1
|
Kuebler WM. GQ style: a multipronged therapeutic approach to pulmonary arterial hypertension. Pflugers Arch 2025; 477:31-33. [PMID: 39681778 PMCID: PMC11711705 DOI: 10.1007/s00424-024-03056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Dwyer MB, Aumiller JL, Wedegaertner PB. Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G α in Human Cancer. Mol Pharmacol 2024; 106:198-215. [PMID: 39187387 PMCID: PMC11493338 DOI: 10.1124/molpharm.124.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
G protein-coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and βγ subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein βγ subunits (Gβγ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβγ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants. SIGNIFICANCE STATEMENT: Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.
Collapse
Affiliation(s)
- Morgan B Dwyer
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenna L Aumiller
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Lan J, Wu Q, Huang N, Zhang H, Yang Y, Chen L, Zhou N, He X. Identification of sulfakinin receptor regulating feeding behavior and hemolymph trehalose homeostasis in the silkworm, Bombyx mori. Sci Rep 2024; 14:14191. [PMID: 38902334 PMCID: PMC11190223 DOI: 10.1038/s41598-024-65177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Feeding behavior, the most fundamental physiological activity, is controlled by two opposing groups of factors, orexigenic and anorexigenic factors. The sulfakinin family, an insect analogue of the mammalian satiety factor cholecystokinin (CCK), has been shown to suppress food intake in various insects. Nevertheless, the mechanisms through which sulfakinin regulates feeding behavior remain a biological question. This study aimed to elucidate the signaling pathway mediated by the anorexigenic peptide sulfakinin in Bombyx mori. We identified the Bombyx mori neuropeptide G protein-coupled receptor A9 (BNGR-A9) as the receptor for sulfakinin through functional assays. Stimulation with sulfakinin triggered a swift increase in intracellular IP3, Ca2+, and a notable enhancement of ERK1/2 phosphorylation, in a manner sensitive to a Gαq-specific inhibitor. Treatment with synthetic sulfakinin resulted in decreased food consumption and average body weight. Additionally, administering synthetic sulfakinin to silkworms significantly elevated hemolymph trehalose levels, an effect markedly reduced by pre-treatment with BNGR-A9 dsRNA. Consequently, our findings establish the sulfakinin/BNGR-A9 signaling pathway as a critical regulator of feeding behavior and hemolymph trehalose homeostasis in Bombyx mori, highlighting its roles in the negative control of food intake and the positive regulation of energy balance.
Collapse
Affiliation(s)
- Jiajing Lan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qi Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Nan Huang
- Department of Clinical Laboratory, The First People's Hospital of Lin'an District, Hangzhou, 311399, Zhejiang, China
| | - Hong Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuanfei Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xiaobai He
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
5
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Björkman L, Forsman H, Bergqvist L, Dahlgren C, Sundqvist M. Larixol is not an inhibitor of Gα i containing G proteins and lacks effect on signaling mediated by human neutrophil expressed formyl peptide receptors. Biochem Pharmacol 2024; 220:115995. [PMID: 38151076 DOI: 10.1016/j.bcp.2023.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Neutrophils express several G protein-coupled receptors (GPCRs) connected to intracellular Gαi or Gαq containing G proteins for down-stream signaling. To dampen GPCR mediated inflammatory processes, several inhibitors targeting the receptors and/or their down-stream signals, have been developed. Potent and selective inhibitors for Gαq containing G proteins are available, but potent and specific inhibitors of Gαi containing G proteins are lacking. Recently, Larixol, a compound extracted from the root of Euphorbia formosana, was shown to abolish human neutrophil functions induced by N-formyl-methionyl-leucyl-phenylalanine (fMLF), an agonist recognized by formyl peptide receptor 1 (FPR1) which couple to Gαi containing G proteins. The inhibitory effect was suggested to be due to interference with/inhibition of signals transmitted by βγ complexes of the Gαi containing G proteins coupled to FPR1. In this study, we applied Larixol, obtained from two different commercial sources, to determine the receptor- and G protein- selectivity of this compound in human neutrophils. However, our data show that Larixol not only lacks inhibitory effect on neutrophil responses mediated through FPR1, but also on responses mediated through FPR2, a Gαi coupled GPCR closely related to FPR1. Furthermore, Larixol did not display any features as a selective inhibitor of neutrophil responses mediated through the Gαq coupled GPCRs for platelet activating factor and ATP. Hence, our results imply that the inhibitory effects described for the root extract of Euphorbia formosana are not mediated by Larixol and that the search for a selective inhibitor of G protein dependent signals generated by Gαi coupled neutrophil GPCRs must continue.
