1
|
Qian ZM, Li W, Guo Q. Lactoferrin/lactoferrin receptor: Neurodegenerative or neuroprotective in Parkinson's disease? Ageing Res Rev 2024; 101:102474. [PMID: 39197711 DOI: 10.1016/j.arr.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Lactoferrin (Lf) is a multifunctional protein in the transferrin family. It is involved in many physiological functions, including the regulation of iron absorption and immune response. It also has antibacterial, antiviral, anti-inflammatory, anticancer and antioxidant capabilities under pathophysiological conditions. The mammalian lactoferrin receptor (LfR) plays a key role in mediating multiple functions of Lf. Studies have shown that Lf/LfR is abnormally expressed in the brain of Parkinson's disease, and the excessive accumulation of iron in the brain caused by the overexpression of Lf and LfR is considered to be one of the initial causes of the degeneration of dopaminergic neurons in Parkinson's disease. On the other hand, a number of recent studies have reported that Lf/LfR has a significant neuroprotective effect on Parkinson's disease. In other words, it seems paradoxical that Lf/LfR has both neurodegenerative and neuroprotective effects in Parkinson's disease. This article focuses on recent advances in the possible mechanisms of the neurodegenerative and neuroprotective effects of Lf/LfR in Parkinson's disease and discusses why Lf/LfR has a seemingly contradictory role in the development of Parkinson's disease. Based on the evidence obtained so far, we believed that Lf/LfR has a neuroprotective effect on Parkinson's disease, while as to whether the overexpressed Lf/LfR is the cause of the development of Parkinson's disease, the current evidence is insufficient and further investigation needed.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Guo
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Xu SF, Cui JH, Liu X, Pang ZQ, Bai CY, Jiang C, Luan C, Li YP, Zhao Y, You YM, Guo C. Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling. Free Radic Biol Med 2024; 225:374-387. [PMID: 39406276 DOI: 10.1016/j.freeradbiomed.2024.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
Increased levels of lactoferrin (Lf) are present in the aged brain and in the lesions of various neurodegenerative diseases, including Parkinson's disease (PD), and may contribute to the cascade of events involved in neurodevelopment and neuroprotection. However, whether Lf originates from astrocytes and functions within either the normal or pathological brain are unknown. Here, we employed mice with specific knockout of the astrocyte lactoferrin gene (named Lf-cKO) to explore its specific roles in the pathological process of PD. We observed a decrease in tyrosine hydroxylase-positive cells, mitochondrial dysfunction of residual dopaminergic neurons, and motor deficits in Lf-cKO mice, which were significantly aggravated after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. To further explore how astrocytic lactoferrin deficiency exacerbated PD-like manifestation in MPTP-treated mice, the critical molecules involved in endoplasmic reticulum (ER)-mitochondria contacts and signaling pathways were investigated. In vitro and in vivo models, we found an aberrant level of effects implicated in glutamate and calcium homeostasis, mitochondrial morphology and functions, mitochondrial dynamics, and mitochondria-associated ER membranes, accompanied by signs of oxidative stress and ER stress, which increase the fragility of dopaminergic neurons. These findings confirm the existence of astrocytic Lf and its influence on the fate of dopaminergic neurons by regulating glutamate/calcium metabolism and ER-mitochondria signaling. Our findings may be a promising target for the treatment of PD.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zhong-Qiu Pang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chen-Yang Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chao Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yan Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yi-Ming You
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
3
|
Yong SJ, Veerakumarasivam A, Teoh SL, Lim WL, Chew J. Lactoferrin Protects Against Rotenone-Induced Toxicity in Dopaminergic SH-SY5Y Cells through the Modulation of Apoptotic-Associated Pathways. J Mol Neurosci 2024; 74:88. [PMID: 39297981 DOI: 10.1007/s12031-024-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased β-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
4
|
Eker F, Bolat E, Pekdemir B, Duman H, Karav S. Lactoferrin: neuroprotection against Parkinson's disease and secondary molecule for potential treatment. Front Aging Neurosci 2023; 15:1204149. [PMID: 37731953 PMCID: PMC10508234 DOI: 10.3389/fnagi.2023.1204149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease and is largely caused by the death of dopaminergic (DA) cells. Dopamine loss occurs in the substantia nigra pars compacta and leads to dysfunctions in motor functions. Death of DA cells can occur with oxidative stress and dysfunction of glial cells caused by Parkinson-related gene mutations. Lactoferrin (Lf) is a multifunctional glycoprotein that is usually known for its presence in milk, but recent research shows that Lf is also found in the brain regions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a known mitochondrial toxin that disturbs the mitochondrial electron transport chain (ETC) system and increases the rate of reactive oxygen species. Lf's high affinity for metals decreases the required iron for the Fenton reaction, reduces the oxidative damage to DA cells caused by MPTP, and increases their surveillance rate. Several studies also investigated Lf's effect on neurons that are treated with MPTP. The results pointed out that Lf's protective effect can also be observed without the presence of oxidative stress; thus, several potential mechanisms are currently being researched, starting with a potential HSPG-Lf interaction in the cellular membrane of DA cells. The presence of Lf activity in the brain region also showed that lactoferrin initiates receptor-mediated transcytosis in the blood-brain barrier (BBB) with the existence of lactoferrin receptors in the endothelial cells. The existence of Lf receptors both in endothelial cells and DA cells created the idea of using Lf as a secondary molecule in the transport of therapeutic agents across the BBB, especially in nanoparticle development.
Collapse
Affiliation(s)
| | | | | | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
5
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
6
|
Parrales-Macias V, Michel PP, Tourville A, Raisman-Vozari R, Haïk S, Hunot S, Bizat N, Lannuzel A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023; 12:cells12091336. [PMID: 37174736 PMCID: PMC10177284 DOI: 10.3390/cells12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Haïk
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006 Paris, France
| | - Annie Lannuzel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Centre Hospitalier Universitaire de la Guadeloupe, Service de Neurologie, Faculté de Médecine de l'Université des Antilles, Centre d'Investigation Clinique (CIC) 1424, 97159 Pointe-à-Pitre, France
| |
Collapse
|
7
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
8
|
Tourville A, Akbar D, Corti O, Prehn JHM, Melki R, Hunot S, Michel PP. Modelling α-Synuclein Aggregation and Neurodegeneration with Fibril Seeds in Primary Cultures of Mouse Dopaminergic Neurons. Cells 2022; 11:cells11101640. [PMID: 35626675 PMCID: PMC9139621 DOI: 10.3390/cells11101640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
To model α-Synuclein (αS) aggregation and neurodegeneration in Parkinson’s disease (PD), we established cultures of mouse midbrain dopamine (DA) neurons and chronically exposed them to fibrils 91 (F91) generated from recombinant human αS. We found that F91 have an exquisite propensity to seed the aggregation of endogenous αS in DA neurons when compared to other neurons in midbrain cultures. Until two weeks post-exposure, somal aggregation in DA neurons increased with F91 concentrations (0.01–0.75 μM) and the time elapsed since the initiation of seeding, with, however, no evidence of DA cell loss within this time interval. Neither toxin-induced mitochondrial deficits nor genetically induced loss of mitochondrial quality control mechanisms promoted F91-mediated αS aggregation or neurodegeneration under these conditions. Yet, a significant loss of DA neurons (~30%) was detectable three weeks after exposure to F91 (0.5 μM), i.e., at a time point where somal aggregation reached a plateau. This loss was preceded by early deficits in DA uptake. Unlike αS aggregation, the loss of DA neurons was prevented by treatment with GDNF, suggesting that αS aggregation in DA neurons may induce a form of cell death mimicking a state of trophic factor deprivation. Overall, our model system may be useful for exploring PD-related pathomechanisms and for testing molecules of therapeutic interest for this disorder.
