1
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Krug S, Gupta M, Kumar P, Feller L, Ihms EA, Kang BG, Srikrishna G, Dawson TM, Dawson VL, Bishai WR. Inhibition of host PARP1 contributes to the anti-inflammatory and antitubercular activity of pyrazinamide. Nat Commun 2023; 14:8161. [PMID: 38071218 PMCID: PMC10710439 DOI: 10.1038/s41467-023-43937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manish Gupta
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laine Feller
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Ihms
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
4
|
Geffen Y, Anand S, Akiyama Y, Yaron TM, Song Y, Johnson JL, Govindan A, Babur Ö, Li Y, Huntsman E, Wang LB, Birger C, Heiman DI, Zhang Q, Miller M, Maruvka YE, Haradhvala NJ, Calinawan A, Belkin S, Kerelsky A, Clauser KR, Krug K, Satpathy S, Payne SH, Mani DR, Gillette MA, Dhanasekaran SM, Thiagarajan M, Mesri M, Rodriguez H, Robles AI, Carr SA, Lazar AJ, Aguet F, Cantley LC, Ding L, Getz G. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023; 186:3945-3967.e26. [PMID: 37582358 PMCID: PMC10680287 DOI: 10.1016/j.cell.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.
Collapse
Affiliation(s)
- Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yo Akiyama
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tomer M Yaron
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Yizhe Song
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared L Johnson
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Akshay Govindan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Yize Li
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Huntsman
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Liang-Bo Wang
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Qing Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yosef E Maruvka
- Biotechnology and Food Engineering, Lokey Center for Life Science and Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Nicholas J Haradhvala
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anna Calinawan
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saveliy Belkin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander Kerelsky
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - François Aguet
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Lewis C Cantley
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA.
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Lee JH, Hussain M, Kim EW, Cheng SJ, Leung AKL, Fakouri NB, Croteau DL, Bohr VA. Mitochondrial PARP1 regulates NAD +-dependent poly ADP-ribosylation of mitochondrial nucleoids. Exp Mol Med 2022; 54:2135-2147. [PMID: 36473936 PMCID: PMC9794712 DOI: 10.1038/s12276-022-00894-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 12/12/2022] Open
Abstract
PARPs play fundamental roles in multiple DNA damage recognition and repair pathways. Persistent nuclear PARP activation causes cellular NAD+ depletion and exacerbates cellular aging. However, very little is known about mitochondrial PARP (mtPARP) and poly ADP-ribosylation (PARylation). The existence of mtPARP is controversial, and the biological roles of mtPARP-induced mitochondrial PARylation are unclear. Here, we demonstrate the presence of PARP1 and PARylation in purified mitochondria. The addition of the PARP1 substrate NAD+ to isolated mitochondria induced PARylation, which was suppressed by treatment with the inhibitor olaparib. Mitochondrial PARylation was also evaluated by enzymatic labeling of terminal ADP-ribose (ELTA). To further confirm the presence of mtPARP1, we evaluated mitochondrial nucleoid PARylation by ADP ribose-chromatin affinity purification (ADPr-ChAP) and PARP1 chromatin immunoprecipitation (ChIP). We observed that NAD+ stimulated PARylation and TFAM occupancy on the mtDNA regulatory region D-loop, inducing mtDNA transcription. These findings suggest that PARP1 is integrally involved in mitochondrial PARylation and that NAD+-dependent mtPARP1 activity contributes to mtDNA transcriptional regulation.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Mansoor Hussain
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Departments of Oncology, Genetics Medicine, Molecular Biology & Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Nima Borhan Fakouri
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Computational Biology and Genomic Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Palve V, Knezevic CE, Bejan DS, Luo Y, Li X, Novakova S, Welsh EA, Fang B, Kinose F, Haura EB, Monteiro AN, Koomen JM, Cohen MS, Lawrence HR, Rix U. The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chem Biol 2022; 29:202-214.e7. [PMID: 34329582 PMCID: PMC8782927 DOI: 10.1016/j.chembiol.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
PARP inhibitors (PARPis) display single-agent anticancer activity in small cell lung cancer (SCLC) and other neuroendocrine tumors independent of BRCA1/2 mutations. Here, we determine the differential efficacy of multiple clinical PARPis in SCLC cells. Compared with the other PARPis rucaparib, olaparib, and niraparib, talazoparib displays the highest potency across SCLC, including SLFN11-negative cells. Chemical proteomics identifies PARP16 as a unique talazoparib target in addition to PARP1. Silencing PARP16 significantly reduces cell survival, particularly in combination with PARP1 inhibition. Drug combination screening reveals talazoparib synergy with the WEE1/PLK1 inhibitor adavosertib. Global phosphoproteomics identifies disparate effects on cell-cycle and DNA damage signaling thereby illustrating underlying mechanisms of synergy, which is more pronounced for talazoparib than olaparib. Notably, silencing PARP16 further reduces cell survival in combination with olaparib and adavosertib. Together, these data suggest that PARP16 contributes to talazoparib's overall mechanism of action and constitutes an actionable target in SCLC.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Claire E. Knezevic
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel S. Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunting Luo
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xueli Li
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Silvia Novakova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Harshani R. Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
9
|
Saada J, McAuley RJ, Marcatti M, Tang TZ, Motamedi M, Szczesny B. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. J Biol Chem 2022; 298:101523. [PMID: 34953858 PMCID: PMC8753185 DOI: 10.1016/j.jbc.2021.101523] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress, inflammation, and aberrant activation of microglia in the retina are commonly observed in ocular pathologies. In glaucoma or age-related macular degeneration, the chronic activation of microglia affects retinal ganglion cells and photoreceptors, respectively, contributing to gradual vision loss. However, the molecular mechanisms that cause activation of microglia in the retina are not fully understood. Here we show that exposure of retinal pigment epithelial (RPE) cells to chronic low-level oxidative stress induces mitochondrial DNA (mtDNA)-specific damage, and the subsequent translocation of damaged mtDNA to the cytoplasm results in the binding and activation of intracellular DNA receptor Z-DNA-binding protein 1 (ZBP1). Activation of the mtDNA/ZBP1 pathway triggers the expression of proinflammatory markers in RPE cells. In addition, we show that the enhanced release of extracellular vesicles (EVs) containing fragments of mtDNA derived from the apical site of RPE cells induces a proinflammatory phenotype of microglia via activation of ZBP1 signaling. Collectively, our report establishes oxidatively damaged mtDNA as an important signaling molecule with ZBP1 as its intracellular receptor in the development of an inflammatory response in the retina. We propose that this novel mtDNA-mediated autocrine and paracrine mechanism for triggering and maintaining inflammation in the retina may play an important role in ocular pathologies. Therefore, the molecular mechanisms identified in this report are potentially suitable therapeutic targets to ameliorate development of ocular pathologies.