Collapse
Affiliation(s)
- Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Bergqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Björkman L, Forsman H, Bergqvist L, Dahlgren C, Sundqvist M. WITHDRAWN: Larixol is not an inhibitor of Gα i containing G proteins and lacks effect on signaling mediated by human neutrophil expressed formyl peptide receptors. Biochem Pharmacol 2023:115919. [PMID: 37952896 DOI: 10.1016/j.bcp.2023.115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Bergqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Hanke W, Alenfelder J, Liu J, Gutbrod P, Kehraus S, Crüsemann M, Dörmann P, Kostenis E, Scholz M, König GM. The Bacterial G q Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes. J Chem Ecol 2023; 49:549-569. [PMID: 37453001 PMCID: PMC10725363 DOI: 10.1007/s10886-023-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Jun Liu
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
- Bonn International Graduate School - Land and Food, University of Bonn, Katzenburgweg 9, D-53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Monika Scholz
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| |
Collapse
|
9
|
Matera MG, Rinaldi B, Calzetta L, Rogliani P, Cazzola M. Advances in adrenergic receptors for the treatment of chronic obstructive pulmonary disease: 2023 update. Expert Opin Pharmacother 2023; 24:2133-2142. [PMID: 37955136 DOI: 10.1080/14656566.2023.2282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION Strong scientific evidence and large experience support the use of β2-agonists for the symptomatic alleviation of COPD. Therefore, there is considerable effort in discovering highly potent and selective β2-agonists. AREAS COVERED Recent research on novel β2-agonists for the treatment of COPD. A detailed literature search was performed in two major databases (PubMed/MEDLINE and Scopus) up to September 2023." EXPERT OPINION Compounds that preferentially activate a Gs- or β-arrestin-mediated signaling pathway via β- adrenoceptors (ARs) are more innovative. Pepducins, which target the intracellular region of β2-AR to modulate receptor signaling output, have the most interesting profile from a pharmacological point of view. They stabilize the conformation of the β2-AR and influence its signaling by interacting with the intracellular receptor-G protein interface. New bifunctional drugs called muscarinic antagonist-β2 agonist (MABA), which have both muscarinic receptor (mAChR) antagonism and β2-agonist activity in the same molecule, are a new opportunity. However, all tested compounds have been shown to act predominantly as mAChR antagonists or β2-agonists. An intriguing idea is to utilize allosteric modulators that bind to β2-ARs at sites different than those bound by orthosteric ligands to augment or reduce the signaling transduced by the orthosteric ligand.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
10
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
11
|
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022; 11:1513. [PMID: 36558847 PMCID: PMC9784349 DOI: 10.3390/pathogens11121513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but with little success). Oral diseases have long been established as clinical risk factors for developing respiratory diseases. The establishment of a very similar microbiome in the mouth and the lung confirms the oral-lung connection. The aspiration of pathogenic microbes from the oral cavity has been implicated in several respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD). This review focuses on current and future pharmacotherapeutic approaches for COPD exacerbation including antimicrobials, mucoregulators, the use of bronchodilators and anti-inflammatory drugs, modifying epigenetic marks, and modulating dysbiosis of the microbiome.
Collapse
Affiliation(s)
- Yehudis Rosenwasser
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Irene Berger
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Zvi G. Loewy
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
12
|
Xu H, Tilley DG. Pepducin-mediated G Protein-Coupled Receptor Signaling in the Cardiovascular System. J Cardiovasc Pharmacol 2022; 80:378-385. [PMID: 35170495 PMCID: PMC9365886 DOI: 10.1097/fjc.0000000000001236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Pepducins are small-lipidated peptides designed from the intracellular loops of G protein-coupled receptors (GPCRs) that act in an allosteric manner to modulate the activity of GPCRs. Over the past 2 decades, pepducins have progressed initially from pharmacologic tools used to manipulate GPCR activity in an orthosteric site-independent manner to compounds with therapeutic potential that have even been used safely in phase 1 and 2 clinical trials in human subjects. The effect of pepducins at their cognate receptors has been shown to vary between antagonist, partial agonist, and biased agonist outcomes in various primary and clonal cell systems, with even small changes in amino acid sequence altering these properties and their receptor selectivity. To date, pepducins designed from numerous GPCRs have been studied for their impact on pathologic conditions, including cardiovascular diseases such as thrombosis, myocardial infarction, and atherosclerosis. This review will focus in particular on pepducins designed from protease-activated receptors, C-X-C motif chemokine receptors, formyl peptide receptors, and the β2-adrenergic receptor. We will discuss the historic context of pepducin development for each receptor, as well as the structural, signaling, pathophysiologic consequences, and therapeutic potential for each pepducin class.