Collapse
Affiliation(s)
- Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - David Akbar
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Olga Corti
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Jochen H. M. Prehn
- Department of Physiology & Medical Physics and FutureNeuro Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
| | - Ronald Melki
- MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, 92265 Fontenay-aux-Roses, France;
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
| | - Patrick P. Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France; (A.T.); (D.A.); (O.C.); (S.H.)
- Correspondence:
| |
Collapse
|
9
|
Loh SP, Cheng SH, Mohamed W. Edible Bird's Nest as a Potential Cognitive Enhancer. Front Neurol 2022; 13:865671. [PMID: 35599726 PMCID: PMC9120600 DOI: 10.3389/fneur.2022.865671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Cognitive enhancement is defined as the augmentation of the mind's core capabilities through the improvement of internal or external information processing systems. Recently, the focus has shifted to the potential therapeutic effects of natural products in improving cognitive function. Edible bird's nest (EBN) is a natural food substance derived from the saliva of swiftlets. Until today, EBN is regarded as a high-priced nutritious food with therapeutic effects. The effectiveness of dietary EBN supplementation to enhance brain development in mammals has been documented. Although the neuroprotection of EBN has been previously reported, however, the impact of EBN on learning and memory control and its potential as a cognitive enhancer drug remains unknown. Thus, this article aims to address the neuroprotective benefits of EBN and its potential effect as a cognitive enhancer. Notably, the current challenges and the future study direction in EBN have been demonstrated.
Collapse
Affiliation(s)
- Su-Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Su-Peng Loh
| | - Shi-Hui Cheng
- Faculty of Science and Engineering, School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El Kom, Egypt
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Selayang, Malaysia
- Wael Mohamed
| |
Collapse
|
10
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Nakamura M, Sato A. Glycan-binding Properties of Basic Whey Protein Lactoferrin and Its Application in Nerve Regenerative Medicine. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.1957.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masao Nakamura
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
12
|
Nakamura M, Sato A. Glycan-binding Properties of Basic Whey Protein Lactoferrin and Its Application in Nerve Regenerative Medicine. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.1957.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Masao Nakamura
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
13
|
Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease. J Neural Transm (Vienna) 2022; 129:445-461. [DOI: 10.1007/s00702-022-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 10/18/2022]
|
14
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
15
|
Discovery of Lactoferrin as a Stimulant for hADSC-Derived EV Secretion and Proof of Enhancement of Resulting EVs through Skin Model. Int J Mol Sci 2021; 22:ijms222010993. [PMID: 34681650 PMCID: PMC8541114 DOI: 10.3390/ijms222010993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted from hADSCs in low concentrations, which makes it difficult to utilize them for the development of therapeutic products. To overcome the problem associated with low concentration, we proposed human lactoferrin (hLF) as a stimulant for the secretion of hADSC-derived EVs. hLF has been reported to upregulate intracellular Ca2+, which is known to be capable of increasing EV secretion. We cultured hADSCs in hLF-supplemented media and analyzed the changes in intracellular Ca2+ concentration. The characteristics of hADSC-derived EVs secreted by hLF stimulation were analyzed through their number, membrane protein markers, and the presence of hLFs to EVs. The function of hADSC-derived EVs was investigated through their effects on dermal fibroblasts. We found that hLF helped hADSCs effectively uptake Ca2+, resulting in an increase of EVs secretion by more than a factor of 4. The resulting EVs had enhanced proliferation and collagen synthesis effect on dermal fibroblasts when compared to the same number of hADSC-derived EVs secreted without hLF stimulation. The enhanced secretion of hADSC-derived EVs increased collagen synthesis through enhanced epidermal penetration, which resulted from increased EV numbers. In summary, we propose hLF to be a useful stimulant in increasing the secretion rate of hADSC-derived EVs.
Collapse
|
16
|
Antequera D, Moneo D, Carrero L, Bartolome F, Ferrer I, Proctor G, Carro E. Salivary Lactoferrin Expression in a Mouse Model of Alzheimer's Disease. Front Immunol 2021; 12:749468. [PMID: 34659251 PMCID: PMC8514982 DOI: 10.3389/fimmu.2021.749468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
In the last few years, microbial infection and innate immune theories have been proposed as an alternative approach explaining the etiopathogenesis and origin of Alzheimer's disease (AD). Lactoferrin, one of the main antimicrobial proteins in saliva, is an important modulator of immune response and inflammation, and represents an important defensive element by inducing a broad spectrum of antimicrobial effects against microbial infections. We demonstrated that lactoferrin levels in saliva are decreased in prodromal and dementia stages of AD compared with healthy subjects. That finding seems to be specific to cerebral amyloid-β (Aβ) load as such observation was not observed in healthy elderly controls or those subjects with frontotemporal dementia. In the present study, we analysed salivary lactoferrin levels in a mouse model of AD. We observed robust and early reduction of lactoferrin levels in saliva from 6- and 12-month-old APP/PS1 mice. Because saliva is secreted by salivary glands, we presume that deregulation in salivary glands resulting in reduced salivary lactoferrin levels may occur in AD. To test this hypothesis, we collected submandibular glands from APP/PS1 mice, as well as submandibular gland tissue from AD patients and we analysed the expression levels of key components of the salivary protein signalling pathway. A significant reduction in M3 receptor levels was found along with decreased acetylcholine (Ach) levels in submandibular glands from APP/PS1 mice. Similarly, a reduction in M3 receptor levels was observed in human submandibular glands from AD patients but in that case, the Ach levels were found increased. Our data suggest that the ACh-mediated M3 signalling pathway is impaired in salivary glands in AD, resulting in salivary gland dysfunction and reduced salivary lactoferrin secretion.
Collapse
Affiliation(s)
- Desiree Antequera
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Alzheimer’s Disease and Other Degenerative Dementias, Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Diego Moneo
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Laura Carrero
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Alzheimer’s Disease and Other Degenerative Dementias, Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Fernando Bartolome
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Alzheimer’s Disease and Other Degenerative Dementias, Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Isidro Ferrer
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Alzheimer’s Disease and Other Degenerative Dementias, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Gordon Proctor
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Eva Carro
- Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Alzheimer’s Disease and Other Degenerative Dementias, Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| |
Collapse
|
17
|
Ryskalin L, Biagioni F, Busceti CL, Polzella M, Lenzi P, Frati A, Ferrucci M, Fornai F. Lactoferrin Protects against Methamphetamine Toxicity by Modulating Autophagy and Mitochondrial Status. Nutrients 2021; 13:nu13103356. [PMID: 34684361 PMCID: PMC8537867 DOI: 10.3390/nu13103356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker βIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla, 19, 56042 Crespina Lorenzana, Italy;
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Rome, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (P.L.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.)