Collapse
Affiliation(s)
- Jamal Saada
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ryan J McAuley
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michela Marcatti
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tony Zifeng Tang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
10
|
Richartz N, Pietka W, Gilljam KM, Skah S, Skålhegg BS, Bhagwat S, Naderi EH, Ruud E, Blomhoff HK. cAMP-Mediated Autophagy Promotes Cell Survival via ROS-Induced Activation of PARP1: Implications for Treatment of Acute Lymphoblastic Leukemia. Mol Cancer Res 2021; 20:400-411. [PMID: 34880123 DOI: 10.1158/1541-7786.mcr-21-0652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 12/09/2022]
Abstract
DNA-damaging therapy is the basis for treatment of most cancers, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL). We have previously shown that cAMP-activating factors present in the bone marrow render ALL cells less sensitive to DNA damage-induced apoptosis, by enhancing autophagy and suppressing p53. To sensitize ALL cells to DNA-damaging therapy, we have searched for novel targets that may counteract the effects induced by cAMP signaling. In the current study, we have identified PARP1 as a potential target. We show that the PARP1 inhibitors olaparib or PJ34 inhibit cAMP-mediated autophagy and thereby potentiate the DNA-damaging treatment. Furthermore, we reveal that cAMP-mediated PARP1 activation is preceded by induction of reactive oxygen species (ROS) and results in depletion of nicotinamide adenine dinucleotide (NAD), both of which are autophagy-promoting events. Accordingly, we demonstrate that scavenging ROS by N-acetylcysteine and repleting NAD independently reduce DNA damage-induced autophagy. In addition, olaparib augmented the effect of DNA-damaging treatment in a human xenograft model of ALL in NOD-scidIL2Rgammanull mice. On the basis of the current findings, we suggest that PARP1 inhibitors may enhance the efficiency of conventional genotoxic therapies and thereby provide a novel treatment strategy for pediatric patients with ALL. IMPLICATIONS: PARP1 inhibitors augment the DNA damage-induced killing of ALL cells by limiting the opposing effects of cAMP-mediated autophagy, which involves ROS-induced PARP1 activation and depletion of cellular NAD levels.
Collapse
Affiliation(s)
- Nina Richartz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Wojciech Pietka
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karin M Gilljam
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Seham Skah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sampada Bhagwat
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Hallan Naderi
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Oncology, Section of Head and Neck Oncology, Oslo University Hospital, Oslo, Norway
| | - Ellen Ruud
- Department of Hematology and Oncology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heidi Kiil Blomhoff
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
12
|
Wang X, Li F, Liu J, Li Q, Ji C, Wu H. New insights into the mechanism of hepatocyte apoptosis induced by typical organophosphate ester: An integrated in vitro and in silico approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112342. [PMID: 34023725 DOI: 10.1016/j.ecoenv.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Apoptosis is one of the typical features of liver diseases, therefore molecular targets of hepatic apoptosis and regulatory mechanisms need to be further investigated. The caspases play important functions in the execution of apoptosis and many studies have focused on classical caspase-dependent cell death pathways. However, other types of cell death pathways (such as mitochondrial poly (ADP-ribose) polymerase-1 (PARP1) pathway) are suggested to be also as important as the caspase-mediated pathways in reflection of early toxic effects in hepatocytes, which requires additional research. In this work, an approach integrated in silico and in vitro was used to investigate the underlying toxicological mechanisms of hepatocyte apoptosis through the PARP1 dependent cell death pathway induced by triphenyl phosphate (TPP). Docking view showed that TPP could interact with helix αJ to affect the activation of PARP1 as a molecular initial event. In vitro assays suggested some biochemical events downstream of PARP1 activation, such as mitochondrial injury, apoptosis inducing factor (AIF) release, reactive oxygen species (ROS) production, and DNA damage. Moreover, the apoptosis was alleviated when cells were pretreated with PJ34 hydrochloride (PARP1 inhibitor), suggesting the mitochondrial PARP1 dependent pathway played a pivotal role in L02 cells apoptosis. This study indicated that PARP1 was an important molecular target in this process. And it also helped to understand the mechanism of hepatocytes apoptosis, early hepatic toxicity, and even liver diseases.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Jialin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
| | - Qiongyu Li
- Binzhou Medical University, Yantai 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
13
|
Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021; 10:680. [PMID: 33808662 PMCID: PMC8003356 DOI: 10.3390/cells10030680] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts.