Collapse
Affiliation(s)
- Heli Xu
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | |
Collapse
|
13
|
Deeney BT, Cao G, Orfanos S, Lee J, Kan M, Himes BE, Parikh V, Koziol-White CJ, An SS, Panettieri RA. Epinephrine evokes shortening of human airway smooth muscle cells following β 2 adrenergic receptor desensitization. Am J Physiol Lung Cell Mol Physiol 2022; 323:L142-L151. [PMID: 35787178 PMCID: PMC9359643 DOI: 10.1152/ajplung.00444.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Epinephrine (EPI), an endogenous catecholamine involved in the body's fight-or-flight responses to stress, activates α1-adrenergic receptors (α1ARs) expressed on various organs to evoke a wide range of physiological functions, including vasoconstriction. In the smooth muscle of human bronchi, however, the functional role of EPI on α1ARs remains controversial. Classically, evidence suggests that EPI promotes bronchodilation by stimulating β2-adrenergic receptors (β2ARs). Conventionally, the selective β2AR agonism of EPI was thought to be, in part, due to a predominance of β2ARs and/or a sparse, or lack of α1AR activity in human airway smooth muscle (HASM) cells. Surprisingly, we find that HASM cells express a high abundance of ADRA1B (the α1AR subtype B) and identify a spontaneous "switch-like" activation of α1ARs that evokes intracellular calcium, myosin light chain phosphorylation, and HASM cell shortening. The switch-like responses, and related EPI-induced biochemical and mechanical signals, emerged upon pharmacological inhibition of β2ARs and/or under experimental conditions that induce β2AR tachyphylaxis. EPI-induced procontractile effects were abrogated by an α1AR antagonist, doxazosin mesylate (DM). These data collectively uncover a previously unrecognized feed-forward mechanism driving bronchospasm via two distinct classes of G protein-coupled receptors (GPCRs) and provide a basis for reexamining α1AR inhibition for the management of stress/exercise-induced asthma and/or β2-agonist insensitivity in patients with difficult-to-control, disease subtypes.
Collapse
Affiliation(s)
- Brian T Deeney
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Sarah Orfanos
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jordan Lee
- The Joint Graduate Program in Toxicology, Department of Pharmacology and Toxicology, Rutgers-Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vishal Parikh
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- The Joint Graduate Program in Toxicology, Department of Pharmacology and Toxicology, Rutgers-Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
14
|
The Future of Bronchodilators in COPD and Asthma. ARCHIVOS DE BRONCONEUMOLOGÍA 2022; 58:107-108. [DOI: 10.1016/j.arbres.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
|
15
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
17
|
Michael E, Covic L, Kuliopulos A. Lipopeptide Pepducins as Therapeutic Agents. Methods Mol Biol 2021; 2383:307-333. [PMID: 34766299 DOI: 10.1007/978-1-0716-1752-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pepducins are lipidated peptides that target the intracellular loops of G protein-coupled receptors (GPCRs) in order to modulate transmembrane signaling to internally located effectors. With a wide array of potential activities ranging from partial, biased, or full agonism to antagonism, pepducins represent a versatile class of compounds that can be used to potentially treat diverse human diseases or be employed as novel tools to probe complex mechanisms of receptor activation and signaling in cells and in animals. Here, we describe a number of different pepducins including an advanced compound, PZ-128, that has successfully progressed through phase 2 clinical trials in cardiac patients demonstrating safety and efficacy in suppressing myonecrosis and arterial thrombosis.
Collapse
Affiliation(s)
- Emily Michael
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lidija Covic
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Athan Kuliopulos
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
18
|
Olson KM, Traynor JR, Alt A. Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Front Chem 2021; 9:671483. [PMID: 34692635 PMCID: PMC8529114 DOI: 10.3389/fchem.2021.671483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Allosteric modulators (AMs) of G-protein coupled receptors (GPCRs) are desirable drug targets because they can produce fewer on-target side effects, improved selectivity, and better biological specificity (e.g., biased signaling or probe dependence) than orthosteric drugs. An underappreciated source for identifying AM leads are peptides and proteins-many of which were evolutionarily selected as AMs-derived from endogenous protein-protein interactions (e.g., transducer/accessory proteins), intramolecular receptor contacts (e.g., pepducins or extracellular domains), endogenous peptides, and exogenous libraries (e.g., nanobodies or conotoxins). Peptides offer distinct advantages over small molecules, including high affinity, good tolerability, and good bioactivity, and specific disadvantages, including relatively poor metabolic stability and bioavailability. Peptidomimetics are molecules that combine the advantages of both peptides and small molecules by mimicking the peptide's chemical features responsible for bioactivity while improving its druggability. This review 1) discusses sources and strategies to identify peptide/peptidomimetic AMs, 2) overviews strategies to convert a peptide lead into more drug-like "peptidomimetic," and 3) critically analyzes the advantages, disadvantages, and future directions of peptidomimetic AMs. While small molecules will and should play a vital role in AM drug discovery, peptidomimetics can complement and even exceed the advantages of small molecules, depending on the target, site, lead, and associated factors.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Alt
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Seibel-Ehlert U, Plank N, Inoue A, Bernhardt G, Strasser A. Label-Free Investigations on the G Protein Dependent Signaling Pathways of Histamine Receptors. Int J Mol Sci 2021; 22:9739. [PMID: 34575903 PMCID: PMC8467282 DOI: 10.3390/ijms22189739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
G protein activation represents an early key event in the complex GPCR signal transduction process and is usually studied by label-dependent methods targeting specific molecular events. However, the constrained environment of such "invasive" techniques could interfere with biological processes. Although histamine receptors (HRs) represent (evolving) drug targets, their signal transduction is not fully understood. To address this issue, we established a non-invasive dynamic mass redistribution (DMR) assay for the human H1-4Rs expressed in HEK cells, showing excellent signal-to-background ratios above 100 for histamine (HIS) and higher than 24 for inverse agonists with pEC50 values consistent with literature. Taking advantage of the integrative nature of the DMR assay, the involvement of endogenous Gαq/11, Gαs, Gα12/13 and Gβγ proteins was explored, pursuing a two-pronged approach, namely that of classical pharmacology (G protein modulators) and that of molecular biology (Gα knock-out HEK cells). We showed that signal transduction of hH1-4Rs occurred mainly, but not exclusively, via their canonical Gα proteins. For example, in addition to Gαi/o, the Gαq/11 protein was proven to contribute to the DMR response of hH3,4Rs. Moreover, the Gα12/13 was identified to be involved in the hH2R mediated signaling pathway. These results are considered as a basis for future investigations on the (patho)physiological role and the pharmacological potential of H1-4Rs.
