1
|
Machado TMMM, Aquino IG, Franchin M, Zarraga MO, Bustos D, Spada FP, Napimoga MH, Clemente-Napimoga JT, Alencar SM, Benso B, Abdalla HB. Novel apocynin regulates TRPV1 activity in the trigeminal system and controls pain in a temporomandibular joint neurogenic model. Eur J Pharmacol 2024; 985:177093. [PMID: 39489280 DOI: 10.1016/j.ejphar.2024.177093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Herein, we investigate the potential analgesic effect of a newly synthesized chalcone-derived apocynin in a neurogenic pain model. METHODS Molecular docking was used to foretell the apocynin binding features and dynamics with the TRPV1 channel, and the activity was tested in vitro, using transfected HEK 293T cells with the rat TRPV1 receptor. The analgesic effect of apocynin was investigated using a capsaicin-induced pain model. The expression of TRPV1, TRPA1, TRPM8, and MAPKs was assessed by electrophoresis, and immunosorbent assays were performed to quantify the neurotransmitters Substance P, Glutamate, and CGRP. A survival assay using Galleria mellonella was carried out to determine the toxicity. RESULTS We observed that apocynin exhibits greater thermodynamic stability. Upon apocynin ligand binding, it changes the electrostatic potential for a predominantly electronegative state in the interior and neutral in its external vanilloid pocket. Treatment of apocynin induces antinociceptive effects against the noxious challenge of capsaicin. Histologically, apocynin decreased the number of TRPV1+ immunopositive cells. Electrophoresis showed reduced phosphorylation of p44/42 (ERK1/2) and decreased protein levels of substance P, and CGRP. In the survival assay, apocynin showed low toxicity. CONCLUSIONS In conclusion, we provide proof-of-principles that the newly synthesized apocynin compound effectively prevented nociception in a neurogenic model of orofacial pain.
Collapse
Affiliation(s)
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil; Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Miguel O Zarraga
- Department of Organic Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Fernanda Papa Spada
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | | | - Severino Matias Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| | | |
Collapse
|
2
|
Ito K, Hosoki H, Kasai Y, Sasaki H, Haraguchi A, Shibata S, Nozaki C. A Cellulose-Rich Diet Disrupts Gut Homeostasis and Leads to Anxiety through the Gut-Brain Axis. ACS Pharmacol Transl Sci 2024; 7:3071-3085. [PMID: 39416961 PMCID: PMC11475280 DOI: 10.1021/acsptsci.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
It is widely said that a healthy intestinal environment plays an essential role in better mental condition. One known dietary nutrient that maintains the intestinal environment is dietary fiber. A recent study showed that maintaining the intestinal environment with dietary fiber alleviated symptoms of psychiatric disorders in animals. However, such effects have only been reported with soluble fiber, which is highly fermentable and promotes short-chain fatty acid (SCFA) production, and not with insoluble fiber. Therefore, we aimed to verify whether insoluble fiber, such as cellulose, can alter emotion via changes in the gut. We divided mice into two groups and fed either a standard diet (SD, which contains both insoluble and soluble dietary fibers) or a cellulose-rich diet (CRD, which contains cellulose alone as the dietary fibers). We found that CRD-fed mice display increased anxiety-like behavior. CRD-fed animals also showed decreased intestinal SCFA levels along with increased intestinal permeability, dysmotility, and hypersensitivity. This behavioral and physiological effect of CRD has been completely abolished in vagotomized mice, indicating the direct link between intestinal environment exacerbation to the emotion through the gut-brain axis. Additionally, we found that amygdalar dopamine signaling has been modified in CRD-fed animals, and the opioid antagonist abolished this dopaminergic modification as well as CRD-induced anxiety. Altogether, our findings indicate that consumption of cellulose alone as the dietary fiber may evoke intestinal abnormalities, which fire the vagus nerve, then the opioidergic system, and amygdalar dopamine upregulation, resulting in the enhancement of anxiety.
Collapse
Affiliation(s)
- Kaede Ito
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Haruka Hosoki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Yuya Kasai
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Hiroyuki Sasaki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Atsushi Haraguchi
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| | - Shigenobu Shibata
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
- Graduate
School of Biomedical and Health Science, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chihiro Nozaki
- School
of Advanced Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
- Global
Center for Science and Engineering, Waseda
University, Tokyo 162-0056, Japan
| |
Collapse
|
3
|
Horváth ÁI, Bölcskei K, Szentes N, Borbély É, Tékus V, Botz B, Rusznák K, Futácsi A, Czéh B, Mátyus P, Helyes Z. Novel multitarget analgesic candidate SZV-1287 demonstrates potential disease-modifying effects in the monoiodoacetate-induced osteoarthritis mouse model. Front Pharmacol 2024; 15:1377081. [PMID: 39351091 PMCID: PMC11439770 DOI: 10.3389/fphar.2024.1377081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Monoiodoacetate (MIA)-induced osteoarthritis (OA) is the most commonly used rodent model for testing anti-OA drug candidates. Herein, we investigated the effects of our patented multitarget drug candidate SZV-1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl) propanal oxime) that is currently under clinical development for neuropathic pain and characterized the mouse model through complex functional, in vivo imaging, and morphological techniques. Methods Knee OA was induced by intraarticular MIA injection (0.5 and 0.8 mg). Spontaneous pain was assessed based on weight distribution, referred pain by paw mechanonociception (esthesiometry), edema by caliper, neutrophil myeloperoxidase activity by luminescence, matrix metalloproteinase activity, vascular leakage and bone remodeling by fluorescence imaging, bone morphology by micro-CT, histopathological alterations by semiquantitative scoring, and glia activation by immunohistochemistry. Then, SZV-1287 (20 mg/kg/day) or its vehicle was injected intraperitoneally over a 21-day period. Results MIA induced remarkably decreased thresholds of weight bearing and paw withdrawal, alterations in the tibial and femoral structures (reactive sclerosis, increased trabeculation, and cortical erosions), histopathological damage (disorganized cartilage structure, hypocellularity, decreased matrix staining and tidemark integrity, and increased synovial hyperplasia and osteophyte formation), and changes in the astrocyte and microglia density in the lumbar spinal cord. There were no major differences between the two MIA doses in most outcome measures. SZV-1287 inhibited MIA-induced weight bearing reduction, hyperalgesia, edema, myeloperoxidase activity, histopathological damage, and astrocyte and microglia density. Conclusion SZV-1287 may have disease-modifying potential through analgesic, anti-inflammatory, and chondroprotective effects. The MIA mouse model is valuable for investigating OA-related mechanisms and testing compounds in mice at an optimal dose of 0.5 mg.
