lipid rafts exist as a cell-signalling platform and PDEs are one of the key enzyme families present in the raft.
Collapse
Affiliation(s)
- Annick Bergeron
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - Christine Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| | - François J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, 2425 rue de l'Agriculture, Pavillon Paul-Comtois, Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
32
|
Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation. Endocrinology 2018; 159:2142-2152. [PMID: 29608743 PMCID: PMC5913618 DOI: 10.1210/en.2018-00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.
Collapse
Affiliation(s)
- Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| |
Collapse
|
33
|
Johnstone TB, Smith KH, Koziol-White CJ, Li F, Kazarian AG, Corpuz ML, Shumyatcher M, Ehlert FJ, Himes BE, Panettieri RA, Ostrom RS. PDE8 Is Expressed in Human Airway Smooth Muscle and Selectively Regulates cAMP Signaling by β 2-Adrenergic Receptors and Adenylyl Cyclase 6. Am J Respir Cell Mol Biol 2018; 58:530-541. [PMID: 29262264 PMCID: PMC5894499 DOI: 10.1165/rcmb.2017-0294oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Two cAMP signaling compartments centered on adenylyl cyclase (AC) exist in human airway smooth muscle (HASM) cells, one containing β2-adrenergic receptor AC6 and another containing E prostanoid receptor AC2. We hypothesized that different PDE isozymes selectively regulate cAMP signaling in each compartment. According to RNA-sequencing data, 18 of 24 PDE genes were expressed in primary HASM cells derived from age- and sex-matched donors with and without asthma. PDE8A was the third most abundant of the cAMP-degrading PDE genes, after PDE4A and PDE1A. Knockdown of PDE8A using shRNA evoked twofold greater cAMP responses to 1 μM forskolin in the presence of 3-isobutyl-1-methylxanthine. Overexpression of AC2 did not alter this response, but overexpression of AC6 increased cAMP responses an additional 80%. We examined cAMP dynamics in live HASM cells using a fluorescence sensor. PF-04957325, a PDE8-selective inhibitor, increased basal cAMP concentrations by itself, indicating a significant basal level of cAMP synthesis. In the presence of an AC inhibitor to reduce basal signaling, PF-04957325 accelerated cAMP production and increased the inhibition of cell proliferation induced by isoproterenol, but it had no effect on cAMP concentrations or cell proliferation regulated by prostaglandin E2. Lipid raft fractionation of HASM cells revealed PDE8A immunoreactivity in buoyant fractions containing caveolin-1 and AC5/6 immunoreactivity. Thus, PDE8 is expressed in lipid rafts of HASM cells, where it specifically regulates β2-adrenergic receptor AC6 signaling without effects on signaling by the E prostanoid receptors 2/4-AC2 complex. In airway diseases such as asthma and chronic obstructive pulmonary disease, PDE8 may represent a novel therapeutic target to modulate HASM responsiveness and airway remodeling.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Airway Remodeling
- Asthma/enzymology
- Asthma/genetics
- Asthma/pathology
- Asthma/physiopathology
- Case-Control Studies
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Humans
- Membrane Microdomains/enzymology
- Membrane Microdomains/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Respiratory System/enzymology
- Respiratory System/pathology
- Respiratory System/physiopathology
- Second Messenger Systems
- Time Factors
Collapse
Affiliation(s)
- Timothy B. Johnstone
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kaitlyn H. Smith
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Cynthia J. Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Fengying Li
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Austin G. Kazarian
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maia L. Corpuz
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Frederick J. Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
34
|
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87:233-254. [PMID: 29454746 DOI: 10.1016/j.neubiorev.2018.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/20/2022]
Abstract
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide range of symptoms observed in related neuropsychiatric disorders. Intracellular signaling in these circuits is largely mediated through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway with an additional role for the cyclic guanosine monophosphate (cGMP)/ protein kinase G (PKG) pathway, both of which can be regulated by phosphodiesterase inhibitors (PDE inhibitors). Through their effects on cAMP response element-binding protein (CREB) and Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32), cyclic nucleotide pathways are involved in synaptic transmission, neuron excitability, neuroplasticity and neuroprotection. In this clinical review, we provide an overview of the current clinical status, discuss the general mechanism of action of PDE inhibitors in relation to the corticostriatal and hippocampal circuits and consider several translational challenges.