Collapse
Affiliation(s)
- Ulla Seibel-Ehlert
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Nicole Plank
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Guenther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| | - Andrea Strasser
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany; (N.P.); (G.B.)
| |
Collapse
|
20
|
Sharma P, Yadav SK, Shah SD, Javed E, Lim JM, Pan S, Nayak AP, Panettieri RA, Penn RB, Kambayashi T, Deshpande DA. Diacylglycerol Kinase Inhibition Reduces Airway Contraction by Negative Feedback Regulation of Gq-signaling. Am J Respir Cell Mol Biol 2021; 65:658-671. [PMID: 34293268 DOI: 10.1165/rcmb.2021-0106oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exaggerated airway smooth muscle (ASM) contraction regulated by the Gq family of G protein-coupled receptors (GPCRs) causes airway hyperresponsiveness (AHR) in asthma. Activation of Gq-coupled GPCRs leads to phospholipase C (PLC)-mediated generation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG signaling is terminated by the action of DAG kinase (DGK) that converts DAG into phosphatidic acid (PA). Our previous study demonstrated that DGKα and ζ isoform knockout mice are protected from the development of allergen-induced AHR. Here we aimed at determining the mechanism by which DGK regulates ASM contraction. Activity of DGK isoforms was inhibited in human ASM cells by siRNA-mediated knockdown of DGKα and ζwhile pharmacological inhibition was achieved by pan DGK inhibitor I (R59022). Effects of DGK inhibition on contractile agonist-induced activation of PLC and myosin light chain (MLC) kinase, elevation of IP3, and calcium levels were assessed. Further, we employed human precision-cut lung slices and assessed the role of DGK in agonist-induced bronchoconstriction. DGK inhibitor I attenuated histamine- and methacholine-induced bronchoconstriction. DGKα and ζ knockdown or pre-treatment with DGK inhibitor I resulted in attenuated agonist-induced phosphorylation of MLC and myosin light chain phosphatase in ASM cells. Further, DGK inhibition decreased Gq agonist-induced calcium elevation, generation of IP3, and increased histamine-induced production of PA. Finally, DGK inhibition or treatment with DAG analog resulted in attenuation of activation of PLC in human ASM cells. Our findings suggest that DGK inhibition perturbed the DAG:PA ratio resulting in inhibition of Gq-PLC activation in a negative feedback manner, resulting in protection against ASM contraction.
Collapse
Affiliation(s)
- Pawan Sharma
- Thomas Jefferson University - Center City Campus, 6559, Medicine, Philadelphia, Pennsylvania, United States.,University of Tasmania Faculty of Health, 60119, Hobart, Tasmania, Australia
| | - Santosh K Yadav
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Sushrut D Shah
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Elham Javed
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - John M Lim
- Thomas Jefferson University Sidney Kimmel Medical College, 12313, Philadelphia, Pennsylvania, United States
| | - Shi Pan
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Ajay P Nayak
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Reynold A Panettieri
- Rutgers University, 242612, Rutgers Institute for Translational Medicine and Science, Child Health Institute, New Brunswick, New Jersey, United States
| | - Raymond B Penn
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Taku Kambayashi
- University of Pennsylvania, 6572, Pathology, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Thomas Jefferson University, 6559, Center for Translational Medicine, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
21
|
Hermes C, König GM, Crüsemann M. The chromodepsins - chemistry, biology and biosynthesis of a selective Gq inhibitor natural product family. Nat Prod Rep 2021; 38:2276-2292. [PMID: 33998635 DOI: 10.1039/d1np00005e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to April 2021The bacterial cyclic depsipeptides FR900359 (FR) and YM-254890 (YM) were shown to selectively inhibit Gαq proteins with high potency and selectivity and have recently emerged as valuable pharmacological tools due to their effective mechanism of action. Here, we summarize important aspects of this small and specialized natural product family, for which we propose the name chromodepsins, starting from their discovery, producing organisms and structural variety. We then review biosynthesis, structure-activity relationships and ecological and evolutionary aspects of the chromodepsins. Lastly, we discuss their mechanism of action, potential medicinal applications and future opportunities and challenges for further use and development of these complex inhibitor molecules from nature.