Collapse
Affiliation(s)
- Ádám István Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
- Department of Laboratory Diagnostics, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Kitti Rusznák
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Anett Futácsi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Neurobiology of Stress Research Group, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
- ALGONIST Biotechnologies GmBH, Vienna, Austria
| |
Collapse
|
4
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
6
|
Li J, Li S, Chen H, Feng J, Qiu Y, Li L. The effect of physical interventions on pain control after orthodontic treatment: A systematic review and network meta-analysis. PLoS One 2024; 19:e0297783. [PMID: 38386625 PMCID: PMC10883545 DOI: 10.1371/journal.pone.0297783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Pain is a frequent adverse reaction during orthodontic treatment, which can significantly reduce treatment compliance and compromise the expected treatment effect. Physical interventions have been used to alleviate pain after orthodontic treatment, but their effectiveness is controversial. This study used a network meta-analysis to assess the efficacy of various physical interventions typically used in managing pain after orthodontic treatment, with a view to provide evidence-based recommendations for representative interventions for orthodontic pain relief during peak pain intensity. METHODS A systematic search of six electronic databases, from their respective inception dates, was conducted to identify relevant literature on the efficacy of various typical physical interventions for managing pain after orthodontic treatment. Literature screening was performed according to the Cochrane System Evaluator's Manual. Stata 16.0 was used to assess heterogeneity, inconsistency, publication bias, and sensitivity to generate an evidence network diagram and conduct a network meta-analysis. RESULTS In total, 771 articles were reviewed to collect literature on interventions, including low-level laser therapy (LLLT), vibration, acupuncture, and chewing. Of these, 28 studies using a visual analog scale (VAS) as an outcome indicator were included. The results showed that LLLT, vibration, acupuncture, and chewing effectively relieved the pain symptoms in patients after orthodontic treatment. At 24 h post-treatment, LLLT (surface under the cumulative ranking curve [SUCRA] = 80.8) and vibration (SUCRA = 71.1) were the most effective interventions. After 48 h of treatment, acupuncture (SUCRA = 89.6) showed a definite advantage as the best intervention. CONCLUSION LLLT, vibration, acupuncture, and chewing can alleviate pain associated with orthodontic treatment. Among these interventions, acupuncture was found to be the most effective at 48 h after orthodontic treatment. In addition, acupuncture demonstrated long-lasting and stable pain-relieving effects. However, further studies are needed to determine the most suitable equipment-specific parameters for acupuncture in relieving pain associated with orthodontic treatment.
Collapse
Affiliation(s)
- Junxiong Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Siyu Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongjun Chen
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jingzhe Feng
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ya Qiu
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Guo X, Lei C, Liang H, An J, Fang Y, Zhang X, Wang Z, Hu C, Jiang X. Chronic Sacral Nerve Stimulation Inhibits Visceral Hypersensitivity in Diarrhea-Predominant Irritable Bowel Syndrome Rats Model. Neuromodulation 2024; 27:295-301. [PMID: 37930296 DOI: 10.1016/j.neurom.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Sacral nerve stimulation (SNS) is emerging as a novel treatment for irritable bowel syndrome (IBS). However, its effects are limited, and the underlying mechanisms remain largely unknown. MATERIALS AND METHODS In this study, rats were divided into three groups (n = 12 rats per group): 1) the SNS group; 2) the sham SNS group (the sham group for short); and 3) the control group. The SNS and sham groups were exposed to chronic and acute stress to establish an IBS model. Electrode implantation surgery was performed in rats with the IBS model. The SNS group received electrical stimulation for 30 minutes every day for seven days. Abdominal withdrawal reflex (AWR) was used to evaluate the effect of SNS on visceral sensitivity in diarrhea-predominant IBS (IBS-D) rats. The frequency domain of heart rate variability (HRV) was analyzed to assess the effect of SNS on regulating the autonomic function. The expression of transient receptor potential vanilloid 1 (TRPV1) in the colon, spinal cord, and hippocampus was detected by immunohistochemistry to explore the mechanism of SNS in IBS-D rats. RESULTS Compared with the sham group, AWR scores were significantly decreased under different gas volumes of stimulation of 0.4, 0.6, and 0.8 ml for rectal distention in the SNS group (all p < 0.05). However, there was no significant difference <1.0 ml between the two groups (p > 0.05). Compared with the sham group, the frequency domain indexes of HRV were significantly altered. Normalized low-frequency power and low frequency-to-high frequency ratio were significantly decreased, and normalized high-frequency power was significantly increased in the SNS group (all p < 0.05). Moreover, the expression of TRPV1 in the spinal cord and colon in the SNS group was significantly decreased compared with the sham group (both p < 0.05). These results suggested that chronic SNS not only improved the visceral sensitivity and autonomic dysfunction but also decreased the expression of TRPV1 in the spinal cord-gut tissue in IBS-D rats. CONCLUSION Chronic SNS was found to have an inhibitory effect on visceral hypersensitivity in IBS-D rats, providing experimental evidence for its potential clinical application in IBS.
Collapse
Affiliation(s)
- Xiaojuan Guo
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changsheng Lei
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Hanwei Liang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jiaxu An
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanbin Fang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaolu Zhang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Science, Beijing, China
| | - Chunhua Hu
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xuan Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Luo QQ, Cheng L, Wang B, Chen X, Li WT, Chen SL. ZBTB20 mediates stress-induced visceral hypersensitivity via activating the NF-κB/transient receptor potential channel pathway. Neurogastroenterol Motil 2024; 36:e14718. [PMID: 38009899 DOI: 10.1111/nmo.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Psychological stress is a major trigger for visceral hypersensitivity (VH) in irritable bowel syndrome. The zinc finger protein ZBTB20 (ZBTB20) is implicated in somatic nociception via modulating transient receptor potential (TRP) channels, but its role in the development of VH is unclear. This study aimed to investigate the role of ZBTB20/TRP channel axis in stress-induced VH. METHODS Rats were subjected to water avoidance stress (WAS) for 10 consecutive days. Small interfering RNA (siRNA) targeting ZBTB20 was intrathecally administered. Inhibitors of TRP channels, stress hormone receptors, and nuclear factor kappa-B (NF-κB) were administered. Visceromotor response to colorectal distension was recorded. Dorsal root ganglia (DRGs) were dissected for Western blot, coimmunoprecipitation, and chromatin immunoprecipitation. The DRG-derived neuron cell line was applied for specific research. KEY RESULTS WAS-induced VH was suppressed by the inhibitor of TRPV1, TRPA1, or TRPM8, with enhanced expression of these channels in L6-S2 DRGs. The inhibitor of glucocorticoid receptor or β2-adrenergic receptor counteracted WAS-induced VH and TRP channel expression. Concurrently, WAS-induced stress hormone-dependent ZBTB20 expression and NF-κB activation in DRGs. Intrathecally injected ZBTB20 siRNA or an NF-κB inhibitor repressed WAS-caused effect. In cultured DRG-derived neurons, stress hormones promoted nuclear translocation of ZBTB20, which preceded p65 nuclear translocation. And, ZBTB20 siRNA suppressed stress hormone-caused NF-κB activation. Finally, WAS enhanced p65 binding to the promoter of TRPV1, TRPA1, or TRPM8 in rat DRGs. CONCLUSIONS AND INFERENCES ZBTB20 mediates stress-induced VH via activating NF-κB/TRP channel pathway in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Qing-Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xin Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wen-Ting Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
9
|
Maleeva EE, Palikova YA, Palikov VA, Kazakov VA, Simonova MA, Logashina YA, Tarasova NV, Dyachenko IA, Andreev YA. Potentiating TRPA1 by Sea Anemone Peptide Ms 9a-1 Reduces Pain and Inflammation in a Model of Osteoarthritis. Mar Drugs 2023; 21:617. [PMID: 38132938 PMCID: PMC10744431 DOI: 10.3390/md21120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. Peptide Ms 9a-1 from the sea anemone Metridium senile is a positive allosteric modulator of TRPA1 and shows significant anti-inflammatory and analgesic activity in different models of pain. We used a model of monosodium iodoacetate (MIA)-induced osteoarthritis to evaluate the anti-inflammatory properties of Ms 9a-1 in comparison with APHC3 (a polypeptide modulator of TRPV1 channel) and non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and ibuprofen. Administration of Ms 9a-1 (0.1 mg/kg, subcutaneously) significantly reversed joint swelling, disability, thermal and mechanical hypersensitivity, and grip strength impairment. The effect of Ms 9a-1 was equal to or better than that of reference drugs. Post-treatment histological analysis revealed that long-term administration of Ms9a-1 could reduce inflammatory changes in joints and prevent the progression of cartilage and bone destruction at the same level as meloxicam. Peptide Ms 9a-1 showed significant analgesic and anti-inflammatory effects in the model of MIA-induced OA, and therefore positive allosteric modulators could be considered for the alleviation of OA symptoms.