Collapse
Affiliation(s)
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
14
|
Abdelghany L, El-Mahdy N, Kawabata T, Goto S, Li TS. Dipyridamole induces the phosphorylation of CREB to promote cancer cell proliferation. Oncol Lett 2021; 21:251. [PMID: 33664815 PMCID: PMC7882894 DOI: 10.3892/ol.2021.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/30/2020] [Indexed: 11/06/2022] Open
Abstract
Dipyridamole, a traditional anti-platelet drug, has been reported to inhibit the proliferation of cancer cells. The present study aimed to investigate the possibility of dipyridamole as an adjuvant of chemotherapy by enhancing the cytotoxicity of an anti-cancer drug. The cytotoxicity of colorectal cancer cells (HCT-8), CD133+/CD44+ stem-like subpopulation of HCT-8 cells and lymphoma cells (U937) to dipyridamole and/or doxorubicin was evaluated using MTT proliferation and colony forming assays. The expression levels of phosphorylated cAMP-regulatory element-binding protein (pCREB) and poly(ADP-ribose) polymerase-1 (PARP-1) in cells were analyzed via western blotting and immunofluorescence. The present study reported controversial data regarding the anti-cancer effect of dipyridamole. Dipyridamole increased, rather than inhibited, the proliferation of HCT-8 and U937 cells in a dose-dependent manner. Furthermore, it was found that dipyridamole significantly increased the expression levels of pCREB and PARP-1. However, the combined usage of dipyridamole significantly enhanced the cytotoxicity of doxorubicin to HCT-8 cells at particular doses. Based on the current findings, dipyridamole likely induces the phosphorylation of CREB to promote the proliferation of cancer cells, but may enhance the cytotoxicity of anti-cancer drugs at particular doses.
Collapse
Affiliation(s)
- Lina Abdelghany
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Nageh El-Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
15
|
Ho J, Jang KH, Koo TS, Park C, Kim YH, Lee J, Kim E. Protective effects of PARP1-inhibitory compound in dry age-related macular degeneration. Biomed Pharmacother 2021; 133:111041. [PMID: 33378949 DOI: 10.1016/j.biopha.2020.111041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1)-dependent cell death in the retinal pigment epithelium (RPE) is implicated in dry age-related macular degeneration (AMD). Although PARP1 inhibitors are available for treating dry AMD, their delivery route is not ideal for patients. The aim of this study was to test the efficacy of a novel PARP1-inhibitory compound (PIC) in vitro and in vivo. This study presents PIC, a novel small molecule, with superior efficacy to PARP1 inhibitors in the market. PIC demonstrated a distinctive inhibitory profile against PARP isotypes than the FDA-approved PARP1 inhibitors. PIC inhibited PARP1 activation at an IC50 of 0.41 ± 0.15 nM in an enzyme-based assay in vitro and at IC50 and EC50 in ARPE-19 cells of 0.11 ± 0.02 nM and 0.22 ± 0.02 nM, respectively, upon H2O2 insult. PIC also moderated mitochondrial fission and depolarization and maintained cellular energy levels under oxidative stress in ARPE-19 cells. Furthermore, PIC demonstrated good corneal penetration in a rat model, presenting PIC as a promising candidate for eye drop therapeutics for dry AMD. When PIC was administered as an eye drop formulation, RPE morphology was preserved, maintaining the thickness of the outer nuclear layers under sodium iodate (SI) treatment in rats. In SI-treated rabbits, eye drop administration of PIC also retained the structural and functional integrity when analyzed using funduscopy and electroretinogram. Collectively, our data portray PIC as an attractive treatment measure for dry AMD.
Collapse
Affiliation(s)
- Jeongmin Ho
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Changmin Park
- Kukjepharma R&D Center, Sanseong-ro 47, Ansan, Gyeonggi-do, South Korea
| | - Young-Hoon Kim
- Kukjepharma R&D Center, Sanseong-ro 47, Ansan, Gyeonggi-do, South Korea
| | - Juhee Lee
- Kukjepharma R&D Center, Sanseong-ro 47, Ansan, Gyeonggi-do, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
16
|
Hu D, Li S, Hu S, Sun Y, Xiao L, Li C, Wang J, Wang Y, Ni L, Zhao C, Wang DW. A Common Missense Variant in OMA1 Associated with the Prognosis of Heart Failure. Cardiovasc Drugs Ther 2020; 34:345-356. [PMID: 32236861 DOI: 10.1007/s10557-020-06960-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Mitochondrial dysfunction plays a vital role in the pathophysiologic process of heart failure (HF). As a quality control system, mitochondrial fusion and fission are under control of mitochondrial fusion and fission-related proteins. The objective of this study was to investigate the effects of common variants in mitochondrial fusion and fission-related genes on the prognosis of HF. METHODS We performed whole exome sequencing (WES) with 1000 HF patients; the statistically significant variant was further genotyped in the replicated population with 2324 HF patients. A series of function analysis including western blot, cell proliferation assay, and in vitro OMA1 activity assay were conducted to illuminate the underlying mechanism. RESULTS We identified a missense variant rs17117699 associated with the prognosis of HF in group without β-blocker use rather than with β-blocker use in two-stage population: adjusted P = 0.79, HR = 0.88 (0.36-2.13) in group with β-blocker use and adjusted P = 0.016, HR = 1.43 (1.07-1.91) in group without β-blocker in first-stage population; adjusted P = 0.42, HR = 0.85 (0.56-1.28) in group with β-blocker use and adjusted P = 0.015, HR = 1.39 (1.06-1.82) in group without β-blocker in replicated stage. Functional analysis indicated that rs17117699-G allele increased the activity of OMA1 assessed by the ratio of S-OPA1 to L-OPA1 and suppressed cells proliferation under ISO treatment when compared with rs17117699-T allele. Furthermore, OMA1 functioned downstream of β-adrenergic receptor signaling and ISO-induced OPA1 cleavage is dependent on OMA1. CONCLUSIONS Our findings demonstrate that rs17117699T>G in OMA1 increases the risk of HF mortality via enhancing its OPA1 cleavage activity. It is a promising potential treatment target for HF. CLINICAL TRIAL REGISTRATION NCT03461107. https://www.clinicaltrials.gov/ct2/show/NCT03461107?term=03461107&cond=Heart+Failure&cntry=CN&rank=1.