Collapse
Affiliation(s)
- Cornelia Hermes
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Gabriele M König
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
22
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Schlegel JG, Tahoun M, Seidinger A, Voss JH, Kuschak M, Kehraus S, Schneider M, Matthey M, Fleischmann BK, König GM, Wenzel D, Müller CE. Macrocyclic Gq Protein Inhibitors FR900359 and/or YM-254890-Fit for Translation? ACS Pharmacol Transl Sci 2021; 4:888-897. [PMID: 33860209 DOI: 10.1021/acsptsci.1c00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-binding proteins (G proteins) transduce extracellular signals received by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. While GPCRs represent the largest class of drug targets, G protein inhibition has only recently been recognized as a novel strategy for treating complex diseases such as asthma, inflammation, and cancer. The structurally similar macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent selective inhibitors of the Gq subfamily of G proteins. FR and YM differ in two positions, FR being more lipophilic than YM. Both compounds are utilized as pharmacological tools to block Gq proteins in vitro and in vivo. However, no detailed characterization of FR and YM has been performed, which is a prerequisite for the compounds' translation into clinical application. Here, we performed a thorough study of both compounds' physicochemical, pharmacokinetic, and pharmacological properties. Chemical stability was high across a large range of pH values, with FR being somewhat more stable than YM. Oral bioavailability and brain penetration of both depsipeptides were low. FR showed lower plasma protein binding and was metabolized significantly faster than YM by human and mouse liver microsomes. FR accumulated in lung after chronic intratracheal or intraperitoneal application, while YM was more distributed to other organs. Most strikingly, the previously observed longer residence time of FR resulted in a significantly prolonged pharmacologic effect as compared to YM in a methacholine-induced bronchoconstriction mouse model. These results prove that changes within a molecule which seem marginal compared to its structural complexity can lead to crucial pharmacological differences.
Collapse
Affiliation(s)
- Jonathan G Schlegel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alexander Seidinger
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Markus Kuschak
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Daniela Wenzel
- Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.,Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
24
|
Holdfeldt A, Lind S, Hesse C, Dahlgren C, Forsman H. The PAR4-derived pepducin P4Pal 10 lacks effect on neutrophil GPCRs that couple to Gαq for signaling but distinctly modulates function of the Gαi-coupled FPR2 and FFAR2. Biochem Pharmacol 2020; 180:114143. [PMID: 32653592 DOI: 10.1016/j.bcp.2020.114143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
A novel mechanism of action was described for the protease-activated receptor 4 (PAR4)-derived pepducin (P4Pal10), when it was shown to exhibit inhibitory efficacy towards G protein coupling to multiple Gαq-coupled receptors (Carr, R., 3rd et al., Mol. Pharmacol. 2016(89) 94). We could confirm that P4Pal10, similar to an earlier-characterized Gαq inhibitor (YM-254890), inhibited platelet aggregation induced by agonists for the Gαq-coupled receptors PAR1 and PAR4. Next, we applied P4Pal10 as a tool compound and investigated its modulatory effect on several Gαq- and Gαi-coupled GPCRs expressed by human neutrophils. P4Pal10 had, however, no inhibitory effects on signaling downstream of the Gαq-coupled receptors for ATP (P2Y2R) and PAF (PAFR). Instead, P4Pal10 inhibited signaling downstream the Gαi-coupled FPR2. The inhibition was not due to a direct effect on Gαi as the closely related FPR1 was unaffected. In addition, we found that the pepducin activated allosterically modulated short chain fatty acid receptor (FFAR2), a Gαi/Gαq coupled GPCR that is functionally expressed in neutrophils. Taken together, we show that pepducins are unique tool-compounds for mechanistic studies of GPCR signaling and modulation in neutrophils. The data presented add also lipopeptides into the known ligand recognition lists for the two pattern recognition receptors FPR2 and FFAR2, receptors that primarily sense formylated peptides and short free fatty acids, respectively, inflammatory mediators of microbial origin.