Collapse
Affiliation(s)
- Ekaterina E. Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Yulia A. Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Viktor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Vitaly A. Kazakov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Maria A. Simonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Yulia A. Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Nadezhda V. Tarasova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia;
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia;
| |
Collapse
|
10
|
Pourova J, Dias P, Pour M, Bittner Fialová S, Czigle S, Nagy M, Tóth J, Balázs VL, Horváth A, Csikós E, Farkas Á, Horváth G, Mladěnka P. Proposed mechanisms of action of herbal drugs and their biologically active constituents in the treatment of coughs: an overview. PeerJ 2023; 11:e16096. [PMID: 37901462 PMCID: PMC10607228 DOI: 10.7717/peerj.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023] Open
Abstract
Various medicinal plants find their use in cough treatment, based on traditions and long-term experience. Pharmacological principles of their action, however, are much less known. Herbal drugs usually contain a mixture of potentially active compounds, which can manifest diverse effects. Expectorant or antitussive effects, which can be accompanied by others, such as anti-inflammatory or antibacterial, are probably the most important in the treatment of coughs. The aim of this review is to summarize the current state of knowledge of the effects of medicinal plants or their constituents on cough, based on reliable pharmacological studies. First, a comprehensive description of each effect is provided in order to explain the possible mechanism of action in detail. Next, the results related to individual plants and substances are summarized and critically discussed based on pharmacological in vivo and in vitro investigation.
Collapse
Affiliation(s)
- Jana Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Patricia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | | | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
12
|
Wichaidit A, Patinotham N, Nukaeow K, Kaewpitak A. Upregulation of transient receptor potential ankyrin 1 (TRPA1) but not transient receptor potential vanilloid 1 (TRPV1) during primary tooth carious progression. J Oral Biosci 2023; 65:24-30. [PMID: 36587734 DOI: 10.1016/j.job.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To quantify the changes in Transient Receptor Potential Ankyrin 1 (TRPA1) and Transient Receptor Potential Vanilloid 1 (TRPV1) expression throughout the process of inflammation induced by caries. METHODS Forty primary teeth were obtained from children requiring dental extractions under local or general anesthesia. The teeth were grouped according to three stages reflecting the progression of dental caries: nine with intact dentin, 15 with exposed dentin (but not to the extent of the pulp), and 16 with exposed pulp. Immunofluorescence was used to validate the presence of dental pulp inflammation by demonstrating a decrease in NF-κB nuclear translocation. The expression levels of TRPA1 and TRPV1 were quantified in the pulp horn and the subodontoblastic and midcoronal regions of the pulp. RESULTS The percentage of cells with NF-κB nuclear translocation was highest for teeth with intact dentin and decreased progressively during the progression of caries. TRPA1 expression was lowest in intact teeth and gradually increased as caries advanced. TRPV1 expression was similar in teeth with intact dentin, exposed dentin, and exposed pulp. CONCLUSION The differences in TRPA1 and TRPV1 expression in response to caries suggest that these receptors play unique roles in the immune response during the progression of caries and that the pathophysiology of inflammation in the dental pulp varies between the early and late stages of caries.
Collapse
Affiliation(s)
- Alisa Wichaidit
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Namthip Patinotham
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Kullanun Nukaeow
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand
| | - Aunwaya Kaewpitak
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, HatYai, Songkhla, Thailand.
| |
Collapse
|
13
|
Wang P, Zhang Q, Dias FC, Suttle A, Dong X, Chen Y. TMEM100, a regulator of TRPV1-TRPA1 interaction, contributes to temporomandibular disorder pain. Front Mol Neurosci 2023; 16:1160206. [PMID: 37033371 PMCID: PMC10077888 DOI: 10.3389/fnmol.2023.1160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
There is an unmet need to identify new therapeutic targets for temporomandibular disorder (TMD) pain because current treatments are limited and unsatisfactory. TMEM100, a two-transmembrane protein, was recently identified as a regulator to weaken the TRPA1-TRPV1 physical association, resulting in disinhibition of TRPA1 activity in sensory neurons. Recent studies have also shown that Tmem100, Trpa1, and Trpv1 mRNAs were upregulated in trigeminal ganglion (TG) after inflammation of the temporomandibular joint (TMJ) associated tissues. These findings raise a critical question regarding whether TMEM100 in TG neurons is involved in TMD pain via regulating the TRPA1-TRPV1 functional interaction. Here, using two mouse models of TMD pain induced by TMJ inflammation or masseter muscle injury, we found that global knockout or systemic inhibition of TRPA1 and TRPV1 attenuated pain. In line with their increased genes, mice exhibited significant upregulation of TMEM100, TRPA1, and TRPV1 at the protein levels in TG neurons after TMD pain. Importantly, TMEM100 co-expressed with TRPA1 and TRPV1 in TG neurons-innervating the TMJ and masseter muscle and their co-expression was increased after TMD pain. Moreover, the enhanced activity of TRPA1 in TG neurons evoked by TMJ inflammation or masseter muscle injury was suppressed by inhibition of TMEM100. Selective deletion of Tmem100 in TG neurons or local administration of TMEM100 inhibitor into the TMJ or masseter muscle attenuated TMD pain. Together, these results suggest that TMEM100 in TG neurons contributes to TMD pain by regulating TRPA1 activity within the TRPA1-TRPV1 complex. TMEM100 therefore represents a potential novel target-of-interest for TMD pain.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Fabiana C. Dias
- Department of Neurology, Duke University, Durham, NC, United States
| | - Abbie Suttle
- Department of Neurology, Duke University, Durham, NC, United States
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong Chen
- Department of Neurology, Duke University, Durham, NC, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
- *Correspondence: Yong Chen,
| |
Collapse
|
14
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Pellegrino A, Mükusch S, Seitz V, Stein C, Herberg FW, Seitz H. Transient Receptor Potential Vanilloid 1 Signaling Is Independent on Protein Kinase A Phosphorylation of Ankyrin-Rich Membrane Spanning Protein. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040063. [PMID: 36412904 PMCID: PMC9680306 DOI: 10.3390/medsci10040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The sensory ion channel transient receptor potential vanilloid 1 (TRPV1) is mainly expressed in small to medium sized dorsal root ganglion neurons, which are involved in the transfer of acute noxious thermal and chemical stimuli. The Ankyrin-rich membrane spanning protein (ARMS) interaction with TRPV1 is modulated by protein kinase A (PKA) mediating sensitization. Here, we hypothesize that PKA phosphorylation sites of ARMS are crucial for the modulation of TRPV1 function, and that the phosphorylation of ARMS is facilitated by the A-kinase anchoring protein 79 (AKAP79). We used transfected HEK293 cells, immunoprecipitation, calcium flux, and patch clamp experiments to investigate potential PKA phosphorylation sites in ARMS and in ARMS-related peptides. Additionally, experiments were done to discriminate between PKA and protein kinase D (PKD) phosphorylation. We found different interaction ratios for TRPV1 and ARMS mutants lacking PKA phosphorylation sites. The degree of TRPV1 sensitization by ARMS mutants is independent on PKA phosphorylation. AKAP79 was also involved in the TRPV1/ARMS/PKA signaling complex. These data show that ARMS is a PKA substrate via AKAP79 in the TRPV1 signaling complex and that all four proteins interact physically, regulating TRPV1 sensitization in transfected HEK293 cells. To assess the physiological and/or therapeutic significance of these findings, similar investigations need to be performed in native neurons and/or in vivo.