- Correspondence:
| |
Collapse
|
18
|
Reseco L, Atienza M, Fernandez-Alvarez M, Carro E, Cantero JL. Salivary lactoferrin is associated with cortical amyloid-beta load, cortical integrity, and memory in aging. ALZHEIMERS RESEARCH & THERAPY 2021; 13:150. [PMID: 34488875 PMCID: PMC8422723 DOI: 10.1186/s13195-021-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aging is associated with declining protective immunity and persistent low-grade inflammatory responses, which significantly contribute to Alzheimer's disease (AD) pathogenesis. Detecting aging-related cerebral vulnerability associated with deterioration of the immune system requires from non-invasive biomarkers able to detect failures in the brain-immunity connection. Reduced levels of salivary lactoferrin (sLF), an iron-binding protein with immunomodulatory activity, have been related to AD diagnosis. However, it remains unknown whether decreased sLF is associated with increased cortical amyloid-beta (Aβ) load and/or with loss of cortical integrity in normal aging. METHODS Seventy-four cognitively normal older adults (51 females) participated in the study. We applied multiple linear regression analyses to assess (i) whether sLF is associated with cortical Aβ load measured by 18F-Florbetaben (FBB)-positron emission tomography (PET), (ii) whether sLF-related variations in cortical thickness and cortical glucose metabolism depend on global Aβ burden, and (iii) whether such sLF-related cortical abnormalities moderate the relationship between sLF and cognition. RESULTS sLF was negatively associated with Aβ load in parieto-temporal regions. Moreover, sLF was related to thickening of the middle temporal cortex, increased FDG uptake in the posterior cingulate cortex, and poorer memory. These associations were stronger in individuals showing the highest Aβ burden. CONCLUSIONS sLF levels are sensitive to variations in cortical Aβ load, structural and metabolic cortical abnormalities, and subclinical memory impairment in asymptomatic older adults. These findings provide support for the use of sLF as a non-invasive biomarker of cerebral vulnerability in the general aging population.
Collapse
Affiliation(s)
- Lucia Reseco
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Marina Fernandez-Alvarez
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Eva Carro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013, Seville, Spain. .,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
| |
Collapse
|
19
|
Ferreira Junior NC, dos Santos Pereira M, Francis N, Ramirez P, Martorell P, González-Lizarraga F, Figadère B, Chehin R, Del Bel E, Raisman-Vozari R, Michel PP. The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Cells 2021; 10:cells10082163. [PMID: 34440932 PMCID: PMC8392055 DOI: 10.3390/cells10082163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
We used mouse microglial cells in culture activated by lipopolysaccharide (LPS) or α-synuclein amyloid aggregates (αSa) to study the anti-inflammatory effects of COL-3, a tetracycline derivative without antimicrobial activity. Under LPS or αSa stimulation, COL-3 (10, 20 µM) efficiently repressed the induction of the microglial activation marker protein Iba-1 and the stimulated-release of the pro-inflammatory cytokine TNF-α. COL-3′s inhibitory effects on TNF-α were reproduced by the tetracycline antibiotic doxycycline (DOX; 50 µM), the glucocorticoid dexamethasone, and apocynin (APO), an inhibitor of the superoxide-producing enzyme NADPH oxidase. This last observation suggested that COL-3 and DOX might also operate themselves by restraining oxidative stress-mediated signaling events. Quantitative measurement of intracellular reactive oxygen species (ROS) levels revealed that COL-3 and DOX were indeed as effective as APO in reducing oxidative stress and TNF-α release in activated microglia. ROS inhibition with COL-3 or DOX occurred together with a reduction of microglial glucose accumulation and NADPH synthesis. This suggested that COL-3 and DOX might reduce microglial oxidative burst activity by limiting the glucose-dependent synthesis of NADPH, the requisite substrate for NADPH oxidase. Coherent with this possibility, the glycolysis inhibitor 2-deoxy-D-glucose reproduced the immunosuppressive action of COL-3 and DOX in activated microglia. Overall, we propose that COL-3 and its parent compound DOX exert anti-inflammatory effects in microglial cells by inhibiting glucose-dependent ROS production. These effects might be strengthened by the intrinsic antioxidant properties of DOX and COL-3 in a self-reinforcing manner.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Maurício dos Santos Pereira
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Nour Francis
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paola Ramirez
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Paula Martorell
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
| | - Florencia González-Lizarraga
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France;
| | - Rosana Chehin
- Instituto de Investigación en Medicina Molecular y Celular Aplicada (IMMCA) (CONICET-UNT-SIPROSA), CP 4000 Tucumán, Argentina; (F.G.-L.); (R.C.)
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/no, Ribeirão Preto 14040-904, Brazil;
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo 05508-220, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France; (N.C.F.J.); (M.d.S.P.); (N.F.); (P.R.); (P.M.)
- Correspondence: (R.R.-V.); (P.P.M.); Tel.: +33-(0)157274550 (R.R.-V.); +33-(0)157274534 (P.P.M.)
| |
Collapse
|
20
|
Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021; 10:cells10071810. [PMID: 34359979 PMCID: PMC8307123 DOI: 10.3390/cells10071810] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
Collapse
Affiliation(s)
| | - Chuang Guo
- Correspondence: ; Tel.: +86-24-8365-6109
| |
Collapse
|
21
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
22
|
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. BIOLOGY 2021; 10:24. [PMID: 33401480 PMCID: PMC7823682 DOI: 10.3390/biology10010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/26/2023]
Abstract
We studied the effect of human lactoferrin (hLf) on degenerative changes in the nigrostriatal system and associated behavioral deficits in the animal model of Parkinson disease. Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral disturbances were assessed in the open field and rotarod tests and by the stride length analysis. Structural deficits were assessed by the counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and optical density (OD) of TH-immunolabeled fibers in the striatum. Acute MPTP treatment induced long-term behavioral deficit and degenerative changes in the nigrostriatal system. Pretreatment with hLf prevented body weight loss and promoted recovery of motor functions and exploratory behavior. Importantly, OD of TH-positive fibers in the striatum of mice treated with hLf almost returned to normal, and the number of TH-positive cells in the substantia nigra significantly increased on day 28. These results indicate that hLf produces a neuroprotective effect and probably stimulates neuroregeneration under conditions of MPTP toxicity in our model. A relationship between behavioral deficits and nigrostriatal system disturbances at delayed terms after MPTP administration was found.
Collapse
Affiliation(s)
- Marina Yu. Kopaeva
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | - Anton B. Cherepov
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| | | | - Irina Yu. Zarayskaya
- National Research Center «Kurchatov Institute», 1 Akademika Kurchatova sq., 123182 Moscow, Russia; (A.B.C.); (I.Y.Z.)
| |
Collapse
|
23
|
Nakamura M, Matsuzaki T, Iimori A, Sato A. Harnessing the chondroitin sulfate-binding characteristics of human lactoferrin to neutralize neurite outgrowth inhibition. Biochem Biophys Res Commun 2020; 534:1076-1082. [PMID: 33129446 DOI: 10.1016/j.bbrc.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Human lactoferrin (hLF) is a glycosaminoglycan (GAG)-binding protein involved in various biological functions. It consists of two globular functional domains, referred to as the N- and C-lobes. Both heparin (HP) and heparan sulfate (HS) bind to the N-lobe domain of hLF. Although some biological functions of hLF such as neuroprotective effects and cancer growth inhibition are regulated by its binding to HS, the binding characteristics of hLF with other GAG subtypes, and their effects on biological activities are still poorly understood. Here, we report that hLF binds to chondroitin sulfate (CS)-E, a GAG subtype involved in various neurodegenerative diseases. The α-helical content of hLF, which is an indicator of changes in the secondary structure of hLF, increased in the presence of CS-C, CS-D, or CS-E, but not in the presence of HP, HS, CS-A, or CS-B. This structural change was also observed in the N-lobe, the N-terminal half region of the hLF. Additionally, the thermal stability of the N-lobe showed a dose-dependent improvement in the presence of CS-E, but not in the presence of HP. This indicates that the binding mode of hLF/N-lobe to CS-E may differ from that of HP. hLF was also found to neutralize CS-E-induced inhibition of neurite outgrowth and neuronal growth cone collapse, which are neurodegenerative responses to spinal cord injury, in cultured dorsal root ganglion neurons. Thus, hLF is a promising drug candidate for the treatment of CS-E-induced neurodegenerative diseases such as spinal cord injury.
Collapse
Affiliation(s)
- Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan; Department of Peptidomics, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Takumi Matsuzaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Ami Iimori
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
24
|
Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals (Basel) 2020; 13:ph13100314. [PMID: 33076502 PMCID: PMC7602608 DOI: 10.3390/ph13100314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of brain therapeutics is largely hampered by the presence of the blood–brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer’s disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.