Collapse
Affiliation(s)
- André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camilla Hesse
- Department for Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
26
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
27
|
Wong GS, Redes JL, Balenga N, McCullough M, Fuentes N, Gokhale A, Koziol-White C, Jude JA, Madigan LA, Chan EC, Jester WH, Biardel S, Flamand N, Panettieri RA, Druey KM. RGS4 promotes allergen- and aspirin-associated airway hyperresponsiveness by inhibiting PGE2 biosynthesis. J Allergy Clin Immunol 2020; 146:1152-1164.e13. [PMID: 32199913 DOI: 10.1016/j.jaci.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergens elicit host production of mediators acting on G-protein-coupled receptors to regulate airway tone. Among these is prostaglandin E2 (PGE2), which, in addition to its role as a bronchodilator, has anti-inflammatory actions. Some patients with asthma develop bronchospasm after the ingestion of aspirin and other nonsteroidal anti-inflammatory drugs, a disorder termed aspirin-exacerbated respiratory disease. This condition may result in part from abnormal dependence on the bronchoprotective actions of PGE2. OBJECTIVE We sought to understand the functions of regulator of G protein signaling 4 (RGS4), a cytoplasmic protein expressed in airway smooth muscle and bronchial epithelium that regulates the activity of G-protein-coupled receptors, in asthma. METHODS We examined RGS4 expression in human lung biopsies by immunohistochemistry. We assessed airways hyperresponsiveness (AHR) and lung inflammation in germline and airway smooth muscle-specific Rgs4-/- mice and in mice treated with an RGS4 antagonist after challenge with Aspergillus fumigatus. We examined the role of RGS4 in nonsteroidal anti-inflammatory drug-associated bronchoconstriction by challenging aspirin-exacerbated respiratory disease-like (ptges1-/-) mice with aspirin. RESULTS RGS4 expression in respiratory epithelium is increased in subjects with severe asthma. Allergen-induced AHR was unexpectedly diminished in Rgs4-/- mice, a finding associated with increased airway PGE2 levels. RGS4 modulated allergen-induced PGE2 secretion in human bronchial epithelial cells and prostanoid-dependent bronchodilation. The RGS4 antagonist CCG203769 attenuated AHR induced by allergen or aspirin challenge of wild-type or ptges1-/- mice, respectively, in association with increased airway PGE2 levels. CONCLUSIONS RGS4 may contribute to the development of AHR by reducing airway PGE2 biosynthesis in allergen- and aspirin-induced asthma.
Collapse
Affiliation(s)
- Gordon S Wong
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Jamie L Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nariman Balenga
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Ameya Gokhale
- Food Allergy Research Unit, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, Md
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Joseph A Jude
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Laura A Madigan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md
| | - William H Jester
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Sabrina Biardel
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'IUCPQ, Département de médecine, Faculté de médecine, Université Laval, Québec, Canada
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Md.
| |
Collapse
|
28
|
Dahlgren C, Holdfeldt A, Lind S, Mårtensson J, Gabl M, Björkman L, Sundqvist M, Forsman H. Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions. ACS Pharmacol Transl Sci 2020; 3:203-220. [PMID: 32296763 DOI: 10.1021/acsptsci.0c00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| |
Collapse
|
29
|
Brouillette RL, Besserer-Offroy É, Mona CE, Chartier M, Lavenus S, Sousbie M, Belleville K, Longpré JM, Marsault É, Grandbois M, Sarret P. Cell-penetrating pepducins targeting the neurotensin receptor type 1 relieve pain. Pharmacol Res 2020; 155:104750. [PMID: 32151680 DOI: 10.1016/j.phrs.2020.104750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/05/2020] [Indexed: 01/29/2023]
Abstract
Pepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation. We observed partial Gαq and Gα13 activation at a 10 μM concentration, indicating that these pepducins may act as allosteric agonists of NTS1. Additionally, we used surface plasmon resonance (SPR) as a label-free assay to monitor pepducin-induced responses in CHO-K1 cells stably expressing hNTS1. This whole-cell integrated assay enabled us to subdivide our pepducin series into three profile response groups. In order to determine the pepducins' antinociceptive potential, we then screened the series in an acute pain model (tail-flick test) by measuring tail withdrawal latencies to a thermal nociceptive stimulus, following intrathecal (i.t.) pepducin administration (275 nmol/kg). We further evaluated promising pepducins in a tonic pain model (formalin test), as well as in neuropathic (Chronic Constriction Injury) and inflammatory (Complete Freund's Adjuvant) chronic pain models. We report one pepducin, PP-001, that consistently reduced rat nociceptive behaviors, even in chronic pain paradigms. Finally, we designed a TAMRA-tagged version of PP-001 and found by confocal microscopy that the pepducin reached the rat dorsal root ganglia post i.t. injection, thus potentially modulating the activity of NTS1 at this location to produce its analgesic effect. Altogether, these results suggest that NTS1-derived pepducins may represent a promising strategy in pain-relief.