Collapse
Affiliation(s)
- Antonio Pellegrino
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
| | - Sandra Mükusch
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
| | - Viola Seitz
- Institute of Experimental Anaesthesiology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
- Brandenburg Medical School Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany
| | - Christoph Stein
- Institute of Experimental Anaesthesiology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | | | - Harald Seitz
- Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
- Correspondence: ; +49-331-58187-208
| |
Collapse
|
16
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
Expression of TRP Channels in Colonic Mucosa of IBS-D Patients and Its Correlation with the Severity of the Disease. Gastroenterol Res Pract 2022; 2022:7294775. [PMID: 35677724 PMCID: PMC9168202 DOI: 10.1155/2022/7294775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Lots of researches have endeavored to elucidate the pathogenetic mechanism of visceral hypersensitivity in order to guide the therapy of diarrhea predominant-irritable bowel syndrome (IBS-D). Transient receptor potential (TRP) channels and their role in visceral nociception have been vastly investigated. We investigated the expression of TRP channels in IBS-D colonic biopsies and its correlation with the severity of the disease. Methods Sigmoid biopsies were obtained from 34 IBS-D patients and 28 healthy controls (HCs). IBS-D was diagnosed according to Rome IV criteria. Their clinical parameters were assessed through questionnaires. Expression of TRPV1, TRPV4, TRPA1, TRPM2, and TRPM8 was evaluated with immunohistology staining. Results Expression levels of TRPV1, TRPV4, and TRPA1 in the colonic mucosa of IBS-D patients were significantly higher than those in HCs (p < 0.05), while there was no obvious difference of TRPM2 and TRPM8 expression between IBS-D patients and HCs. In addition, the expression levels of TRPV1 and TRPA1, but TRPV4, in the colonic mucosa correlated positively with the severity of diseases (r = 0.6303 and 0.4506, respectively, p < 0.05). Conclusions Expression of TRPV1, TRPA1, and TRPV4 in the colonic mucosa was enhanced in IBS-D patients compared with HCs with the former two correlated with the severity of the disease. TRP channels might be promising biomarkers in the diagnosis and estimate of the severity in IBS-D.
Collapse
|
18
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
20
|
Inferiority complex: why do sensory ion channels multimerize? Biochem Soc Trans 2022; 50:213-222. [PMID: 35166323 PMCID: PMC9022975 DOI: 10.1042/bst20211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Peripheral somatosensory nerves are equipped with versatile molecular sensors which respond to acute changes in the physical environment. Most of these sensors are ion channels that, when activated, depolarize the sensory nerve terminal causing it to generate action potentials, which is the first step in generation of most somatic sensations, including pain. The activation and inactivation of sensory ion channels is tightly regulated and modulated by a variety of mechanisms. Amongst such mechanisms is the regulation of sensory ion channel activity via direct molecular interactions with other proteins in multi-protein complexes at the plasma membrane of sensory nerve terminals. In this brief review, we will consider several examples of such complexes formed around a prototypic sensory receptor, transient receptor potential vanilloid type 1 (TRPV1). We will also discuss some inherent conceptual difficulties arising from the multitude of reported complexes.
Collapse
|
21
|
Presence of TRPA1 Modifies CD4+/CD8+ T Lymphocyte Ratio and Activation. Pharmaceuticals (Basel) 2022; 15:ph15010057. [PMID: 35056114 PMCID: PMC8781558 DOI: 10.3390/ph15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/10/2022] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) has been reported to influence neuroinflammation and lymphocyte function. We analysed the immune phenotype and activation characteristics of TRPA1-deficient mice (knockout—KO) generated by targeted deletion of the pore-loop domain of the ion channel. We compared TRPA1 mRNA and protein expression in monocyte and lymphocyte subpopulations isolated from primary and secondary lymphatic organs of wild type (WT) and KO mice. qRT-PCR and flow cytometric studies indicated a higher level of TRPA1 in monocytes than in lymphocytes, but both were orders of magnitude lower than in sensory neurons. We found lower CD4+/CD8+ thymocyte ratios, diminished CD4/CD8 rates, and B cell numbers in the KO mice. Early activation marker CD69 was lower in CD4+ T cells of KO, while the level of CD8+/CD25+ cells was higher. In vitro TcR-mediated activation did not result in significant differences in CD69 level between WT and KO splenocytes, but lower cytokine (IL-1β, IL-6, TNF-α, IL-17A, IL-22, and RANTES) secretion was observed in KO splenocytes. Basal intracellular Ca2+ level and TcR-induced Ca2+ signal in T lymphocytes did not differ significantly, but interestingly, imiquimod-induced Ca2+ level in KO thymocytes was higher. Our results support the role of TRPA1 in the regulation of activation, cytokine production, and T and B lymphocytes composition in mice.
Collapse
|
22
|
Vincent-Dospital T, Toussaint R, Måløy KJ. Heat Emitting Damage in Skin: A Thermal Pathway for Mechanical Algesia. Front Neurosci 2021; 15:780623. [PMID: 34776861 PMCID: PMC8581405 DOI: 10.3389/fnins.2021.780623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/03/2022] Open
Abstract
Mechanical pain (or mechanical algesia) can both be a vital mechanism warning us for dangers or an undesired medical symptom important to mitigate. Thus, a comprehensive understanding of the different mechanisms responsible for this type of pain is paramount. In this work, we study the tearing of porcine skin in front of an infrared camera, and show that mechanical injuries in biological tissues can generate enough heat to stimulate the neural network. In particular, we report local temperature elevations of up to 24°C around fast cutaneous ruptures, which shall exceed the threshold of the neural nociceptors usually involved in thermal pain. Slower fractures exhibit lower temperature elevations, and we characterise such dependency to the damaging rate. Overall, we bring experimental evidence of a novel—thermal—pathway for direct mechanical algesia. In addition, the implications of this pathway are discussed for mechanical hyperalgesia, in which a role of the cutaneous thermal sensors has priorly been suspected. We also show that thermal dissipation shall actually account for a significant portion of the total skin's fracture energy, making temperature monitoring an efficient way to detect biological damages.