Collapse
|
25
|
Belrose JL, Prasad A, Sammons MA, Gibbs KM, Szaro BG. Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons. BMC Genomics 2020; 21:540. [PMID: 32758133 PMCID: PMC7430912 DOI: 10.1186/s12864-020-06954-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The South African claw-toed frog, Xenopus laevis, is uniquely suited for studying differences between regenerative and non-regenerative responses to CNS injury within the same organism, because some CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs. Tissues from these CNS regions (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) were used in a three-way RNA-seq study of axotomized CNS axons to identify potential core gene expression programs for successful CNS axon regeneration. RESULTS Despite tissue-specific changes in expression dominating the injury responses of each tissue, injury-induced changes in gene expression were nonetheless shared between the two axon-regenerative CNS regions that were not shared with the non-regenerative region. These included similar temporal patterns of gene expression and over 300 injury-responsive genes. Many of these genes and their associated cellular functions had previously been associated with injury responses of multiple tissues, both neural and non-neural, from different species, thereby demonstrating deep phylogenetically conserved commonalities between successful CNS axon regeneration and tissue regeneration in general. Further analyses implicated the KEGG adipocytokine signaling pathway, which links leptin with metabolic and gene regulatory pathways, and a novel gene regulatory network with genes regulating chromatin accessibility at its core, as important hubs in the larger network of injury response genes involved in successful CNS axon regeneration. CONCLUSIONS This study identifies deep, phylogenetically conserved commonalities between CNS axon regeneration and other examples of successful tissue regeneration and provides new targets for studying the molecular underpinnings of successful CNS axon regeneration, as well as a guide for distinguishing pro-regenerative injury-induced changes in gene expression from detrimental ones in mammals.
Collapse
Affiliation(s)
- Jamie L Belrose
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
- Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Kurt M Gibbs
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, 40351, USA
| | - Ben G Szaro
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
- Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
26
|
González-Sánchez M, Bartolome F, Antequera D, Puertas-Martín V, González P, Gómez-Grande A, Llamas-Velasco S, Herrero-San Martín A, Pérez-Martínez D, Villarejo-Galende A, Atienza M, Palomar-Bonet M, Cantero JL, Perry G, Orive G, Ibañez B, Bueno H, Fuster V, Carro E. Decreased salivary lactoferrin levels are specific to Alzheimer's disease. EBioMedicine 2020; 57:102834. [PMID: 32586758 PMCID: PMC7378957 DOI: 10.1016/j.ebiom.2020.102834] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Evidences of infectious pathogens in Alzheimer's disease (AD) brains may suggest a deteriorated innate immune system in AD pathophysiology. We previously demonstrated reduced salivary lactoferrin (Lf) levels, one of the major antimicrobial proteins, in AD patients. METHODS To assess the clinical utility of salivary Lf for AD diagnosis, we examine the relationship between salivary Lf and cerebral amyloid-β (Aβ) load using amyloid-Positron-Emission Tomography (PET) neuroimaging, in two different cross-sectional cohorts including patients with different neurodegenerative disorders. FINDINGS The diagnostic performance of salivary Lf in the cohort 1 had an area under the curve [AUC] of 0•95 (0•911-0•992) for the differentiation of the prodromal AD/AD group positive for amyloid-PET (PET+) versus healthy group, and 0•97 (0•924-1) versus the frontotemporal dementia (FTD) group. In the cohort 2, salivary Lf had also an excellent diagnostic performance in the health control group versus prodromal AD comparison: AUC 0•93 (0•876-0•989). Salivary Lf detected prodromal AD and AD dementia distinguishing them from FTD with over 87% sensitivity and 91% specificity. INTERPRETATION Salivary Lf seems to have a very good diagnostic performance to detect AD. Our findings support the possible utility of salivary Lf as a new non-invasive and cost-effective AD biomarker. FUNDING Instituto de Salud Carlos III (FIS15/00780, FIS18/00118), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM), and CIBERNED (PI2016/01) to E.C.; Spanish Ministry of Economy and Competitiveness (SAF2017-85310-R) to J.L.C., and (PSI2017-85311-P) to M.A.; International Centre on ageing CENIE-POCTEP (0348_CIE_6_E) to M.A.; Instituto de Salud Carlos III (PIE16/00021, PI17/01799), to H.B.
Collapse
Affiliation(s)
- Marta González-Sánchez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Neurology Service Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Bartolome
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain.
| | - Desiree Antequera
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
| | - Veronica Puertas-Martín
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Pilar González
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Adolfo Gómez-Grande
- Nuclear Medicine Service, Hospital Universitario 12 de Octubre, Madrid, Spain; Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
| | - Sara Llamas-Velasco
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Neurology Service Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Herrero-San Martín
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Neurology Service Hospital Universitario 12 de Octubre, Madrid, Spain
| | - David Pérez-Martínez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Neurology Service Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alberto Villarejo-Galende
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; Neurology Service Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain, CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Miriam Palomar-Bonet
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain, CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Jose Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain, CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain; Networked Center for Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Borja Ibañez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, CIBER de Enfermedades Cardiovasculares, Madrid, Spain; IIS-Fundacion Jiménez Díaz Hospital, Madrid, Spain
| | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, CIBER de Enfermedades Cardiovasculares, Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Hospital Universitario 12 de Octubre Research Institute (imas12), Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain.
| |
Collapse
|
27
|
Picard E, Daruich A, Youale J, Courtois Y, Behar-Cohen F. From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells 2020; 9:cells9030705. [PMID: 32183063 PMCID: PMC7140613 DOI: 10.3390/cells9030705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is essential for cell survival and function. It is a transition metal, that could change its oxidation state from Fe2+ to Fe3+ involving an electron transfer, the key of vital functions but also organ dysfunctions. The goal of this review is to illustrate the primordial role of iron and local iron homeostasis in retinal physiology and vision, as well as the pathological consequences of iron excess in animal models of retinal degeneration and in human retinal diseases. We summarize evidence of the potential therapeutic effect of iron chelation in retinal diseases and especially the interest of transferrin, a ubiquitous endogenous iron-binding protein, having the ability to treat or delay degenerative retinal diseases.