Collapse
Affiliation(s)
- Dong Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Shiyang Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Senlin Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chenze Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
17
|
Kadam A, Jubin T, Roychowdhury R, Garg A, Parmar N, Palit SP, Begum R. Insights into the functional aspects of poly(ADP-ribose) polymerase-1 (PARP-1) in mitochondrial homeostasis in Dictyostelium discoideum. Biol Cell 2020; 112:222-237. [PMID: 32324907 DOI: 10.1111/boc.201900104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) Polymerase-1 (PARP-1) is predominantly a nuclear protein and involved in various cellular processes like DNA repair, cell death, development, chromatin modulation etc. PARP-1 utilizes NAD+ and adds negatively charged PAR moieties on the target proteins. Over-activation of PARP-1 has been shown to cause energy crisis mediated cell death in which mitochondrial homeostasis is also affected. Moreover, the presence of mitochondrial NAD+ pools highlights the role of PARP-1 in mitochondria. The aim of present study is to understand the physiological role of PARP-1 in regulating mitochondrial functioning by varying the levels of PARP-1 in Dictyostelium discoideum. Intra-mitochondrial PARylation was analyzed by indirect immunofluorescence. Further, the effect of altered levels of PARP-1 i.e. overexpression, downregulation, knockout and its chemical inhibition was studied on mitochondrial respiration, reactive oxygen species (ROS) levels, ATP production, mitochondrial fission-fusion, mitochondrial morphology and mitochondrial DNA (mtDNA) content of D. discoideum. RESULTS Our results show intra-mitochondrial PARylation under oxidative stress. Altered levels of PARP-1 caused impairment in the mitochondrial respiratory capacity, leading to elevated ROS levels and reduced ATP production. Moreover, PARP-1 affects the mitochondrial morphology and mtDNA content, alters the mitochondrial fission-fusion processes in lieu of preventing cell death under physiological conditions. CONCLUSION The current study highlights the physiological role of PARP-1 in mitochondrial respiration, its morphology, fission-fusion processes and mtDNA maintenance in D. discoideum. SIGNIFICANCE This study would provide new clues on the PARP-1's crucial role in mitochondrial homeostasis, exploring the therapeutic potential of PARP-1 in various mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Abhishek Garg
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| |
Collapse
|
18
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
19
|
Zhang XN, Cheng Q, Chen J, Lam AT, Lu Y, Dai Z, Pei H, Evdokimov NM, Louie SG, Zhang Y. A ribose-functionalized NAD + with unexpected high activity and selectivity for protein poly-ADP-ribosylation. Nat Commun 2019; 10:4196. [PMID: 31519936 PMCID: PMC6744458 DOI: 10.1038/s41467-019-12215-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)-dependent ADP-ribosylation plays important roles in physiology and pathophysiology. It has been challenging to study this key type of enzymatic post-translational modification in particular for protein poly-ADP-ribosylation (PARylation). Here we explore chemical and chemoenzymatic synthesis of NAD+ analogues with ribose functionalized by terminal alkyne and azido groups. Our results demonstrate that azido substitution at 3'-OH of nicotinamide riboside enables enzymatic synthesis of an NAD+ analogue with high efficiency and yields. Notably, the generated 3'-azido NAD+ exhibits unexpected high activity and specificity for protein PARylation catalyzed by human poly-ADP-ribose polymerase 1 (PARP1) and PARP2. And its derived poly-ADP-ribose polymers show increased resistance to human poly(ADP-ribose) glycohydrolase-mediated degradation. These unique properties lead to enhanced labeling of protein PARylation by 3'-azido NAD+ in the cellular contexts and facilitate direct visualization and labeling of mitochondrial protein PARylation. The 3'-azido NAD+ provides an important tool for studying cellular PARylation.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yanran Lu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA. .,Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Hopp AK, Grüter P, Hottiger MO. Regulation of Glucose Metabolism by NAD + and ADP-Ribosylation. Cells 2019; 8:cells8080890. [PMID: 31412683 PMCID: PMC6721828 DOI: 10.3390/cells8080890] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
Cells constantly adapt their metabolic pathways to meet their energy needs and respond to nutrient availability. During the last two decades, it has become increasingly clear that NAD+, a coenzyme in redox reactions, also mediates several ubiquitous cell signaling processes. Protein ADP-ribosylation is a post-translational modification that uses NAD+ as a substrate and is best known as part of the genotoxic stress response. However, there is increasing evidence that NAD+-dependent ADP-ribosylation regulates other cellular processes, including metabolic pathways. In this review, we will describe the compartmentalized regulation of NAD+ biosynthesis, consumption, and regeneration with a particular focus on the role of ADP-ribosylation in the regulation of glucose metabolism in different cellular compartments.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, CH-8057 Zurich, Switzerland
| | - Patrick Grüter
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
21
|
Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, Bayır H. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 2019; 145:209-219. [PMID: 30009835 PMCID: PMC6309489 DOI: 10.1016/j.neuropharm.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are a keystone of neuronal function, serving a dual role as sustainer of life and harbinger of death. While mitochondria are indispensable for energy production, a dysregulated mitochondrial network can spell doom for both neurons and the functions they provide. Traumatic brain injury (TBI) is a complex and biphasic injury, often affecting children and young adults. The primary pathological mechanism of TBI is mechanical, too rapid to be mitigated by anything but prevention. However, the secondary injury of TBI evolves over hours and days after the initial insult providing a window of opportunity for intervention. As a nexus point of both survival and death during this second phase, targeting mitochondrial pathology in TBI has long been an attractive strategy. Often these attempts are mired by efficacy-limiting unintended off-target effects. Specific delivery to and enrichment of therapeutics at their submitochondrial site of action can reduce deleterious effects and increase potency. Mitochondrial drug localization is accomplished using (1) the mitochondrial membrane potential, (2) affinity of a carrier to mitochondria-specific components (e.g. lipids), (3) piggybacking on the cells own mitochondria trafficking systems, or (4) nanoparticle-based approaches. In this review, we briefly consider the mitochondrial delivery strategies and drug targets that illustrate the promise of these mitochondria-specific approaches in the design of TBI pharmacotherapy. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M Kenny