Collapse
Affiliation(s)
- Tom Vincent-Dospital
- SFF Porelab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Renaud Toussaint
- SFF Porelab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway.,Université de Strasbourg, CNRS, Institut Terre & Environnement de Strasbourg, UMR 7063, Strasbourg, France
| | - Knut Jørgen Måløy
- SFF Porelab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Oehler B, Kloka J, Mohammadi M, Ben-Kraiem A, Rittner HL. D-4F, an ApoA-I mimetic peptide ameliorating TRPA1-mediated nocifensive behaviour in a model of neurogenic inflammation. Mol Pain 2020; 16:1744806920903848. [PMID: 31996074 PMCID: PMC6993174 DOI: 10.1177/1744806920903848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model. Results Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F. Conclusions D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jan Kloka
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Milad Mohammadi
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany.,Department of Anaesthesiology, University Hospital of Cologne, Cologne, Germany
| | - Adel Ben-Kraiem
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department of Anaesthesiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Camponogara C, Brum ES, Pegoraro NS, Brusco I, Rocha FG, Brandenburg MM, Cabrini DA, André E, Trevisan G, Oliveira SM. Neuronal and non-neuronal transient receptor potential ankyrin 1 mediates UVB radiation-induced skin inflammation in mice. Life Sci 2020; 262:118557. [PMID: 33035578 DOI: 10.1016/j.lfs.2020.118557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
AIMS Neuronal and non-neuronal TRPA1 channel plays an active role in the pathogenesis of several skin inflammatory diseases. Although a recent study identified the TRPA1 channel activation upon UVB exposure, its role in inflammatory, oxidative, and proliferative processes underlying UVB radiation-induced sunburn was not yet fully understood. We evaluated the TRPA1 channel contribution in inflammatory, oxidative, and proliferative states on skin inflammation induced by UVB radiation in mice. MAIN METHODS TRPA1 role was evaluated from inflammatory (ear edema, myeloperoxidase, and N-acetyl-β-D-glycosaminidase activities, histological changes, and cytokines levels), proliferative (epidermal hyperplasia, PCNA, and TRPA1 levels), and oxidative (reactive oxygen intermediates measure, H2O2 quantification, and NADPH oxidase activity) parameters caused by UVB radiation single (0.5 J/cm2) or repeated (0.1 J/cm2) exposure. We verified the contribution of non-neuronal and neuronal TRPA1 on UVB radiation-induced inflammatory parameters using RTX-denervation (50 μg/kg s.c.). KEY FINDINGS TRPA1 blockade by the selective antagonist Lanette® N HC-030031 reduced all parameters induced by UVB radiation single (at concentration of 1%) or repeated (at concentration of 0.1%) exposure. We evidenced an up-regulation of the TRPA1 protein after UVB radiation repeated exposure, which was blocked by topical Lanette® N HC-030031 (0.1%). By RTX-denervation, we verified that non-neuronal TRPA1 also interferes in some inflammatory parameters induction. However, cutaneous nerve fibers seem to be most needed in the development of UVB radiation-induced inflammatory processes. SIGNIFICANCE We propose the TRPA1 channel participates in the UVB radiation-induced sunburn in mice, and it could be a promising therapeutic target to treat skin inflammatory disorders.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne S Brum
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli S Pegoraro
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda G Rocha
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Margareth M Brandenburg
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniela A Cabrini
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eunice André
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Zhang X, He Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front Immunol 2020; 11:1984. [PMID: 33133059 PMCID: PMC7550422 DOI: 10.3389/fimmu.2020.01984] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Emerging evidence shows that neurogenic inflammation, induced by nociceptive neurons and T helper 17 cell (Th17) responses, has a fundamental role in maintaining the changes in the immune system due to psoriasis. Nociceptive neurons, specific primary sensory nerves, have a multi-faceted role in detecting noxious stimuli, maintaining homeostasis, and regulating the immunity responses in the skin. Therefore, it is critical to understand the connections and interplay between the nociceptive neurons and the immune system in psoriasis. Here, we review works on the altered innervation that occurs in psoriasis. We examine how these distinct sensory neurons and their signal transducers participate in regulating inflammation. Numerous clinical studies report the dysfunction of nociceptive neurons in psoriasis. We discuss the mechanism behind the inconsistent activation of nociceptive neurons. Moreover, we review how neuropeptides, involved in regulating Th17 responses and the role of nociceptive neurons, regulate immunity in psoriasis. Understanding how nociceptive neurons regulate immune responses enhances our knowledge of the neuroimmunity involved in the pathogenesis of psoriasis and may form the basis for new approaches to treat it.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Shaqura M, Li L, Mohamed DM, Li X, Treskatsch S, Buhrmann C, Shakibaei M, Beyer A, Mousa SA, Schäfer M. Neuronal aldosterone elicits a distinct genomic response in pain signaling molecules contributing to inflammatory pain. J Neuroinflammation 2020; 17:183. [PMID: 32532285 PMCID: PMC7291517 DOI: 10.1186/s12974-020-01864-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. Methods Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund’s complete adjuvant (FCA)-induced hindpaw inflammation. Results Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. Conclusion Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.
Collapse
Affiliation(s)
- Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Li Li
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Doaa M Mohamed
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.,Department of Zoology, Faculty of Science, Aswan University, Tingar, Egypt
| | - Xiongjuan Li
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, No. 250, Hai'zhu District, Guangzhou, 510260, China
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Shaaban A Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany.
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité - University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
28
|
Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats. Anesthesiology 2020; 132:867-880. [DOI: 10.1097/aln.0000000000003127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Background
Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons.
Methods
In male Wistar rats (n = 5 to 8 per group) with Freund’s complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase–polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application.
Results
In rats with Freund’s complete adjuvant–induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2).
Conclusions
Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
29
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Lee BM, Jang Y, Park G, Kim K, Oh SH, Shin TJ, Chung G. Dexmedetomidine modulates transient receptor potential vanilloid subtype 1. Biochem Biophys Res Commun 2020; 522:832-837. [DOI: 10.1016/j.bbrc.2019.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
|
31
|
Reese RM, Dourado M, Anderson K, Warming S, Stark KL, Balestrini A, Suto E, Lee W, Riol-Blanco L, Shields SD, Hackos DH. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep 2020; 10:979. [PMID: 31969645 PMCID: PMC6976688 DOI: 10.1038/s41598-020-57936-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 01/16/2023] Open
Abstract
The transient receptor potential (TRP) superfamily of ion channels has garnered significant attention by the pharmaceutical industry. In particular, TRP channels showing high levels of expression in sensory neurons such as TRPV1, TRPA1, and TRPM8, have been considered as targets for indications where sensory neurons play a fundamental role, such as pain, itch, and asthma. Modeling these indications in rodents is challenging, especially in mice. The rat is the preferred species for pharmacological studies in pain, itch, and asthma, but until recently, genetic manipulation of the rat has been technically challenging. Here, using CRISPR technology, we have generated a TRPA1 KO rat to enable more sophisticated modeling of pain, itch, and asthma. We present a detailed phenotyping of the TRPA1 KO rat in models of pain, itch, and asthma that have previously only been investigated in the mouse. With the exception of nociception induced by direct TRPA1 activation, we have found that the TRPA1 KO rat shows apparently normal behavioral responses in multiple models of pain and itch. Immune cell infiltration into the lung in the rat OVA model of asthma, on the other hand, appears to be dependent on TRPA1, similar to was has been observed in TRPA1 KO mice. Our hope is that the TRPA1 KO rat will become a useful tool in further studies of TRPA1 as a drug target.