Collapse
Affiliation(s)
- Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Correspondence: ; Tel.: +331-44-27-81-82
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophthalmology Department, Necker-Enfants Malades University Hospital, APHP, 75015 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Yves Courtois
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
28
|
dos‐Santos‐Pereira M, Guimarães FS, Del‐Bel E, Raisman‐Vozari R, Michel PP. Cannabidiol prevents LPS‐induced microglial inflammation by inhibiting ROS/NF‐κB‐dependent signaling and glucose consumption. Glia 2019; 68:561-573. [DOI: 10.1002/glia.23738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mauricio dos‐Santos‐Pereira
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Franscisco S. Guimarães
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
- Faculdade de Medicina, Departamento de FarmacologiaUniversidade de São Paulo Ribeirão Preto Brazil
| | - Elaine Del‐Bel
- Faculdade de Odontologia, Departamento de Morfologia, Fisiologia e Patologia BásicaUniversidade de São Paulo Ribeirão Preto Brazil
- Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA)Universidade de São Paulo Sao Paulo Brazil
| | - Rita Raisman‐Vozari
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| | - Patrick P. Michel
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière (ICM)Inserm U 1127, CNRS UMR 7225 Paris France
| |
Collapse
|
29
|
Neuregulin-1 Fosters Supportive Interactions between Microglia and Neural Stem/Progenitor Cells. Stem Cells Int 2019; 2019:8397158. [PMID: 31089334 PMCID: PMC6476022 DOI: 10.1155/2019/8397158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Microglia play diverse roles in homeostasis and pathology of the central nervous system (CNS). Their response to injury or insult is critical for initiating neuroinflammation and tissue damage as well as resolution of inflammation and wound healing. Changes to the microenvironment of microglia appear to be a key determinant of their phenotype and their role in the endogenous repair process in the injured or diseased CNS. Our recent findings have identified a positive role for neuregulin-1 (Nrg-1) in regulating immune response in spinal cord injury and focal demyelinating lesions. We show that increasing the tissue availability of Nrg-1 after injury can promote endogenous repair by modulating neuroinflammation. In the present study, we sought to elucidate the specific role of Nrg-1 in regulating microglial activity and more importantly their influence on the behavior of neural stem/progenitor cells (NPCs). Using injury-relevant in vitro systems, we demonstrate that Nrg-1 attenuates the expression of proinflammatory mediators in activated microglia. Moreover, we provide novel evidence that availability of Nrg-1 can restore the otherwise suppressed phagocytic ability of proinflammatory microglia. Interestingly, the presence of Nrg-1 in the microenvironment of proinflammatory microglia mitigates their inhibitory effects on NPC proliferation. Nrg-1 treated proinflammatory microglia also augment mobilization of NPCs, while they had no influence on their suppressive effects on NPC differentiation. Mechanistically, we show that Nrg-1 enhances the interactions of proinflammatory microglia and NPCs, at least in part, through reduction of TNF-α expression in microglia. These findings provide new insights into the endogenous regulation of microglia-NPC interactions and identify new potential targets for optimizing this important crosstalk during the regenerative process after CNS injury and neuroinflammatory conditions.
Collapse
|
30
|
Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration - Cause or Consequence? Front Neurosci 2019; 13:180. [PMID: 30881284 PMCID: PMC6405645 DOI: 10.3389/fnins.2019.00180] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Iron dyshomeostasis can cause neuronal damage to iron-sensitive brain regions. Neurodegeneration with brain iron accumulation reflects a group of disorders caused by iron overload in the basal ganglia. High iron levels and iron related pathogenic triggers have also been implicated in sporadic neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple system atrophy (MSA). Iron-induced dyshomeostasis within vulnerable brain regions is still insufficiently understood. Here, we summarize the modes of action by which iron might act as primary or secondary disease trigger in neurodegenerative disorders. In addition, available treatment options targeting brain iron dysregulation and the use of iron as biomarker in prodromal stages are critically discussed to address the question of cause or consequence.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Núñez MT, Hidalgo C. Noxious Iron-Calcium Connections in Neurodegeneration. Front Neurosci 2019; 13:48. [PMID: 30809110 PMCID: PMC6379295 DOI: 10.3389/fnins.2019.00048] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Iron and calcium share the common feature of being essential for normal neuronal function. Iron is required for mitochondrial function, synaptic plasticity, and the development of cognitive functions whereas cellular calcium signals mediate neurotransmitter exocytosis, axonal growth and synaptic plasticity, and control the expression of genes involved in learning and memory processes. Recent studies have revealed that cellular iron stimulates calcium signaling, leading to downstream activation of kinase cascades engaged in synaptic plasticity. The relationship between calcium and iron is Janus-faced, however. While under physiological conditions iron-mediated reactive oxygen species generation boosts normal calcium-dependent signaling pathways, excessive iron levels promote oxidative stress leading to the upsurge of unrestrained calcium signals that damage mitochondrial function, among other downstream targets. Similarly, increases in mitochondrial calcium to non-physiological levels result in mitochondrial dysfunction and a predicted loss of iron homeostasis. Hence, if uncontrolled, the iron/calcium self-feeding cycle becomes deleterious to neuronal function, leading eventually to neuronal death. Here, we review the multiple cell-damaging responses generated by the unregulated iron/calcium self-feeding cycle, such as excitotoxicity, free radical-mediated lipid peroxidation, and the oxidative modification of crucial components of iron and calcium homeostasis/signaling: the iron transporter DMT1, plasma membrane, and intracellular calcium channels and pumps. We discuss also how iron-induced dysregulation of mitochondrial calcium contributes to the generation of neurodegenerative conditions, including Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Marco Tulio Núñez
- Iron and Neuroregeneration Laboratory, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Calcium Signaling Laboratory, Biomedical Research Institute, CEMC, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Abstract
The key molecular events that provoke Parkinson's disease (PD) are not fully understood. Iron deposit was found in the substantia nigra pars compacta (SNpc) of PD patients and animal models, where dopaminergic neurons degeneration occurred selectively. The mechanisms involved in disturbed iron metabolism remain unknown, however, considerable evidence indicates that iron transporters dysregulation, activation of L-type voltage-gated calcium channel (LTCC) and ATP-sensitive potassium (KATP) channels, as well as N-methyl-D-aspartate (NMDA) receptors (NMDARs) contribute to this process. There is emerging evidence on the structural links and functional modulations between iron and α-synuclein, and the key player in PD which aggregates in Lewy bodies. Iron is believed to modulate α-synuclein synthesis, post-translational modification, and aggregation. Furthermore, glia, especially activated astroglia and microglia, are involved in iron deposit in PD. Glial contributions were largely dependent on the factors they released, e.g., neurotrophic factors, pro-inflammatory factors, lactoferrin, and those undetermined. Therefore, iron chelation using iron chelators, the extracts from many natural foods with iron chelating properties, may be an effective therapy for prevention and treatment of the disease.
Collapse
|
33
|
Xu SF, Zhang YH, Wang S, Pang ZQ, Fan YG, Li JY, Wang ZY, Guo C. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol 2018; 21:101090. [PMID: 30593976 PMCID: PMC6307097 DOI: 10.1016/j.redox.2018.101090] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Brain iron accumulation is common in patients with Parkinson's disease (PD). Iron chelators have been investigated for their ability to prevent neurodegenerative diseases with features of iron overload. Given the non-trivial side effects of classical iron chelators, lactoferrin (Lf), a multifunctional iron-binding globular glycoprotein, was screened to identify novel neuroprotective pathways against dopaminergic neuronal impairment. We found that Lf substantially ameliorated PD-like motor dysfunction in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We further showed that Lf could alleviate MPTP-triggered apoptosis of DA neurons, neuroinflammation, and histological alterations. As expected, we also found that Lf suppressed MPTP-induced excessive iron accumulation and the upregulation of divalent metal transporter (DMT1) and transferrin receptor (TFR), which is the main intracellular iron regulation protein, and subsequently improved the activity of several antioxidant enzymes. We probed further and determined that the neuroprotection provided by Lf was involved in the upregulated levels of brain-derived neurotrophic factor (BDNF), hypoxia-inducible factor 1α (HIF-1α) and its downstream protein, accompanied by the activation of extracellular regulated protein kinases (ERK) and cAMP response element binding protein (CREB), as well as decreased phosphorylation of c-Jun N-terminal kinase (JNK) and mitogen activated protein kinase (MAPK)/P38 kinase in vitro and in vivo. Our findings suggest that Lf may be an alternative safe drug in ameliorating MPTP-induced brain abnormalities and movement disorder.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yan-Hui Zhang
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Shan Wang
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
| | - Jia-Yi Li
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China.