Collapse
Affiliation(s)
- P R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - E P P Bollen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
35
|
Wu Y, Li Z, Huang YY, Wu D, Luo HB. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer's Disease. J Med Chem 2018; 61:5467-5483. [PMID: 29363967 DOI: 10.1021/acs.jmedchem.7b01370] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest public health challenges. Phosphodiesterases (PDEs) are a superenzyme family responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Since several PDE subfamilies are highly expressed in the human brain, the inhibition of PDEs is involved in neurodegenerative processes by regulating the concentration of cAMP and/or cGMP. Currently, PDEs are considered as promising targets for the treatment of AD since many PDE inhibitors have exhibited remarkable cognitive improvement effects in preclinical studies and over 15 of them have been subjected to clinical trials. The aim of this review is to summarize the outstanding progress that has been made by PDE inhibitors as anti-AD agents with encouraging results in preclinical studies and clinical trials. The binding affinity, pharmacokinetics, underlying mechanisms, and limitations of these PDE inhibitors in the treatment of AD are also reviewed and discussed.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , P. R. China
| |
Collapse
|
36
|
Umejiego EN, Wang Y, Knepper MA, Chou CL. Roflumilast and aquaporin-2 regulation in rat renal inner medullary collecting duct. Physiol Rep 2017; 5:5/2/e13121. [PMID: 28108651 PMCID: PMC5269416 DOI: 10.14814/phy2.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Roflumilast is a cyclic nucleotide phosphodiesterase inhibitor that is FDA‐approved for treatment of chronic obstructive pulmonary disease. With a view toward possible use for treatment of patients with X‐linked nephrogenic diabetes insipidus (NDI) due to hemizygous mutations in the V2 vasopressin receptor, this study sought to determine the effect of roflumilast on aquaporin‐2 (AQP2) phosphorylation, AQP2 trafficking, and water permeability in the rat inner medullary collecting duct (IMCD). In the presence of the vasopressin analog dDAVP (0.1 nmol/L), both roflumilast and its active metabolite roflumilast N‐oxide (RNO) significantly increased phosphorylation at S256, S264, and S269, and decreased phosphorylation at S261 (immunoblotting) in IMCD suspensions in a dose‐dependent manner (3–3000 nmol/L). Another commonly used phosphodiesterase inhibitor, IBMX, affected phosphorylation only at the highest concentration in this range. However, neither roflumilast nor RNO had an effect on AQP2 phosphorylation in the absence of vasopressin. Furthermore, roflumilast alone did not increase AQP2 trafficking to the plasma membrane (immunofluorescence) or increase water permeability in freshly microdissected perfused IMCD segments. We conclude that roflumilast can be used to enhance vasopressin's action on AQP2 activity in the renal collecting duct, but has no detectable effect in the absence of vasopressin. These findings suggest that roflumilast may not have a beneficial effect in X‐linked NDI, but could find useful application in acquired NDI.
Collapse
Affiliation(s)
- Ezigbobiara N Umejiego
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, 30322
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| |
Collapse
|
37
|
Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. Handb Exp Pharmacol 2017; 243:249-269. [PMID: 27787716 DOI: 10.1007/164_2016_82] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An important hallmark of cardiac failure is abnormal second messenger signaling due to impaired synthesis and catabolism of cyclic adenosine 3',5'- monophosphate (cAMP) and cyclic guanosine 3',5'- monophosphate (cGMP). Their dysregulation, altered intracellular targeting, and blunted responsiveness to stimulating pathways all contribute to pathological remodeling, muscle dysfunction, reduced cell survival and metabolism, and other abnormalities. Therapeutic enhancement of either cyclic nucleotides can be achieved by stimulating their synthesis and/or by suppressing members of the family of cyclic nucleotide phosphodiesterases (PDEs). The heart expresses seven of the eleven major PDE subtypes - PDE1, 2, 3, 4, 5, 8, and 9. Their differential control over cAMP and cGMP signaling in various cell types, including cardiomyocytes, provides intriguing therapeutic opportunities to counter heart disease. This review examines the roles of these PDEs in the failing and hypertrophied heart and summarizes experimental and clinical data that have explored the utility of targeted PDE inhibition.