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elif Soysal
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR. NAD metabolism fuels human and mouse intestinal inflammation. Gut 2018; 67:1813-1823. [PMID: 28877980 PMCID: PMC6145287 DOI: 10.1136/gutjnl-2017-314241] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nicotinamide phosphoribosyltransferase (NAMPT, also referred to as pre-B cell colony-enhancing factor or visfatin) is critically required for the maintenance of cellular nicotinamide adenine dinucleotide (NAD) supply catalysing the rate-limiting step of the NAD salvage pathway. NAMPT is strongly upregulated in inflammation including IBD and counteracts an increased cellular NAD turnover mediated by NAD-depleting enzymes. These constitute an important mechanistic link between inflammatory, metabolic and transcriptional pathways and NAD metabolism. DESIGN We investigated the impact of NAMPT inhibition by the small-molecule inhibitor FK866 in the dextran sulfate sodium (DSS) model of colitis and the azoxymethane/DSS model of colitis-associated cancer. The impact of NAD depletion on differentiation of mouse and human primary monocytes/macrophages was studied in vitro. Finally, we tested the efficacy of FK866 compared with dexamethasone and infliximab in lamina propria mononuclear cells (LPMNC) isolated from patients with IBD. RESULTS FK866 ameliorated DSS-induced colitis and suppressed inflammation-associated tumorigenesis in mice. FK866 potently inhibited NAMPT activity as demonstrated by reduced mucosal NAD, resulting in reduced abundances and activities of NAD-dependent enzymes including PARP1, Sirt6 and CD38, reduced nuclear factor kappa B activation, and decreased cellular infiltration by inflammatory monocytes, macrophages and activated T cells. Remarkably, FK866 effectively supressed cytokine release from LPMNCs of patients with IBD. As FK866 was also effective in Rag1-⁄- mice, we mechanistically linked FK866 treatment with altered monocyte/macrophage biology and skewed macrophage polarisation by reducing CD86, CD38, MHC-II and interleukin (IL)-6 and promoting CD206, Egr2 and IL-10. CONCLUSION Our data emphasise the importance of NAD immunometabolism for mucosal immunity and highlight FK866-mediated NAMPT blockade as a promising therapeutic approach in acute intestinal inflammation.
Collapse
Affiliation(s)
- Romana R Gerner
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Victoria Klepsch
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Sophie Macheiner
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Kathrin Arnhard
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Hsu PC, Gopinath RK, Hsueh YA, Shieh SY. CHK2-mediated regulation of PARP1 in oxidative DNA damage response. Oncogene 2018; 38:1166-1182. [PMID: 30254210 DOI: 10.1038/s41388-018-0506-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/02/2018] [Accepted: 09/02/2018] [Indexed: 12/22/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor, which upon activation, recruits downstream proteins by poly(ADP-ribosyl)ation (PARylation). However, it remains largely unclear how PARP1 activity is regulated. Interestingly, the data obtained through this study revealed that PARP1 was co-immunoprecipitated with checkpoint kinase 2 (CHK2), and the interaction was increased after oxidative DNA damage. Moreover, CHK2 depletion resulted in a reduction in overall PARylation. To further explore the functional relationship between PARP1 and CHK2, this study employed H2O2 to induce an oxidative DNA damage response in cells. Here, we showed that CHK2 and PARP1 interact in vitro and in vivo through the CHK2 SCD domain and the PARP1 BRCT domain. Furthermore, CHK2 stimulates the PARylation activity of PARP1 through CHK2-dependent phosphorylation. Consequently, the impaired repair associated with PARP1 depletion could be rescued by re-expression of wild-type PARP1 and the phospho-mimic but not the phospho-deficient mutant. Mechanistically, we showed that CHK2-dependent phosphorylation of PARP1 not only regulates its cellular localization but also promotes its catalytic activity and its interaction with XRCC1. These findings indicate that CHK2 exerts a multifaceted impact on PARP1 in response to oxidative stress to facilitate DNA repair and to maintain cell survival.
Collapse
Affiliation(s)
- Pei-Ching Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan
| | | | - Yi-An Hsueh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan
| | - Sheau-Yann Shieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128 Sec 2, Academia Road, Taipei, 115, Taiwan.
| |
Collapse
|
24
|
Kirmizibayrak PB, Ilhan R, Yilmaz S, Gunal S, Tepedelen BE. A Src/Abl kinase inhibitor, bosutinib, downregulates and inhibits PARP enzyme and sensitizes cells to the DNA damaging agents. TURKISH JOURNAL OF BIOCHEMISTRY 2018. [DOI: 10.1515/tjb-2017-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Poly(ADP-ribosyl)ation (PARylation) catalyzed mainly by PARP1 is a highly regulated posttranslational modification associated with several pathways in cellular physiology and genotoxic deoxyribonucleic acid (DNA) damage response. PAR polymers and PARP enzyme function in DNA integrity maintenance and several PARP inhibitors have entered clinical phase studies for cancer therapies.Material and methods:The effect of bosutinib, a dual Src/Abl kinase inhibitor, on PARylation was fluorometrically measured. The cytotoxic and chemosensitizing effects were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of DNA repair proteins and PARP enzyme were examined by immunoblotting.Results:In this study, bosutinib is characterized as a novel PARP inhibitor. Bosutinib inhibited oxidative stress-induced cellular PARylation and nuclear foci formation by downregulating PARP1 levels. Bosutinib was found to be more cytotoxic on Capan1 cells with BRCA2 mutation. Furthermore by acting as a chemosensitizer, bosutinib enhanced the cytotoxicity of doxorubicin (DOXO) and etoposide (ETP) by decreasing phosphorylation of DNA repair enzymes checkpoint kinase 1 (Chk1) and ataxia-telangiectasia mutated (ATM).Conclusion:By inhibition of both PARP and DNA damage checkpoint kinases, bosutinib increased the phospho-H2AX levels, an early indicator of DNA double strand breaks.