Collapse
Affiliation(s)
- Rebecca M Reese
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Keith Anderson
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Søren Warming
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly L Stark
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alessia Balestrini
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wyne Lee
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
32
|
Patil MJ, Salas M, Bialuhin S, Boyd JT, Jeske NA, Akopian AN. Sensitization of small-diameter sensory neurons is controlled by TRPV1 and TRPA1 association. FASEB J 2020; 34:287-302. [PMID: 31914619 PMCID: PMC7539696 DOI: 10.1096/fj.201902026r] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Unique features of sensory neuron subtypes are manifest by their distinct physiological and pathophysiological functions. Using patch-clamp electrophysiology, Ca2+ imaging, calcitonin gene-related peptide release assay from tissues, protein biochemistry approaches, and behavioral physiology on pain models, this study demonstrates the diversity of sensory neuron pathophysiology is due in part to subtype-dependent sensitization of TRPV1 and TRPA1. Differential sensitization is influenced by distinct expression of inflammatory mediators, such as prostaglandin E2 (PGE2), bradykinin (BK), and nerve growth factor (NGF) as well as multiple kinases, including protein kinase A (PKA) and C (PKC). However, the co-expression and interaction of TRPA1 with TRPV1 proved to be the most critical for differential sensitization of sensory neurons. We identified N- and C-terminal domains on TRPV1 responsible for TRPA1-TRPV1 (A1-V1) complex formation. Ablation of A1-V1 complex with dominant-negative peptides against these domains substantially reduced the sensitization of TRPA1, as well as BK- and CFA-induced hypersensitivity. These data indicate that often occurring TRP channel complexes regulate diversity in neuronal sensitization and may provide a therapeutic target for many neuroinflammatory pain conditions.
Collapse
Affiliation(s)
- Mayur J. Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- The Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Margaux Salas
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- United States Army Institute of Surgical Research, Air Force- 59th Medical Wing, San Antonio, TX 78234
| | - Siarhei Bialuhin
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jacob T. Boyd
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
33
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
34
|
Fu W, Nelson TS, Santos DF, Doolen S, Gutierrez JJ, Ye N, Zhou J, Taylor B. An NPY Y1 receptor antagonist unmasks latent sensitization and reveals the contribution of protein kinase A and Epac to chronic inflammatory pain. Pain 2019; 160:1754-1765. [PMID: 31335645 PMCID: PMC6903783 DOI: 10.1097/j.pain.0000000000001557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.
Collapse
Affiliation(s)
- Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
| | - Tyler S. Nelson
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Diogo F. Santos
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Javier J.P. Gutierrez
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bradley Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington KY, USA
- Department of Anesthesiology, Pittsburgh Center for Pain Research, and the Opiate Research Center at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
35
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
36
|
Mukaiyama M, Yamasaki Y, Usui T, Nagumo Y. Transient receptor potential V4 channel stimulation induces reversible epithelial cell permeability in
MDCK
cell monolayers. FEBS Lett 2019; 593:2250-2260. [DOI: 10.1002/1873-3468.13490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Minagi Mukaiyama
- Graduate School of Life and Environmental Sciences University of Tsukuba Japan
| | - Yohei Yamasaki
- Graduate School of Life and Environmental Sciences University of Tsukuba Japan
| | - Takeo Usui
- Faculty of Life and Environmental Sciences University of Tsukuba Japan
- Microbiology Research Center for Sustainability (MiCS) University of Tsukuba Japan
| | - Yoko Nagumo
- Faculty of Life and Environmental Sciences University of Tsukuba Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA) University of Tsukuba Japan
| |
Collapse
|
37
|
Huang Y, Patil MJ, Yu M, Liptak P, Undem BJ, Dong X, Wang G, Yu S. Effects of ginger constituent 6-shogaol on gastroesophageal vagal afferent C-fibers. Neurogastroenterol Motil 2019; 31:e13585. [PMID: 30947399 PMCID: PMC6522279 DOI: 10.1111/nmo.13585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ginger has been used as an herbal medicine worldwide to relieve nausea/vomiting and gastrointestinal discomfort, but the cellular and molecular mechanisms of its neuronal action remain unclear. The present study aimed to determine the effects of ginger constituent 6-shogaol on gastroesophageal vagal nodose C-fibers. METHODS Extracellular single-unit recording and two-photon nodose neuron imaging were performed, respectively, in ex vivo gastroesophageal-vagal preparations from wild type and Pirt-GCaMP6 transgenic mice. The action potential discharge or calcium influx evoked by mechanical distension and chemical perfusions applied to the gastroesophageal vagal afferent nerve endings were recorded, respectively, at their intact neuronal cell soma in vagal nodose ganglia. The effects of 6-shogaol on nodose C-fiber neurons were then compared and determined. KEY RESULTS Gastroesophageal application of 6-shogaol-elicited intensive calcium influxes in nodose neurons and evoked robust action potential discharges in most studied nodose C-fibers. Such activation effects were followed by a desensitized response to the second application of 6-shogaol. However, action potential discharges evoked by esophageal mechanical distension, after 6-shogaol perfusion, did not significantly change. Pretreatment with TRPA1 selective blocker HC-030031 inhibited 6-shogaol-induced action potential discharges in gastric and esophageal nodose C-fiber neurons, suggesting that TRPA1 played a role in mediating 6-shogaol-induced activation response. CONCLUSION AND INFERENCES This study provides evidence that ginger constituent 6-shogaol directly activates vagal afferent C-fiber peripheral gastrointestinal endings. This activation leads to desensitization to subsequent application of 6-shogaol but not subsequent esophageal mechanical distension. Further investigation is required to establish a possible contribution in its anti-emetic effects.
Collapse
Affiliation(s)
- Yongming Huang
- Department of Medicine, Johns Hopkins University School of Medicine, USA,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mayur J. Patil
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Mingwei Yu
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Peter Liptak
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Bradley J. Undem
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Xinzhong Dong
- Department of Neuroscience, Solomon H. Snyder Johns Hopkins University School of Medicine, USA
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoyong Yu
- Department of Medicine, Johns Hopkins University School of Medicine, USA,Corresponding: Shaoyong Yu, MD, MPH., Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore 21205, Phone: (410) 502-2455,
| |
Collapse
|
38
|
Pigatto GR, Silva CS, Parizotto NA. Photobiomodulation therapy reduces acute pain and inflammation in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 196:111513. [PMID: 31136885 DOI: 10.1016/j.jphotobiol.2019.111513] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) is a therapy suggested for the treatment of pain and inflammation. Different mechanisms have been proposed to explain the analgesic and inflammatory effects of photobiomodulation, but there are still gaps on the mechanisms underlying. The objective was to investigate the analgesic and anti-inflammatory effect of red LED, as well as to investigate the possible mechanism of action in acute nociception models. Radiation was applied with red LED (660 nm, 215 mW, 84.64 mW/cm2, 2.531 J/cm2 (30s); 5.07 J/cm2 (60s) 7.61 J/cm2 (90s) and 10.15 J/cm2 (120 s)). The red LED applied 60 s before the experiments, promoted reduction of the nociceptive neurogenic (1st phase) and inflammatory pain (2nd phase) induced by intraplantar (i.pl.) injection of formalin. This effect duration in the second phase was 180 min after pretreatment of the LED. Red LED also reduced nociception induced by intraperitoneal injection of acetic acid. Furthermore, red LED prevented nociception induced by i.pl. injection of cinnamaldehyde, capsaicin, menthol and acidified saline. It was demonstrate the involvement of glutamatergic system with the reduction the nociception induced by glutamate. The red LED was able to prevent nociception induced by intracellular signaling cascades activators, phorbol 12-myristate 13-acetate (PMA), bradykinin, forskolin and prostaglandin. In addition, red LED, respectively, from 30 to 90s demonstrated an antiedematogenic effect on ear edema and reduction the migration of inflammatory cells induced by single application of croton oil. Thus, the new findings in this study support some underlying mechanism by which red LED phototherapy reduces acute pain. However, need further clarification regarding analgesic and anti-inflammatory effect of the photobiomodulation in preclinical studies.