Collapse
|
38
|
Components of the mitochondrial cAMP signalosome. Biochem Soc Trans 2017; 45:269-274. [PMID: 28202681 DOI: 10.1042/bst20160394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
3'-5'-Cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling is activated by different extracellular stimuli and mediates many diverse processes within the same cell. It is now well established that in order to translate into the appropriate cellular function multiple extracellular inputs, which may act simultaneously on the same cell, the cAMP/PKA signalling pathway is compartmentalised. Multimolecular complexes are organised at specific subcellular sites to generate spatially confined signalosomes, which include effectors, modulators and targets of the pathway. In recent years, it has become evident that mitochondria represent sites of compartmentalised cAMP signalling. However, the exact location and the molecular composition of distinct mitochondria signalosomes and their function remain largely unknown. In this review, we focus on individual components of the cAMP/PKA signalling pathway at distinct mitochondria subdomains represented by the outer and inner mitochondrial membranes, the intermembrane space and the matrix, highlighting some of the questions that remain unanswered.
Collapse
|
39
|
Analyses of PDE-regulated phosphoproteomes reveal unique and specific cAMP-signaling modules in T cells. Proc Natl Acad Sci U S A 2017. [PMID: 28634298 DOI: 10.1073/pnas.1703939114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specific functions for different cyclic nucleotide phosphodiesterases (PDEs) have not yet been identified in most cell types. Conventional approaches to study PDE function typically rely on measurements of global cAMP, general increases in cAMP-dependent protein kinase (PKA), or the activity of exchange protein activated by cAMP (EPAC). Although newer approaches using subcellularly targeted FRET reporter sensors have helped define more compartmentalized regulation of cAMP, PKA, and EPAC, they have limited ability to link this regulation to downstream effector molecules and biological functions. To address this problem, we have begun to use an unbiased mass spectrometry-based approach coupled with treatment using PDE isozyme-selective inhibitors to characterize the phosphoproteomes of the functional pools of cAMP/PKA/EPAC that are regulated by specific cAMP-PDEs (the PDE-regulated phosphoproteomes). In Jurkat cells we find multiple, distinct PDE-regulated phosphoproteomes that can be defined by their responses to different PDE inhibitors. We also find that little phosphorylation occurs unless at least two different PDEs are concurrently inhibited in these cells. Moreover, bioinformatics analyses of these phosphoproteomes provide insight into the unique functional roles, mechanisms of action, and synergistic relationships among the different PDEs that coordinate cAMP-signaling cascades in these cells. The data strongly suggest that the phosphorylation of many different substrates contributes to cAMP-dependent regulation of these cells. The findings further suggest that the approach of using selective, inhibitor-dependent phosphoproteome analysis can provide a generalized methodology for understanding the roles of different PDEs in the regulation of cyclic nucleotide signaling.