Collapse
|
25
|
Pulliam N, Fang F, Ozes AR, Tang J, Adewuyi A, Keer H, Lyons J, Baylin SB, Matei D, Nakshatri H, Rassool FV, Miller KD, Nephew KP. An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA Mutations. Clin Cancer Res 2018; 24:3163-3175. [PMID: 29615458 DOI: 10.1158/1078-0432.ccr-18-0204] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Purpose: PARP inhibitors (PARPi) are primarily effective against BRCA1/2-mutated breast and ovarian cancers, but resistance due to reversion of mutated BRCA1/2 and other mechanisms is common. Based on previous reports demonstrating a functional role for DNMT1 in DNA repair and our previous studies demonstrating an ability of DNA methyltransferase inhibitor (DNMTi) to resensitize tumors to primary therapies, we hypothesized that combining a DNMTi with PARPi would sensitize PARPi-resistant breast and ovarian cancers to PARPi therapy, independent of BRCA status.Experimental Design: Breast and ovarian cancer cell lines (BRCA-wild-type/mutant) were treated with PARPi talazoparib and DNMTi guadecitabine. Effects on cell survival, ROS accumulation, and cAMP levels were examined. In vivo, mice bearing either BRCA-proficient breast or ovarian cancer cells were treated with talazoparib and guadecitabine, alone or in combination. Tumor progression, gene expression, and overall survival were analyzed.Results: Combination of guadecitabine and talazoparib synergized to enhance PARPi efficacy, irrespective of BRCA mutation status. Coadministration of guadecitabine with talazoparib increased accumulation of ROS, promoted PARP activation, and further sensitized, in a cAMP/PKA-dependent manner, breast and ovarian cancer cells to PARPi. In addition, DNMTi enhanced PARP "trapping" by talazoparib. Guadecitabine plus talazoparib decreased xenograft tumor growth and increased overall survival in BRCA-proficient high-grade serous ovarian and triple-negative breast cancer models.Conclusions: The novel combination of the next-generation DNMTi guadecitabine and the first-in-class PARPi talazoparib inhibited breast and ovarian cancers harboring either wild-type- or mutant-BRCA, supporting further clinical exploration of this drug combination in PARPi-resistant cancers. Clin Cancer Res; 24(13); 3163-75. ©2018 AACR.
Collapse
Affiliation(s)
- Nicholas Pulliam
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Ali R Ozes
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Jessica Tang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Adeoluwa Adewuyi
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Harold Keer
- Astex Pharmaceuticals, Inc., Pleasanton, California
| | - John Lyons
- Astex Therapeutics Limited, Cambridge, United Kingdom
| | - Stephen B Baylin
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Feyruz V Rassool
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana. .,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Margulies CM, Chaim IA, Mazumder A, Criscione J, Samson LD. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms. PLoS One 2017; 12:e0184619. [PMID: 28886188 PMCID: PMC5590993 DOI: 10.1371/journal.pone.0184619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023] Open
Abstract
Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.
Collapse
Affiliation(s)
- Carrie M. Margulies
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Isaac Alexander Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aprotim Mazumder
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - June Criscione
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Leona D. Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ahmed YM, Messiha BAS, Abo-Saif AA. Granisetron and carvedilol can protect experimental rats againstadjuvant-induced arthritis. Immunopharmacol Immunotoxicol 2017; 39:97-104. [PMID: 28211304 DOI: 10.1080/08923973.2017.1286502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Rheumatoid arthritis (RA), a disabling autoimmune disorder of the joints as well as other organs, affects about 1% of population. Unfortunately, all current treatments of RA cause severe gastrointestinal, renal and other complications. OBJECTIVE We aimed to evaluate the possible antiarthritic effects of a serotonin 5-HT3 receptor blocker, granisetron, and a nonselective adrenergic receptor blocker, carvedilol, on complete Freund's adjuvant-induced RA in adult female albino rats. MATERIALS AND METHODS Rats were allocated into a normal control group, an arthritis control group, two reference treatment groups receiving dexamethasone (1.5 mg/kg/day) and methotrexate (1 mg/kg/day), and two treatment groups receiving granisetron (2.5 mg/kg/day) and carvedilol (10 mg/kg/day). Serum-specific rheumatoid, immunological, inflammatory and oxidative stress biomarkers were assessed. A confirmatory histopathological study on joints and spleens was performed. RESULTS Granisetron administration significantly improved all the measured biomarkers, with the values of rheumatoid factor, matrix metalloproteinase-3, cartilage oligomeric matrix protein, immunoglobulin G, antinuclear antibody and myeloperoxidase being restored back to normal levels. Carvedilol administration significantly improved all biomarkers, with serum MPO value restored back to normal levels. DISCUSSION AND CONCLUSIONS Serotonin 5-HT3 receptor blockers and adrenergic receptor blockers, represented by granisetron and carvedilol, may represent new promising protective strategies against RA, at least owing to immune-modulator, anti-inflammatory and antioxidant potentials.