| |
Collapse
|
34
|
Dos-Santos-Pereira M, Acuña L, Hamadat S, Rocca J, González-Lizárraga F, Chehín R, Sepulveda-Diaz J, Del-Bel E, Raisman-Vozari R, Michel PP. Microglial glutamate release evoked by α-synuclein aggregates is prevented by dopamine. Glia 2018; 66:2353-2365. [PMID: 30394585 DOI: 10.1002/glia.23472] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
When activated, microglial cells have the potential not only to secrete typical proinflammatory mediators but also to release the neurotransmitter glutamate in amounts that may promote excitotoxicity. Here, we wished to determine the potential of the Parkinson's disease (PD) protein α-Synuclein (αS) to stimulate glutamate release using cultures of purified microglial cells. We established that glutamate release was robustly increased when microglial cultures were treated with fibrillary aggregates of αS but not with the native monomeric protein. Promotion of microglial glutamate release by αS aggregates (αSa) required concomitant engagement of TLR2 and P2X7 receptors. Downstream to cell surface receptors, the release process was mediated by activation of a signaling cascade sequentially involving phosphoinositide 3-kinase (PI3K) and NADPH oxidase, a superoxide-producing enzyme. Inhibition of the Xc- antiporter, a plasma membrane exchange system that imports extracellular l-cystine and exports intracellular glutamate, prevented the release of glutamate induced by αSa, indicating that system Xc- was the final effector element in the release process downstream to NADPH oxidase activation. Of interest, the stimulation of glutamate release by αSa was abrogated by dopamine through an antioxidant effect requiring D1 dopamine receptor activation and PI3K inhibition. Altogether, present data suggest that the activation of microglial cells by αSa may possibly result in a toxic build-up of extracellular glutamate contributing to excitotoxic stress in PD. The deficit in dopamine that characterizes this disorder may further aggravate this process in a vicious circle mechanism.
Collapse
Affiliation(s)
- Mauricio Dos-Santos-Pereira
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Leonardo Acuña
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Patología Experimental (CONICET-UNSa), Salta, Argentina
| | - Sabah Hamadat
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Jeremy Rocca
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Florencia González-Lizárraga
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France.,Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Rosana Chehín
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA) CONICET/UNT and SIPROSA, Tucumán, Argentina
| | - Julia Sepulveda-Diaz
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Elaine Del-Bel
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F-75013, France
| |
Collapse
|
35
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
36
|
Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin. Biometals 2018; 31:425-443. [PMID: 29748743 DOI: 10.1007/s10534-018-0111-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Among the properties of lactoferrin (LF) are bactericidal, antianemic, immunomodulatory, antitumour, antiphlogistic effects. Previously we demonstrated its capacity to stabilize in vivo HIF-1-alpha and HIF-2-alpha, which are redox-sensitive multiaimed transcription factors. Various tissues of animals receiving recombinant human LF (rhLF) responded by expressing the HIF-1-alpha target genes, hence such proteins as erythropoietin (EPO), ceruloplasmin, etc. were synthesized in noticeable amounts. Among organs in which EPO synthesis occurred were brain, heart, spleen, liver, kidneys and lungs. Other researchers showed that EPO can act as a protectant against severe brain injury and status epilepticus in rats. Therefore, we tried rhLF as a protector against the severe neurologic disorders developed in rats, such as the rotenone-induced model of Parkinson's disease and experimental autoimmune encephalomyelitis as a model of multiple sclerosis, and observed its capacity to mitigate the grave symptoms. Moreover, an intraperitoneal injection of rhLF into mice 1 h after occlusion of the medial cerebral artery significantly diminished the necrosis area measured on the third day in the ischaemic brain. During this period EPO was synthesized in various murine tissues. It was known that EPO induces nuclear translocation of Nrf2, which, like HIF-1-alpha, is a transcription factor. In view that under conditions of hypoxia both factors demonstrate a synergistic protective effect, we suggested that LF activates the Keap1/Nrf2 signaling pathway, an important link in proliferation and differentiation of normal and malignant cells. J774 macrophages were cultured for 3 days without or in the presence of ferric and ferrous ions (RPMI-1640 and DMEM/F12, respectively). Then cells were incubated with rhLF or Deferiprone. Confocal microscopy revealed nuclear translocation of Nrf2 (the key event in Keap1/Nrf2 signaling) induced by apo-rhLF (iron-free, RPMI-1640). The reference compound Deferiprone (iron chelator) had the similar effect. Upon iron binding (in DMEM/F12) rhLF did not activate the Keap1/Nrf2 pathway. Added to J774, apo-rhLF enhanced transcription of Nrf2-dependent genes coding for glutathione S-transferase P and heme oxygenase-1. Western blotting revealed presence of Nrf2 in mice brain after 6 days of oral administration of apo-rhLF, but not Fe-rhLF or equivalent amount of PBS. Hence, apo-LF, but not holo-LF, induces the translocation of Nrf2 from cytoplasm to the nucleus, probably due to its capacity to induce EPO synthesis.
Collapse
|
37
|
Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:967-973. [PMID: 29317336 DOI: 10.1016/j.bbadis.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD.
Collapse
Affiliation(s)
- Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
38
|
Guo C, Yang ZH, Zhang S, Chai R, Xue H, Zhang YH, Li JY, Wang ZY. Intranasal Lactoferrin Enhances α-Secretase-Dependent Amyloid Precursor Protein Processing via the ERK1/2-CREB and HIF-1α Pathways in an Alzheimer's Disease Mouse Model. Neuropsychopharmacology 2017; 42:2504-2515. [PMID: 28079060 PMCID: PMC5686501 DOI: 10.1038/npp.2017.8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 02/07/2023]
Abstract
Growing evidence suggests that lactoferrin (Lf), an iron-binding glycoprotein, is a pleiotropic functional nutrient. In addition, Lf was recently implicated as a neuroprotective agent. These properties make Lf a valuable therapeutic candidate for the treatment of Alzheimer's disease (AD). However, the mechanisms regulating the physiological roles of Lf in the pathologic condition of AD remain unknown. In the present study, an APPswe/PS1DE9 transgenic mouse model of AD was used. We explored whether intranasal human Lf (hLf) administration could reduce β-amyloid (Aβ) deposition and ameliorate cognitive decline in this AD model. We found that hLf promoted the non-amyloidogenic metabolism of amyloid precursor protein (APP) processing through activation of α-secretase a-disintegrin and metalloprotease10 (ADAM10), resulting in enhanced cleavage of the α-COOH-terminal fragment of APP and the corresponding elevation of the NH2-terminal APP product, soluble APP-α (sAPPα), which consequently reduced Aβ generation and improved spatial cognitive learning ability in AD mice. To gain insight into the molecular mechanism by which Lf modulates APP processing, we evaluated the involvement of the critical molecules for APP cleavage and the signaling pathways in N2a cells stably transfected with Swedish mutant human APP (APPsw N2a cells). The results show that the ERK1/2-CREB and HIF-1α signaling pathways were activated by hLf treatment, which is responsible for the expression of induced ADAM10. Additional tests were performed before suggesting the potential use of hLf as an antioxidant and anti-inflammatory. These findings provide new insights into the sources and mechanisms by which hLf inhibits the cognitive decline that occurs in AD via activation of ADAM10 expression in an ERK1/2-CREB and HIF-1α-dependent manner.