Collapse
Affiliation(s)
- Glauce Regina Pigatto
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil
| | - Carolina Seabra Silva
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil
| | - Nivaldo Antonio Parizotto
- Graduate Program in Biotechnology, Laboratory of Regenerative Medicine, University of Araraquara (UNIARA), SP, Brazil; Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil; Biomedical Engineering Program, University of Brasil (UNIBRASIL), São Paulo, SP, Brazil.
| |
Collapse
|
39
|
TRPA1 Sensitization Produces Hyperalgesia to Heat but not to Cold Stimuli in Human Volunteers. Clin J Pain 2019; 35:321-327. [DOI: 10.1097/ajp.0000000000000677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Griggs RB, Santos DF, Laird DE, Doolen S, Donahue RR, Wessel CR, Fu W, Sinha GP, Wang P, Zhou J, Brings S, Fleming T, Nawroth PP, Susuki K, Taylor BK. Methylglyoxal and a spinal TRPA1-AC1-Epac cascade facilitate pain in the db/db mouse model of type 2 diabetes. Neurobiol Dis 2019; 127:76-86. [PMID: 30807826 DOI: 10.1016/j.nbd.2019.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America; Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States of America.
| | - Diogo F Santos
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Don E Laird
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Suzanne Doolen
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Renee R Donahue
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Caitlin R Wessel
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Weisi Fu
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Ghanshyam P Sinha
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Sebastian Brings
- Department of Nuclear Medicine, University Hospital of Heidelberg, INF 400 Heidelberg, Germany; Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Zentrum München, Neuherberg, Germany
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Bradley K Taylor
- Department of Physiology and Center for Analgesia Research Excellence, College of Medicine, University of Kentucky Medical Center, Lexington, KY, United States of America; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
41
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.
Collapse
Affiliation(s)
- Jannis E Meents
- Institute of Physiology, University Hospital RWTH Aachen , Aachen , Germany
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
42
|
Niedermirtl F, Eberhardt M, Namer B, Leffler A, Nau C, Reeh PW, Kistner K. Etomidate and propylene glycol activate nociceptive TRP ion channels. Mol Pain 2018; 14:1744806918811699. [PMID: 30345869 PMCID: PMC6856977 DOI: 10.1177/1744806918811699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. RESULTS Activation of the nociceptive transient receptor potential (TRP) ion channels TRPA1 and TRPV1 was studied in a transfected HEK293t cell line by whole-cell voltage clamp recordings of induced inward ion currents. Calcium influx in sensory neurons of wild-type and trp knockout mice was ratiometrically measured by Fura2-AM staining. Stimulated calcitonin gene-related peptide release from mouse sciatic nerves was detected by enzyme immunoassay. Painfulness of different etomidate formulations was tested in a translational human pain model. Etomidate as well as propylene glycol proved to be effective agonists of TRPA1 and TRPV1 ion channels at clinically relevant concentrations. Etomidate consistently activated TRPA1, but there was also evidence for a contribution of TRPV1 in dependence of drug concentration ranges and species specificities. Distinct N-terminal cysteine and lysine residues seemed to mediate gating of TRPA1, although the electrophile scavenger N-acetyl-L-cysteine did not prevent its activation by etomidate. Propylene glycol-induced activation of TRPA1 and TRPV1 appeared independent of the concomitant high osmolarity. Intradermal injections of etomidate as well as propylene glycol evoked severe burning pain in the human pain model that was absent with emulsification of etomidate. CONCLUSIONS Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.
Collapse
Affiliation(s)
- Florian Niedermirtl
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Mirjam Eberhardt
- 2 Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Barbara Namer
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Andreas Leffler
- 2 Department for Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Carla Nau
- 3 Department of Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Peter W Reeh
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Katrin Kistner
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
43
|
Wang S, Brigoli B, Lim J, Karley A, Chung MK. Roles of TRPV1 and TRPA1 in Spontaneous Pain from Inflamed Masseter Muscle. Neuroscience 2018; 384:290-299. [PMID: 29890293 DOI: 10.1016/j.neuroscience.2018.05.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023]
Abstract
Craniofacial muscle pain, such as spontaneous pain and bite-evoked pain, are major symptoms in patients with temporomandibular disorders and infection. However, the underlying mechanisms of muscle pain, especially mechanisms of highly prevalent spontaneous pain, are poorly understood. Recently, we reported that transient receptor potential vanilloid 1 (TRPV1) contributes to spontaneous pain but only marginally contributes to bite-evoked pain during masseter inflammation. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1) in spontaneous and bite-evoked pain during masseter inflammation, and dissected the relative contributions of TRPA1 and TRPV1. Masseter inflammation increased mouse grimace scale (MGS) scores and face wiping behaviors. Pharmacological or genetic inhibition of TRPA1 significantly attenuated MGS but not face wiping behaviors. MGS scores were also attenuated by scavenging putative endogenous ligands for TRPV1 or TRPA1. Simultaneous inhibition of TRPA1 by AP18 and TRPV1 by AMG9810 in masseter muscle resulted in robust inhibition of both MGS and face wiping behaviors. Administration of AP18 or AMG9810 to masseter muscle induced conditioned place preference (CPP). The extent of CPP following simultaneous administration of AP18 and AMG9810 was greater than that induced by the individual antagonists. In contrast, inflammation-induced reduction of bite force was not affected by the inhibition of TRPA1 alone or in combination with TRPV1. These results suggest that simultaneous inhibition of TRPV1 and TRPA1 produces additive relief of spontaneous pain, but does not ameliorate bite-evoked pain during masseter inflammation. Our results provide further evidence that distinct mechanisms underlie spontaneous and bite-evoked pain from inflamed masseter muscle.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Benjamin Brigoli
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jongseuk Lim
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Alisha Karley
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
44
|
Stanford KR, Taylor-Clark TE. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PLoS One 2018; 13:e0197106. [PMID: 29734380 PMCID: PMC5937758 DOI: 10.1371/journal.pone.0197106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Inflammation causes nociceptive sensory neuron activation, evoking debilitating symptoms and reflexes. Inflammatory signaling pathways are capable of modulating mitochondrial function, resulting in reactive oxygen species (ROS) production, mitochondrial depolarization and calcium release. Previously we showed that mitochondrial modulation with antimycin A, a complex III inhibitor, selectively stimulated nociceptive bronchopulmonary C-fibers via the activation of transient receptor potential (TRP) ankyrin 1 (A1) and vanilloid 1 (V1) cation channels. TRPA1 is ROS-sensitive, but there is little evidence that TRPV1 is activated by ROS. Here, we used dual imaging of dissociated vagal neurons to investigate the correlation of mitochondrial superoxide production (mitoSOX) or mitochondrial depolarization (JC-1) with cytosolic calcium (Fura-2AM), following mitochondrial modulation by antimycin A, rotenone (complex I inhibitor) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, mitochondrial uncoupling agent). Mitochondrial modulation by all agents selectively increased cytosolic calcium in a subset of TRPA1/TRPV1-expressing (A1/V1+) neurons. There was a significant correlation between antimycin A-induced calcium responses and mitochondrial superoxide in wild-type 'responding' A1/V1+ neurons, which was eliminated in TRPA1-/- neurons, but not TRPV1-/- neurons. Nevertheless, antimycin A-induced superoxide production did not always increase calcium in A1/V1+ neurons, suggesting a critical role of an unknown factor. CCCP caused both superoxide production and mitochondrial depolarization but neither correlated with calcium fluxes in A1/V1+ neurons. Rotenone-induced calcium responses in 'responding' A1/V1+ neurons correlated with mitochondrial depolarization but not superoxide production. Our data are consistent with the hypothesis that mitochondrial dysfunction causes calcium fluxes in a subset of A1/V1+ neurons via ROS-dependent and ROS-independent mechanisms.