Collapse
Affiliation(s)
- Yasmin Moustafa Ahmed
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Nahda University , Beni-Suef , Egypt
| | | | - Ali Ahmed Abo-Saif
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Nahda University , Beni-Suef , Egypt
| |
Collapse
|
28
|
Brunyanszki A, Szczesny B, Virág L, Szabo C. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radic Biol Med 2016; 100:257-270. [PMID: 26964508 PMCID: PMC5016203 DOI: 10.1016/j.freeradbiomed.2016.02.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Among multiple members of the poly(ADP-ribose) polymerase (PARP) family, PARP1 accounts for the majority of PARP activity in mammalian cells. Although PARP1 is predominantly localized to the nucleus, and its nuclear regulatory roles are most commonly studied and are the best characterized, several lines of data demonstrate that PARP1 is also present in the mitochondria, and suggest that mitochondrial PARP (mtPARP) plays an important role in the regulation of various cellular functions in health and disease. The goal of the current article is to review the experimental evidence for the mitochondrial localization of PARP1 and its intra-mitochondrial functions, with focus on cellular bioenergetics, mitochondrial DNA repair and mitochondrial dysfunction. In addition, we also propose a working model for the interaction of mitochondrial and nuclear PARP during oxidant-induced cell death. MtPARP is similar to the Wizard of Oz in the sense that it is enigmatic, it has been elusive for a long time and it remains difficult to be interrogated. mtPARP - at least in some cell types - works incessantly "behind the curtains" as an orchestrator of many important cellular functions.
Collapse
Affiliation(s)
- Attila Brunyanszki
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospital for Children, Galveston, TX, USA.
| |
Collapse
|
29
|
To Set Up a Logistic Regression Prediction Model for Hepatotoxicity of Chinese Herbal Medicines Based on Traditional Chinese Medicine Theory. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7273940. [PMID: 27656240 PMCID: PMC5021893 DOI: 10.1155/2016/7273940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/26/2016] [Accepted: 08/14/2016] [Indexed: 12/03/2022]
Abstract
Aims. To establish a logistic regression (LR) prediction model for hepatotoxicity of Chinese herbal medicines (HMs) based on traditional Chinese medicine (TCM) theory and to provide a statistical basis for predicting hepatotoxicity of HMs. Methods. The correlations of hepatotoxic and nonhepatotoxic Chinese HMs with four properties, five flavors, and channel tropism were analyzed with chi-square test for two-way unordered categorical data. LR prediction model was established and the accuracy of the prediction by this model was evaluated. Results. The hepatotoxic and nonhepatotoxic Chinese HMs were related with four properties (p < 0.05), and the coefficient was 0.178 (p < 0.05); also they were related with five flavors (p < 0.05), and the coefficient was 0.145 (p < 0.05); they were not related with channel tropism (p > 0.05). There were totally 12 variables from four properties and five flavors for the LR. Four variables, warm and neutral of the four properties and pungent and salty of five flavors, were selected to establish the LR prediction model, with the cutoff value being 0.204. Conclusions. Warm and neutral of the four properties and pungent and salty of five flavors were the variables to affect the hepatotoxicity. Based on such results, the established LR prediction model had some predictive power for hepatotoxicity of Chinese HMs.
Collapse
|
30
|
Ahmad A, Olah G, Szczesny B, Wood ME, Whiteman M, Szabo C. AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo. Shock 2016; 45:88-97. [PMID: 26513708 PMCID: PMC4684477 DOI: 10.1097/shk.0000000000000478] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. Pretreatment with AP39 (30-300 nM) exerted a concentration-dependent protective effect against all of the above effects of GOx. Most of the effects of AP39 followed a bell-shaped concentration-response curve; at the highest concentration of GOx tested, AP39 was no longer able to afford cytoprotective effects. Rats subjected to renal ischemia/reperfusion responded with a marked increase (over four-fold over sham control baseline) blood urea nitrogen and creatinine levels in blood, indicative of significant renal damage. This was associated with increased neutrophil infiltration into the kidneys (assessed by the myeloperoxidase assay in kidney homogenates), increased oxidative stress (assessed by the malondialdehyde assay in kidney homogenates), and an increase in plasma levels of IL-12. Pretreatment with AP39 (0.1, 0.2, and 0.3 mg/kg) provided a dose-dependent protection against these pathophysiological alterations; the most pronounced protective effect was observed at the 0.3 mg/kg dose of the H2S donor; nevertheless, AP39 failed to achieve a complete normalization of any of the injury markers measured. The partial protective effects of AP39 correlated with a partial improvement of kidney histological scores and reduced TUNEL staining (an indicator of DNA damage and apoptosis). In summary, the mitochondria-targeted H2S donor AP39 exerted dose-dependent protective effects against renal epithelial cell injury in vitro and renal ischemia-reperfusion injury in vivo. We hypothesize that the beneficial actions of AP39 are related to the reduction of cellular oxidative stress, and subsequent attenuation of various positive feed-forward cycles of inflammatory and oxidative processes.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Olah
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
- Shriners Hospital for Children, Galveston, TX, USA
| | - Mark E. Wood
- Department of Biosciences, College of Life and Environmental Science, University of Exeter, England
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
- Shriners Hospital for Children, Galveston, TX, USA
| |
Collapse
|
31
|
Szczesny B, Brunyánszki A, Ahmad A, Oláh G, Porter C, Toliver-Kinsky T, Sidossis L, Herndon DN, Szabo C. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury. PLoS One 2015; 10:e0143730. [PMID: 26630679 PMCID: PMC4668069 DOI: 10.1371/journal.pone.0143730] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/08/2015] [Indexed: 01/11/2023] Open
Abstract