Collapse
|
40
|
Matsuyama T, Yabe K, Kuwata C, Ito K, Ando Y, Iida H, Mori K. Transcriptional profile of ethylene glycol monomethyl ether-induced testicular toxicity in rats. Drug Chem Toxicol 2017; 41:105-112. [DOI: 10.1080/01480545.2017.1320406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Takuya Matsuyama
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Koichi Yabe
- Daiichi Sankyo India Pharma Pvt. Ltd, Gurgaon, Haryana, India
| | - Chiharu Kuwata
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kazumi Ito
- Translational Medicine and Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Yosuke Ando
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
41
|
Monterisi S, Lobo MJ, Livie C, Castle JC, Weinberger M, Baillie G, Surdo NC, Musheshe N, Stangherlin A, Gottlieb E, Maizels R, Bortolozzi M, Micaroni M, Zaccolo M. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. eLife 2017; 6:e21374. [PMID: 28463107 PMCID: PMC5423767 DOI: 10.7554/elife.21374] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/29/2017] [Indexed: 01/31/2023] Open
Abstract
cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Craig Livie
- Institute of Neuroscioence and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - John C Castle
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Michael Weinberger
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - George Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, United Kingdom
| | - Nicoletta C Surdo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Alessandra Stangherlin
- Institute of Neuroscioence and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Eyal Gottlieb
- Beatson Institute, University of Glasgow, Glasgow, United Kingdom
| | - Rory Maizels
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Micaroni
- Swedish National Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuela Zaccolo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Tetsi L, Charles AL, Paradis S, Lejay A, Talha S, Geny B, Lugnier C. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017; 74:1883-1893. [PMID: 28039524 PMCID: PMC11107545 DOI: 10.1007/s00018-016-2446-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria play a critical role in skeletal muscle metabolism and function, notably at the level of tissue respiration, which conduct muscle strength as well as muscle survival. Pathological conditions induce mitochondria dysfunctions notably characterized by free oxygen radical production disturbing intracellular signaling. In that way, the second messengers, cyclic AMP and cyclic GMP, control intracellular signaling at the physiological and transcription levels by governing phosphorylation cascades. Both nucleotides are specifically and selectively hydrolyzed in their respective 5'-nucleotide by cyclic nucleotide phosphodiesterases (PDEs), which constitute a multi-genic family differently tissue distributed and subcellularly compartmentalized. These PDEs are presently recognized as therapeutic targets for cardiovascular, pulmonary, and neurologic diseases. However, very few data concerning cyclic nucleotides and PDEs in skeletal muscle, specifically in mitochondria, are reported in the literature. The knowledge of PDE implication in mitochondrial signaling would be helpful for resolving critical mitochondrial dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Liliane Tetsi
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne-Laure Charles
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Stéphanie Paradis
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne Lejay
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Samy Talha
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Bernard Geny
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Claire Lugnier
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France.
| |
Collapse
|
43
|
Zhang H, Na W, Zhang HL, Wang N, Du ZQ, Wang SZ, Wang ZP, Zhang Z, Li H. TCF21 is related to testis growth and development in broiler chickens. Genet Sel Evol 2017; 49:25. [PMID: 28235410 PMCID: PMC5326497 DOI: 10.1186/s12711-017-0299-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
Background Large amounts of fat deposition often lead to loss of reproductive efficiency in humans and animals. We used broiler chickens as a model species to conduct a two-directional selection for and against abdominal fat over 19 generations, which resulted in a lean and a fat line. Direct selection for abdominal fat content also indirectly resulted in significant differences (P < 0.05) in testis weight (TeW) and in TeW as a percentage of total body weight (TeP) between the lean and fat lines. Results A total of 475 individuals from the generation 11 (G11) were genotyped. Genome-wide association studies revealed two regions on chicken chromosomes 3 and 10 that were associated with TeW and TeP. Forty G16 individuals (20 from each line), were further profiled by focusing on these two chromosomal regions, to identify candidate genes with functions that may be potentially related to testis growth and development. Of the nine candidate genes identified with database mining, a significant association was confirmed for one gene, TCF21, based on mRNA expression analysis. Gene expression analysis of the TCF21 gene was conducted again across 30 G19 individuals (15 individuals from each line) and the results confirmed the findings on the G16 animals. Conclusions This study revealed that the TCF21 gene is related to testis growth and development in male broilers. This finding will be useful to guide future studies to understand the genetic mechanisms that underlie reproductive efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Li Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shou-Zhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Peng Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiwu Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China. .,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
44
|
Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells. J Comp Physiol B 2016; 187:613-623. [PMID: 27915366 DOI: 10.1007/s00360-016-1052-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 01/20/2023]
Abstract
The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.