Collapse
Affiliation(s)
- Rebecca L Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Élie Besserer-Offroy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Magali Chartier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sandrine Lavenus
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc Sousbie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Karine Belleville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Éric Marsault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Michel Grandbois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
30
|
Haak AJ, Ducharme MT, Diaz Espinosa AM, Tschumperlin DJ. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci 2020; 41:172-182. [PMID: 32008852 DOI: 10.1016/j.tips.2019.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
A variety of G protein-coupled receptors (GPCRs) have been implicated in the pathogenesis of pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. By contrast, recent work has highlighted the beneficial effects of Gαs-coupled GPCRs on reducing fibroblast activation and fibrosis. This review highlights how fibrosis-promoting and -inhibiting GPCR signaling converges on downstream signaling and transcriptional effectors, and how the diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for idiopathic pulmonary fibrosis (IPF). Next-generation strategies to overcome these challenges, focusing on target selection, polypharmacology, and personalized medicine approaches, are discussed as a path towards more effective GPCR-targeted therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Merrick T Ducharme
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
32
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
33
|
Tietze D, Kaufmann D, Tietze AA, Voll A, Reher R, König G, Hausch F. Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. J Chem Inf Model 2019; 59:4361-4373. [PMID: 31539242 DOI: 10.1021/acs.jcim.9b00433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Specific inhibition of G proteins holds a great pharmacological promise to, e.g., target oncogenic Gq/11 proteins and can be achieved by the two natural products FR900359 (FR) and YM-254890 (YM). Unfortunately, recent rational-design-based approaches to address G proteins other than Gq/11/14 subtypes were not successful mainly due to the conformational complexity of these new modalities-like compounds. Here, we report the water-derived NMR structure of YM, which strongly differs from the conformation of Gq-bound YM as found in the crystal structure. Reanalysis of the crystal structure suggests that the water-derived NMR structure of YM also represents a valid solution of the electron density. Extensive molecular dynamic simulations unveiled much higher binding affinities of the water-derived NMR structure compared to the original YM conformation of pdb 3ah8 . Employing a in-silico-designed, fast activating G protein conformation molecular dynamics data ultimately show how the inhibitor impairs the domain motion of the G protein necessary to hinder nucleotide exchange.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany.,Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Desireé Kaufmann
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Andreas Voll
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gabriele König
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Felix Hausch
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| |
Collapse
|
34
|
Tatsumi K, Schmedes CM, Houston ER, Butler E, Mackman N, Antoniak S. Protease-activated receptor 4 protects mice from Coxsackievirus B3 and H1N1 influenza A virus infection. Cell Immunol 2019; 344:103949. [PMID: 31337508 DOI: 10.1016/j.cellimm.2019.103949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
PAR4 is expressed by a variety of cells, including platelets, cardiac, lung and immune cells. We investigated the contribution of PAR4 to viral infections of the heart and lung. Toll-like receptor (TLR) 3-dependent immune responses were analyzed after co-stimulation of PAR4 in murine bone-marrow derived macrophages, embryonic fibroblasts and embryonic cardiomyocytes. In addition, we analyzed Coxsackievirus B3 (CVB3) or H1N1 influenza A virus (H1N1 IAV) infection of PAR4-/- (ΔPAR4) and wild-type (WT) mice. Lastly, we investigated the effect of platelet inhibition on H1N1 IAV infection. In vitro experiments revealed that PAR4 stimulation enhances the expression of TLR3-dependent CXCL10 expression and decreases TLR3-dependent NFκB-mediated proinflammatory gene expression. Furthermore, CVB3-infected ΔPAR4 mice exhibited a decreased anti-viral response and increased viral genomes in the heart leading to more pronounced CVB3 myocarditis compared to WT mice. Similarly, H1N1 IAV-infected ΔPAR4 mice had increased immune cell numbers and inflammatory mediators in the lung, and increased mortality compared with infected WT controls. The study showed that PAR4 protects mice from viral infections of the heart and lung.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Clare M Schmedes
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - E Reaves Houston
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Emily Butler
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Nigel Mackman
- Department of Medicine, Thrombosis and Hemostasis Program, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Bond RA, Lucero Garcia-Rojas EY, Hegde A, Walker JKL. Therapeutic Potential of Targeting ß-Arrestin. Front Pharmacol 2019; 10:124. [PMID: 30894814 PMCID: PMC6414794 DOI: 10.3389/fphar.2019.00124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors that regulate most physiological processes. ß-arrestin modulation of GPCR function includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, transcriptional regulation, and localization of second messenger regulators. The pleiotropic influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-ranging diseases, making them prime therapeutic targets. In this review, we briefly describe the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. The existence of these GPCR dual signaling pathways offers an immense therapeutic opportunity through selective targeting of one signaling pathway over the other. Finally, we will consider several mechanisms by which the potential of dual signaling pathway regulation can be harnessed and the implications for improved disease treatments.