Collapse
Affiliation(s)
- Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China,College of Life and Health Sciences, Northeastern University, Shenyang 110819, China, Tel/Fax: +86 24 22529997, E-mail: or
| | - Zhao-Hui Yang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shuai Zhang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui Chai
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Han Xue
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yan-Hui Zhang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China,College of Life and Health Sciences, Northeastern University, Shenyang 110819, China, Tel/Fax: +86 24 22529997, E-mail: or
| |
Collapse
|
39
|
Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Séon-Méniel B, Raisman-Vozari R, Michel PP, Figadère B. Identification of a Novel 1,4,8-Triazaphenanthrene Derivative as a Neuroprotectant for Dopamine Neurons Vulnerable in Parkinson's Disease. ACS Chem Neurosci 2017; 8:1222-1231. [PMID: 28140556 DOI: 10.1021/acschemneuro.6b00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a chronic degenerative disorder characterized by typical motor symptoms caused by the death of dopamine (DA) neurons in the midbrain and ensuing shortage of DA in the striatum, at the level of nerve terminals. No curative treatment is presently available for PD in clinical practice. In our search for neuroprotectants in PD, we generated new 1,4,8-triazaphenanthrenes by combining 6-endo-dig-cycloisomerization of propargylquinoxalines and Suzuki or Sonogashira cross-coupling reactions. Neuroprotection assessment of newly synthesized 1,4,8-triazaphenanthrenes in a PD cellular model resulted in the discovery of a new hit compound PPQ (5m). Neuroprotection by 5m was concentration-dependent and the result of a combined effect on intracellular calcium release channels and astroglial cells. Of interest, 5m also counteracted DA cell loss in a mouse model of PD, making this molecule a promising candidate for PD treatment.
Collapse
Affiliation(s)
- Gael Le Douaron
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Laurent Ferrié
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julia E. Sepulveda-Diaz
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Blandine Séon-Méniel
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Rita Raisman-Vozari
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Patrick P. Michel
- Institut du Cerveau
et de la Moelle, Sorbonne Universités, Université Pierre
et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Bruno Figadère
- BioCIS, Université
Paris-Sud, CNRS, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
40
|
Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, Michel PP. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem 2017; 142:14-28. [PMID: 28398653 PMCID: PMC5518208 DOI: 10.1111/jnc.14041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/24/2023]
Abstract
Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic‐ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l‐trans‐pyrrolidine‐2,4‐dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N‐methyl‐d‐aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N‐methyl‐d‐aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. ![]()
Collapse
Affiliation(s)
- Jérémie Lavaur
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Déborah Le Nogue
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Marc Lemaire
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Jan Pype
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - Etienne C Hirsch
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrick P Michel
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
41
|
Hayashi T, To M, Saruta J, Sato C, Yamamoto Y, Kondo Y, Shimizu T, Kamata Y, Tsukinoki K. Salivary lactoferrin is transferred into the brain via the sublingual route. Biosci Biotechnol Biochem 2017; 81:1300-1304. [PMID: 28351211 DOI: 10.1080/09168451.2017.1308241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactoferrin (LF) is produced by exocrine glands including salivary gland, and has various functions including infection defense. However, the transfer of LF from peripheral organs into the brain remains unclear. To clarify the kinetics of salivary LF (sLF), we investigated the consequences of sialoadenectomy and bovine LF (bLF) sublingual administration in rats. The salivary glands were removed from male Wistar rats, and we measured rat LF levels in the blood and brain at 1 week post-surgery. We also examined the transfer of LF into the organs of the rats after sublingual administration of bLF. Rat LF levels in the blood and brain were significantly reduced by sialoadenectomy. Sublingual bLF administration significantly increased bLF levels in the brain, which then decreased over time. These results indicate that LF is transferred from the sublingual mucosa to the brain, in which favorable effects of sLF on brain will be expected via the sublingual mucosa.
Collapse
Affiliation(s)
- Takashi Hayashi
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Masahiro To
- b Division of Dental Anatomy, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Juri Saruta
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Chikatoshi Sato
- c Department of Highly Advanced Stomatology , Graduate School of Dentistry, Kanagawa Dental University , Yokohama , Japan
| | - Yuko Yamamoto
- d Department of Junior College , School of Dental Hygiene, Kanagawa Dental University , Yokosuka , Japan
| | - Yusuke Kondo
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan.,e Department of Pathology , Tokai University School of Medicine , Isehara , Japan
| | - Tomoko Shimizu
- c Department of Highly Advanced Stomatology , Graduate School of Dentistry, Kanagawa Dental University , Yokohama , Japan
| | - Yohei Kamata
- c Department of Highly Advanced Stomatology , Graduate School of Dentistry, Kanagawa Dental University , Yokohama , Japan
| | - Keiichi Tsukinoki
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| |
Collapse
|
42
|
Abstract
Lactoferrin (Lf) is the major whey protein in milk, with multiple beneficial health effects including direct antimicrobial activities, anti-inflammatory effects, and iron homeostasis. Oral Lf supplementation in human preterm infants has been shown to reduce the incidence of sepsis and necrotizing enterocolitis. In preclinical models of antenatal stress and perinatal brain injury, bovine Lf protected the developing brain from neuronal loss, improved connectivity, increased neurotrophic factors, and decreased inflammation. It also supported brain development and cognition. Further, Lf can prevent preterm delivery by reducing proinflammatory factors and inhibiting premature cervix maturation. We review here the latest research on Lf in the field of neonatology.
Collapse
Affiliation(s)
- Theresa J Ochoa
- a Department of Pediatrics, Universidad Peruana Cayetano Heredia, Lima, Peru.,b Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane V Sizonenko
- c Division of Child Development and Growth, Department of Child and Adolescent, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
43
|
Coherent and Contradictory Facts, Feats and Fictions Associated with Metal Accumulation in Parkinson's Disease: Epicenter or Outcome, Yet a Demigod Question. Mol Neurobiol 2016; 54:4738-4755. [PMID: 27480264 DOI: 10.1007/s12035-016-0016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
Unwarranted exposure due to liberal use of metals for maintaining the lavish life and to achieve the food demand for escalating population along with an incredible boost in the average human life span owing to orchestrated progress in rejuvenation therapy have gradually increased the occurrence of Parkinson's disease (PD). Etiology is albeit elusive; association of PD with metal accumulation has never been overlooked due to noteworthy similitude between metal-exposure symptoms and a few cardinal features of disease. Even though metals are entailed in the vital functions, a hysterical shift, primarily augmentation, escorts the stern nigrostriatal dopaminergic neurodegeneration. An increase in the passage of metals through the blood brain barrier and impaired metabolic activity and elimination system could lead to metal accumulation in the brain, which eventually makes dopaminergic neurons quite susceptible. In the present article, an update on implication of metal accumulation in PD/Parkinsonism has been provided. Moreover, encouraging and paradoxical facts and fictions associated with metal accumulation in PD/Parkinsonism have also been compiled. Systematic literature survey of PD is performed to describe updated information if metal accumulation is an epicenter or merely an outcome. Finally, a perspective on the association of metal accumulation with pesticide-induced Parkinsonism has been explained to unveil the likely impact of the former in the latter.
Collapse
|
44
|
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235:34-47. [DOI: 10.1016/j.jconrel.2016.05.044] [Citation(s) in RCA: 813] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
|
45
|
Martorell P, Llopis S, Gonzalez N, Ramón D, Serrano G, Torrens A, Serrano JM, Navarro M, Genovés S. A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans. Food Sci Nutr 2016; 5:255-265. [PMID: 28265360 PMCID: PMC5332254 DOI: 10.1002/fsn3.388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin is a highly multifunctional glycoprotein involved in many physiological functions, including regulation of iron absorption and immune responses. Moreover, there is increasing evidence for neuroprotective effects of lactoferrin. We used Caenorhabditis elegans as a model to test the protective effects, both on phenotype and transcriptome, of a nutraceutical product based on lactoferrin liposomes. In a dose‐dependent manner, the lactoferrin‐based product protected against acute oxidative stress and extended lifespan of C. elegans N2. Furthermore, Paralysis of the transgenic C. elegans strain CL4176, caused by Aβ1‐42 aggregates, was clearly ameliorated by treatment. Transcriptome analysis in treated nematodes indicated immune system stimulation, together with enhancement of processes involved in the oxidative stress response. The lactoferrin‐based product also improved the protein homeostasis processes, cellular adhesion processes, and neurogenesis in the nematode. In summary, the tested product exerts protection against aging and neurodegeneration, modulating processes involved in oxidative stress response, protein homeostasis, synaptic function, and xenobiotic metabolism. This lactoferrin‐based product is also able to stimulate the immune system, as well as improving reproductive status and energy metabolism. These findings suggest that oral supplementation with this lactoferrin‐based product could improve the immune system and antioxidant capacity. Further studies to understand the molecular mechanisms related with neuronal function would be of interest.