Collapse
|
45
|
Kokkonen K, Kass DA. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Annu Rev Pharmacol Toxicol 2016; 57:455-479. [PMID: 27732797 DOI: 10.1146/annurev-pharmtox-010716-104756] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) form an 11-member superfamily comprising 100 different isoforms that regulate the second messengers cyclic adenosine or guanosine 3',5'-monophosphate (cAMP or cGMP). These PDE isoforms differ with respect to substrate selectivity and their localized control of cAMP and cGMP within nanodomains that target specific cellular pools and synthesis pathways for the cyclic nucleotides. Seven PDE family members are physiologically relevant to regulating cardiac function, disease remodeling of the heart, or both: PDE1 and PDE2, both dual-substrate (cAMP and cGMP) esterases; PDE3, PDE4, and PDE8, which principally hydrolyze cAMP; and PDE5A and PDE9A, which target cGMP. New insights regarding the different roles of PDEs in health and disease and their local signaling control are broadening the potential therapeutic utility for PDE-selective inhibitors. In this review, we discuss these PDEs, focusing on the different mechanisms by which they control cardiac function in health and disease by regulating intracellular nanodomains.
Collapse
Affiliation(s)
- Kristen Kokkonen
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
46
|
SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proc Natl Acad Sci U S A 2016; 113:E5685-93. [PMID: 27601673 DOI: 10.1073/pnas.1611424113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Luteinizing hormone (LH) stimulates steroidogenesis largely through a surge in cyclic AMP (cAMP). Steroidogenic rates are also critically dependent on the availability of cholesterol at mitochondrial sites of synthesis. This cholesterol is provided by cellular uptake of lipoproteins, mobilization of intracellular lipid, and de novo synthesis. Whether and how these pathways are coordinated by cAMP are poorly understood. Recent phosphoproteomic analyses of cAMP-dependent phosphorylation sites in MA10 Leydig cells suggested that cAMP regulates multiple steps in these processes, including activation of the SCAP/SREBP pathway. SCAP [sterol-regulatory element-binding protein (SREBP) cleavage-activating protein] acts as a cholesterol sensor responsible for regulating intracellular cholesterol balance. Its role in cAMP-mediated control of steroidogenesis has not been explored. We used two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated protein 9) knockout approaches to test the role of SCAP in steroidogenesis. Our results demonstrate that SCAP is required for progesterone production induced by concurrent inhibition of the cAMP phosphodiesterases PDE4 and PDE8. These inhibitors increased SCAP phosphorylation, SREBP2 activation, and subsequent expression of cholesterol biosynthetic genes, whereas SCAP deficiency largely prevented these effects. Reexpression of SCAP in SCAP-deficient cells restored SREBP2 protein expression and partially restored steroidogenic responses, confirming the requirement of SCAP-SREBP2 in steroidogenesis. Inhibitors of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase and isoprenylation attenuated, whereas exogenously provided cholesterol augmented, PDE inhibitor-induced steroidogenesis, suggesting that the cholesterol substrate needed for steroidogenesis is provided by both de novo synthesis and isoprenylation-dependent mechanisms. Overall, these results demonstrate a novel role for LH/cAMP in SCAP/SREBP activation and subsequent regulation of steroidogenesis.
Collapse
|
47
|
Wilson NM, Titus DJ, Oliva AA, Furones C, Atkins CM. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci 2016; 10:5. [PMID: 26903822 PMCID: PMC4742790 DOI: 10.3389/fnsys.2016.00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3′,5′-cyclic adenosine monophosphate, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE) expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 h and 6 h after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6, and 24 h after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 h after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A, or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 h after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b+ immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b+ immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of long-term potentiation (LTP) into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive function acutely after TBI.