Collapse
Affiliation(s)
- Katherine R. Stanford
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
45
|
Horváth Á, Tékus V, Bencze N, Szentes N, Scheich B, Bölcskei K, Szőke É, Mócsai A, Tóth-Sarudy É, Mátyus P, Pintér E, Helyes Z. Analgesic effects of the novel semicarbazide-sensitive amine oxidase inhibitor SZV 1287 in mouse pain models with neuropathic mechanisms: Involvement of transient receptor potential vanilloid 1 and ankyrin 1 receptors. Pharmacol Res 2018; 131:231-243. [DOI: 10.1016/j.phrs.2018.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
|
46
|
Antinociceptive Activity of Methanolic Extract of Clinacanthus nutans Leaves: Possible Mechanisms of Action Involved. Pain Res Manag 2018; 2018:9536406. [PMID: 29686743 PMCID: PMC5857305 DOI: 10.1155/2018/9536406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
Collapse
|
47
|
TRPA1-dependent reversible opening of tight junction by natural compounds with an α,β-unsaturated moiety and capsaicin. Sci Rep 2018; 8:2251. [PMID: 29396565 PMCID: PMC5797179 DOI: 10.1038/s41598-018-20526-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/19/2018] [Indexed: 12/25/2022] Open
Abstract
The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca2+ influx, we first screened the compounds that induce Ca2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,β-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,β-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca2+ influx and TJ permeability increase not only by an α,β-unsaturated compound but also by capsaicin. Our results indicate that the α,β-unsaturated moiety can be a potent pharmacophore for TJ opening.
Collapse
|
48
|
Mokry J, Urbanova A, Kertys M, Mokra D. Inhibitors of phosphodiesterases in the treatment of cough. Respir Physiol Neurobiol 2018; 257:107-114. [PMID: 29337269 DOI: 10.1016/j.resp.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
A group of 11 enzyme families of metalophosphohydrolases called phosphodiesterases (PDEs) is responsible for a hydrolysis of intracellular cAMP and cGMP. Xanthine derivatives (methylxanthines) inhibit PDEs without selective action on their single isoforms and lead to many pharmacological effects, e.g. bronchodilation, anti-inflammatory and immunomodulating effects, and thus they can modulate the cough reflex. Contrary, selective PDE inhibitors have been developed to inhibit PDE isoforms with different pharmacological effects based on their tissue expression. In this paper, effects of non-selective PDE inhibitors (e.g. theophylline) are discussed, with a description of other putative mechanisms in their effects on cough. Antitussive effects of selective inhibitors of several PDE isoforms are reviewed, focusing on PDE1, PDE3, PDE4, PDE5 and PDE7. The inhibition of PDEs suggests participation of bronchodilation, suppression of TRPV channels and anti-inflammatory action in cough suppression. Selective PDE3, PDE4 and PDE5 inhibitors have demonstrated the most significant cough suppressive effects, confirming their benefits in chronic inflammatory airway diseases associated with bronchoconstriction and cough.
Collapse
Affiliation(s)
- Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Anna Urbanova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
49
|
Griggs RB, Laird DE, Donahue RR, Fu W, Taylor BK. Methylglyoxal Requires AC1 and TRPA1 to Produce Pain and Spinal Neuron Activation. Front Neurosci 2017; 11:679. [PMID: 29270106 PMCID: PMC5723675 DOI: 10.3389/fnins.2017.00679] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/21/2017] [Indexed: 12/04/2022] Open
Abstract
Methylglyoxal (MG) is a metabolite of glucose that may contribute to peripheral neuropathy and pain in diabetic patients. MG increases intracellular calcium in sensory neurons and produces behavioral nociception via the cation channel transient receptor potential ankyrin 1 (TRPA1). However, rigorous characterization of an animal model of methylglyoxal-evoked pain is needed, including testing whether methylglyoxal promotes negative pain affect. Furthermore, it remains unknown whether methylglyoxal is sufficient to activate neurons in the spinal cord dorsal horn, whether this requires TRPA1, and if the calcium-sensitive adenylyl cyclase 1 isoform (AC1) contributes to MG-evoked pain. We administered intraplantar methylglyoxal and then evaluated immunohistochemical phosphorylation of extracellular signal-regulated kinase (p-ERK) and multiple pain-like behaviors in wild-type rats and mice and after disruption of either TRPA1 or AC1. Methylglyoxal produced conditioned place avoidance (CPA) (a measure of affective pain), dose-dependent licking and lifting nociceptive behaviors, hyperalgesia to heat and mechanical stimulation, and p-ERK in the spinal cord dorsal horn. TRPA1 knockout or intrathecal administration of a TRPA1 antagonist (HC030031) attenuated methylglyoxal-evoked p-ERK, nociception, and hyperalgesia. AC1 knockout abolished hyperalgesia but not nociceptive behaviors. These results indicate that intraplantar administration of methylglyoxal recapitulates multiple signs of painful diabetic neuropathy found in animal models of or patients with diabetes, including the activation of spinal nociresponsive neurons and the potential involvement of a TRPA1-AC1 sensitization mechanism. We conclude that administration of MG is a valuable model for investigating both peripheral and central components of a MG-TRPA1-AC1 pathway that contribute to painful diabetic neuropathy.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Don E Laird
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Renee R Donahue
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, United States.,Center for Analgesia Research Excellence, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Weisi Fu
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY, United States.,Center for Analgesia Research Excellence, University of Kentucky College of Medicine, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
50
|
Zinc Inhibits TRPV1 to Alleviate Chemotherapy-Induced Neuropathic Pain. J Neurosci 2017; 38:474-483. [PMID: 29192128 DOI: 10.1523/jneurosci.1816-17.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023] Open
Abstract
Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1.SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.
Collapse
|