Severe thermal injury induces a pathophysiological response that affects most of the organs within the body; liver, heart, lung, skeletal muscle among others, with inflammation and hyper-metabolism as a hallmark of the post-burn damage. Oxidative stress has been implicated as a key component in development of inflammatory and metabolic responses induced by burn. The goal of the current study was to evaluate several critical mitochondrial functions in a mouse model of severe burn injury. Mitochondrial bioenergetics, measured by Extracellular Flux Analyzer, showed a time dependent, post-burn decrease in basal respiration and ATP-turnover but enhanced maximal respiratory capacity in mitochondria isolated from the liver and lung of animals subjected to burn injury. Moreover, we detected a tissue-specific degree of DNA damage, particularly of the mitochondrial DNA, with the most profound effect detected in lungs and hearts of mice subjected to burn injury. Increased mitochondrial biogenesis in lung tissue in response to burn injury was also observed. Burn injury also induced time dependent increases in oxidative stress (measured by amount of malondialdehyde) and neutrophil infiltration (measured by myeloperoxidase activity), particularly in lung and heart. Tissue mononuclear cell infiltration was also confirmed by immunohistochemistry. The amount of poly(ADP-ribose) polymers decreased in the liver, but increased in the heart in later time points after burn. All of these biochemical changes were also associated with histological alterations in all three organs studied. Finally, we detected a significant increase in mitochondrial DNA fragments circulating in the blood immediately post-burn. There was no evidence of systemic bacteremia, or the presence of bacterial DNA fragments at any time after burn injury. The majority of the measured parameters demonstrated a sustained elevation even at 20–40 days post injury suggesting a long-lasting effect of thermal injury on organ function. The current data show that there are marked time-dependent and tissue-specific alterations in mitochondrial function induced by thermal injury, and suggest that mitochondria-specific damage is one of the earliest responses to burn injury. Mitochondria may be potential therapeutic targets in the future experimental therapy of burns.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Shriners Hospitals for Children, Galveston, TX, United States of America
| | - Attila Brunyánszki
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Gabor Oláh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Craig Porter
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Labros Sidossis
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - David N Herndon
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Shriners Hospitals for Children, Galveston, TX, United States of America
| |
Collapse
|
32
|
Brunyanszki A, Erdelyi K, Szczesny B, Olah G, Salomao R, Herndon DN, Szabo C. Upregulation and Mitochondrial Sequestration of Hemoglobin Occur in Circulating Leukocytes during Critical Illness, Conferring a Cytoprotective Phenotype. Mol Med 2015; 21:666-675. [PMID: 26322851 DOI: 10.2119/molmed.2015.00187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
The classical role of hemoglobin in the erythrocytes is to carry oxygen from the lungs to the tissues via the circulation. However, hemoglobin also acts as a redox regulator and as a scavenger of the gaseous mediators nitric oxide (NO) and hydrogen sulfide (H2S). Here we show that upregulation of hemoglobin (α, β and δ variants of globin proteins) occurs in human peripheral blood mononuclear cells (PBMCs) in critical illness (patients with severe third-degree burn injury and patients with sepsis). The increase in intracellular hemoglobin concentration is a result of a combination of enhanced protein expression and uptake from the extra-cellular space via a CD163-dependent mechanism. Intracellular hemoglobin preferentially localizes to the mitochondria, where it interacts with complex I and, on the one hand, increases mitochondrial respiratory rate and mitochondrial membrane potential, and on the other hand, protects from H2O2-induced cytotoxicity and mitochondrial DNA damage. Both burn injury and sepsis were associated with increased plasma levels of H2S. Incubation of mononuclear cells with H2S induced hemoglobin mRNA upregulation in PBMCs in vitro. Intracellular hemoglobin upregulation conferred a protective effect against cell dysfunction elicited by H2S. Hemoglobin uptake also was associated with a protection from, and induced the upregulation of, HIF-1α and Nrf2 mRNA. In conclusion, PBMCs in critical illness upregulate their intracellular hemoglobin levels by a combination of active synthesis and uptake from the extracellular medium. We propose that this process serves as a defense mechanism protecting the cell against cytotoxic concentrations of H2S and other gaseous transmitters, oxidants and free radicals produced in critically ill patients.
Collapse
Affiliation(s)
- Attila Brunyanszki
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Katalin Erdelyi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America.,Shriners Hospital for Children, Galveston, Texas, United States of America
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Reinaldo Salomao
- Division of Infectious Diseases, Department of Medicine, Hospital Sao Paulo, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - David N Herndon
- Shriners Hospital for Children, Galveston, Texas, United States of America.,Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America.,Shriners Hospital for Children, Galveston, Texas, United States of America
| |
Collapse
|
33
|
Oláh G, Szczesny B, Brunyánszki A, López-García IA, Gerö D, Radák Z, Szabo C. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS One 2015. [PMID: 26218895 PMCID: PMC4517814 DOI: 10.1371/journal.pone.0134227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1), the major isoform of the poly (ADP-ribose) polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose) (PAR) groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12) and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor) exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6). Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant-induced injury. Taken together, our data indicate that the reduction of PARP-1 expression during the process of the skeletal muscle differentiation serves as a protective mechanism to maintain the cellular functions of skeletal muscle during oxidative stress.
Collapse
Affiliation(s)
- Gábor Oláh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
| | - Attila Brunyánszki
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Isabel A. López-García
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Domokos Gerö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Zsolt Radák
- Faculty of Physical Education and Sport Sciences, Semmelweis University, Alkotás Str. 44, Budapest, Hungary
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Impaired mitochondrial structure and function are common features of neurodegenerative disorders, ultimately characterized by the death of neural cells promoted by still unknown signals. Among the possible modulators of neurodegeneration, the activation of poly(ADP-ribosylation), a post-translational modification of proteins, has been considered, being the product of the reaction, poly(ADP-ribose), a signaling molecule for different cell death paradigms. The basic properties of poly(ADP-ribosylation) are here described, focusing on the mitochondrial events; cell death paradigms such as apoptosis, parthanatos, necroptosis and mitophagy are illustrated. Finally, the promising use of poly(ADP-ribosylation) inhibitors to rescue neurodegeneration is addressed.
Collapse
Affiliation(s)
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|