Collapse
Affiliation(s)
- Patricia Martorell
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Silvia Llopis
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Nuria Gonzalez
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Daniel Ramón
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| | - Gabriel Serrano
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Ana Torrens
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Juan M Serrano
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Maria Navarro
- Research and Development Department Sesderma Laboratories Rafelbuñol, Valencia 46138 Spain
| | - Salvador Genovés
- Cell Biology Laboratory Food Biotechnology Department Biópolis SL Paterna, Valencia 46980 Spain
| |
Collapse
|
46
|
Sepulveda-Diaz JE, Ouidja MO, Socias SB, Hamadat S, Guerreiro S, Raisman-Vozari R, Michel PP. A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responsesin vitro. Glia 2016; 64:1912-24. [DOI: 10.1002/glia.23032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Julia E. Sepulveda-Diaz
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Mohand O. Ouidja
- Laboratoire Croissance, Régénération, Réparation Et Régénération Tissulaires (CRRET)/EAC CNRS 7149, Université Paris Est Créteil, Université Paris Est; Créteil France
| | - Sergio B. Socias
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
- Facultad De Bioquímica, Química Y Farmacia (UNT), Instituto Superior De Investigaciones Biológicas, INSIBIO (CONICET-UNT) and Instituto De Química Biológica “Dr Bernabé Bloj,”; Tucumán Argentina
| | - Sabah Hamadat
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Serge Guerreiro
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Rita Raisman-Vozari
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Patrick P. Michel
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| |
Collapse
|
47
|
Toulorge D, Schapira AHV, Hajj R. Molecular changes in the postmortem parkinsonian brain. J Neurochem 2016; 139 Suppl 1:27-58. [PMID: 27381749 DOI: 10.1111/jnc.13696] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease after Alzheimer disease. Although PD has a relatively narrow clinical phenotype, it has become clear that its etiological basis is broad. Post-mortem brain analysis, despite its limitations, has provided invaluable insights into relevant pathogenic pathways including mitochondrial dysfunction, oxidative stress and protein homeostasis dysregulation. Identification of the genetic causes of PD followed the discovery of these abnormalities, and reinforced the importance of the biochemical defects identified post-mortem. Recent genetic studies have highlighted the mitochondrial and lysosomal areas of cell function as particularly significant in mediating the neurodegeneration of PD. Thus the careful analysis of post-mortem PD brain biochemistry remains a crucial component of research, and one that offers considerable opportunity to pursue etiological factors either by 'reverse biochemistry' i.e. from defective pathway to mutant gene, or by the complex interplay between pathways e.g. mitochondrial turnover by lysosomes. In this review we have documented the spectrum of biochemical defects identified in PD post-mortem brain and explored their relevance to metabolic pathways involved in neurodegeneration. We have highlighted the complex interactions between these pathways and the gene mutations causing or increasing risk for PD. These pathways are becoming a focus for the development of disease modifying therapies for PD. Parkinson's is accompanied by multiple changes in the brain that are responsible for the progression of the disease. We describe here the molecular alterations occurring in postmortem brains and classify them as: Neurotransmitters and neurotrophic factors; Lewy bodies and Parkinson's-linked genes; Transition metals, calcium and calcium-binding proteins; Inflammation; Mitochondrial abnormalities and oxidative stress; Abnormal protein removal and degradation; Apoptosis and transduction pathways. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
| | | | - Rodolphe Hajj
- Department of Discovery, Pharnext, Issy-Les-Moulineaux, France.
| |
Collapse
|
48
|
Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Amar M, Harfouche A, Séon-Méniel B, Raisman-Vozari R, Michel PP, Figadère B. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models. J Med Chem 2016; 59:6169-86. [PMID: 27341519 DOI: 10.1021/acs.jmedchem.6b00297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of aging characterized by motor symptoms that result from the loss of midbrain dopamine neurons and the disruption of dopamine-mediated neurotransmission. There is currently no curative treatment for this disorder. To discover druggable neuroprotective compounds for dopamine neurons, we have designed and synthesized a second-generation of quinoxaline-derived molecules based on structure-activity relationship studies, which led previously to the discovery of our first neuroprotective brain penetrant hit compound MPAQ (5c). Neuroprotection assessment in PD cellular models of our newly synthesized quinoxaline-derived compounds has led to the selection of a better hit compound, PAQ (4c). Extensive in vitro characterization of 4c showed that its neuroprotective action is partially attributable to the activation of reticulum endoplasmic ryanodine receptor channels. Most interestingly, 4c was able to attenuate neurodegeneration in a mouse model of PD, making this compound an interesting drug candidate for the treatment of this disorder.
Collapse
Affiliation(s)
- Gael Le Douaron
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Laurent Ferrié
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Julia E Sepulveda-Diaz
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Majid Amar
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Abha Harfouche
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Blandine Séon-Méniel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Bruno Figadère
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| |
Collapse
|
49
|
Wang B. Molecular Determinants of Milk Lactoferrin as a Bioactive Compound in Early Neurodevelopment and Cognition. J Pediatr 2016; 173 Suppl:S29-36. [PMID: 27234408 DOI: 10.1016/j.jpeds.2016.02.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin is a sialic acid-rich, iron-binding milk glycoprotein, known to have multifunctional health benefits, including its ability to modulate immune function and facilitate iron absorption, as well as its antibacterial and antiinflammatory actions. Human milk contains significantly higher lactoferrin levels than bovine milk at the same stages of lactation. The purpose of this review is to discuss the current state of knowledge of lactoferrin as a conditional nutrient for neurodevelopment, neuroprotection, and cognitive function during the period of rapid brain growth.
Collapse
Affiliation(s)
- Bing Wang
- Discipline of Physiology, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia; School of Medicine, Xiamen University, Xiamen City, P.R. China.
| |
Collapse
|
50
|
Mayeur S, Spahis S, Pouliot Y, Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid Redox Signal 2016; 24:813-36. [PMID: 26981846 DOI: 10.1089/ars.2015.6458] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Lactoferrin (Lf) is a nonheme iron-binding glycoprotein strongly expressed in human and bovine milk and it plays many functions during infancy such as iron homeostasis and defense against microorganisms. In humans, Lf is mainly expressed in mucosal epithelial and immune cells. Growing evidence suggests multiple physiological roles for Lf after weaning. RECENT ADVANCES The aim of this review is to highlight the recent advances concerning multifunctional Lf activities. CRITICAL ISSUES First, we will provide an overview of the mechanisms related to Lf intrinsic synthesis or intestinal absorption as well as its interaction with a wide spectrum of mammalian receptors and distribution in organs and cell types. Second, we will discuss the large variety of its physiological functions such as iron homeostasis, transportation, immune regulation, oxidative stress, inflammation, and apoptosis while specifying the mechanisms of action. Third, we will focus on its recent physiopathology implication in metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. Additional efforts are necessary before suggesting the potential use of Lf as a diagnostic marker or as a therapeutic tool. FUTURE DIRECTIONS The main sources of Lf in human cardiometabolic disorders should be clarified to identify new perspectives for future research and develop new strategies using Lf in therapeutics. Antioxid. Redox Signal. 24, 813-836.
Collapse
Affiliation(s)
- Sylvain Mayeur
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada
| | - Schohraya Spahis
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Yves Pouliot
- 3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Emile Levy
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| |
Collapse
|