Collapse
Affiliation(s)
- Nicole M Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Anthony A Oliva
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
48
|
Di-Luoffo M, Brousseau C, Tremblay JJ. MEF2 and NR2F2 cooperate to regulate Akr1c14
gene expression in mouse MA-10 Leydig cells. Andrology 2016; 4:335-44. [DOI: 10.1111/andr.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
- M. Di-Luoffo
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - C. Brousseau
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - J. J. Tremblay
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
- Centre de recherche en biologie de la reproduction; Department of Obstetrics, Gynecology and Reproduction; Faculty of Medicine; Université Laval; Québec City QC Canada
| |
Collapse
|
49
|
Golkowski M, Shimizu-Albergine M, Suh HW, Beavo JA, Ong SE. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cell Signal 2015; 28:764-78. [PMID: 26643407 DOI: 10.1016/j.cellsig.2015.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Many cellular processes are modulated by cyclic AMP and nucleotide phosphodiesterases (PDEs) regulate this second messenger by catalyzing its breakdown. The major unique function of testicular Leydig cells is to produce testosterone in response to luteinizing hormone (LH). Treatment of Leydig cells with PDE inhibitors increases cAMP levels and the activity of its downstream effector, cAMP-dependent protein kinase (PKA), leading to a series of kinase-dependent signaling and transcription events that ultimately increase testosterone release. We have recently shown that PDE4B and PDE4C as well as PDE8A and PDE8B are expressed in rodent Leydig cells and that combined inhibition of PDE4 and PDE8 leads to dramatically increased steroid biosynthesis. Here we investigated the effect of PDE4 and PDE8 inhibition on the molecular mechanisms of cAMP actions in a mouse MA10 Leydig cell line model with SILAC mass spectrometry-based phosphoproteomics. We treated MA10 cells either with PDE4 family specific inhibitor (Rolipram) and PDE8 family specific inhibitor (PF-04957325) alone or in combination and quantified the resulting phosphorylation changes at five different time points between 0 and 180min. We identified 28,336 phosphosites from 4837 proteins and observed significant regulation of 749 sites in response to PDE4 and PDE8 inhibitor treatment. Of these, 132 phosphosites were consensus PKA sites. Our data strongly suggest that PDE4 and PDE8 inhibitors synergistically regulate phosphorylation of proteins required for many different cellular processes, including cell cycle progression, lipid and glucose metabolism, transcription, endocytosis and vesicle transport. Our data suggests that cAMP, PDE4 and PDE8 coordinate steroidogenesis by acting on not one rate-limiting step but rather multiple pathways. Moreover, the pools of cAMP controlled by these PDEs also coordinate many other metabolic processes that may be regulated to assure timely and sufficient testosterone secretion in response to LH.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | | | - Hyong Won Suh
- Department of Pharmacology, School of Medicine, University of Washington, USA
| | - Joseph A Beavo
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| | - Shao-En Ong
- Department of Pharmacology, School of Medicine, University of Washington, USA.
| |
Collapse
|
50
|
Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10. [PMID: 26254606 DOI: 10.1016/j.steroids.2015.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. Consequently, the process of steroid hormone biosynthesis is finely regulated. In the testis, the main steroidogenic cells are the Leydig cells. There are two distinct populations of Leydig cells that arise during development: fetal and adult Leydig cells. Fetal Leydig cells are responsible for masculinizing the male urogenital tract and inducing testis descent. These cells atrophy shortly after birth and do not contribute to the adult Leydig cell population. Adult Leydig cells derive from undifferentiated precursors present after birth and become fully steroidogenic at puberty. The differentiation of both Leydig cell populations is controlled by locally produced paracrine factors and by endocrine hormones. In fully differentially and steroidogenically active Leydig cells, androgen production and hormone-responsiveness involve various signaling pathways and downstream transcription factors. This review article focuses on recent developments regarding the origin and function of Leydig cells, the regulation of their differentiation by signaling molecules, hormones, and structural changes, the signaling pathways, kinases, and transcription factors involved in their differentiation and in mediating LH-responsiveness, as well as the fine-tuning mechanisms that ensure adequate production steroid hormones.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec G1V 4G2, Canada; Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada.
| |
Collapse
|