Collapse
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | | |
Collapse
|
36
|
Lapadula D, Farias E, Randolph CE, Purwin TJ, McGrath D, Charpentier TH, Zhang L, Wu S, Terai M, Sato T, Tall GG, Zhou N, Wedegaertner PB, Aplin AE, Aguirre-Ghiso J, Benovic JL. Effects of Oncogenic Gα q and Gα 11 Inhibition by FR900359 in Uveal Melanoma. Mol Cancer Res 2018; 17:963-973. [PMID: 30567972 DOI: 10.1158/1541-7786.mcr-18-0574] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Abstract
Uveal melanoma is the most common intraocular tumor in adults and often metastasizes to the liver, leaving patients with few options. Recurrent activating mutations in the G proteins, Gαq and Gα11, are observed in approximately 93% of all uveal melanomas. Although therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating uveal melanoma, we have found that the Gαq/11 inhibitor, FR900359 (FR), effectively inhibits oncogenic Gαq/11 signaling in uveal melanoma cells expressing either mutant Gαq or Gα11. Inhibition of oncogenic Gαq/11 by FR results in cell-cycle arrest and induction of apoptosis. Furthermore, colony formation is prevented by FR treatment of uveal melanoma cells in 3D-cell culture, providing promise for future in vivo studies. This suggests direct inhibition of activating Gαq/11 mutants may be a potential means of treating uveal melanoma. IMPLICATIONS: Oncogenic Gαq/11 inhibition by FR900359 may be a potential treatment option for those with uveal melanoma.
Collapse
Affiliation(s)
- Dominic Lapadula
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eduardo Farias
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinita E Randolph
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy J Purwin
- Department of Cancer Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dougan McGrath
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas H Charpentier
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lihong Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shihua Wu
- College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Medical College, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Medical College, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Julio Aguirre-Ghiso
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
38
|
Structure–activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. Eur J Med Chem 2018; 156:847-860. [DOI: 10.1016/j.ejmech.2018.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
|
39
|
Matthey M, Roberts R, Seidinger A, Simon A, Schröder R, Kuschak M, Annala S, König GM, Müller CE, Hall IP, Kostenis E, Fleischmann BK, Wenzel D. Targeted inhibition of G q signaling induces airway relaxation in mouse models of asthma. Sci Transl Med 2018; 9:9/407/eaag2288. [PMID: 28904224 DOI: 10.1126/scitranslmed.aag2288] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/10/2017] [Indexed: 12/24/2022]
Abstract
Obstructive lung diseases are common causes of disability and death worldwide. A hallmark feature is aberrant activation of Gq protein-dependent signaling cascades. Currently, drugs targeting single G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) are used to reduce airway tone. However, therapeutic efficacy is often limited, because various GPCRs contribute to bronchoconstriction, and chronic exposure to receptor-activating medications results in desensitization. We therefore hypothesized that pharmacological Gq inhibition could serve as a central mechanism to achieve efficient therapeutic bronchorelaxation. We found that the compound FR900359 (FR), a membrane-permeable inhibitor of Gq, was effective in silencing Gq signaling in murine and human airway smooth muscle cells. Moreover, FR both prevented bronchoconstrictor responses and triggered sustained airway relaxation in mouse, pig, and human airway tissue ex vivo. Inhalation of FR in healthy wild-type mice resulted in high local concentrations of the compound in the lungs and prevented airway constriction without acute effects on blood pressure and heart rate. FR administration also protected against airway hyperreactivity in murine models of allergen sensitization using ovalbumin and house dust mite as allergens. Our findings establish FR as a selective Gq inhibitor when applied locally to the airways of mice in vivo and suggest that pharmacological blockade of Gq proteins may be a useful therapeutic strategy to achieve bronchorelaxation in asthmatic lung disease.
Collapse
Affiliation(s)
- Michaela Matthey
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Alexander Seidinger
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Simon
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ralf Schröder
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Markus Kuschak
- Pharmaceutical Institute, Institute of Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Suvi Annala
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Institute of Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Ian P Hall
- Division of Respiratory Medicine, University Hospital of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany.,PharmaCenter, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany. .,PharmaCenter, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
40
|
Ilyaskina OS, Lemoine H, Bünemann M. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity. Proc Natl Acad Sci U S A 2018; 115:5016-5021. [PMID: 29686069 PMCID: PMC5948956 DOI: 10.1073/pnas.1715751115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of Gi/o, Gq/11, Gs, and G12/13 proteins to muscarinic M1, M2, and M3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M3-R interactions but rather the affinities of Gq and Go proteins to M3-Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.
Collapse
Affiliation(s)
- Olga S Ilyaskina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Marburg, 35032 Marburg, Germany
| | - Horst Lemoine
- Department of Laser Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Marburg, 35032 Marburg, Germany;
| |
Collapse
|
41
|
Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL, Shukla AK. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends Biochem Sci 2018; 43:533-546. [PMID: 29735399 DOI: 10.1016/j.tibs.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/12/2023]
Abstract
G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology.
Collapse
Affiliation(s)
- Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Justin Schilling
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
42
|
Panettieri RA, Pera T, Liggett SB, Benovic JL, Penn RB. Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol 2018; 40:120-125. [PMID: 29729548 DOI: 10.1016/j.coph.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Current therapies to treat asthma and other airway diseases primarily include anti-inflammatory agents and bronchodilators. Anti-inflammatory agents target trafficking and resident immunocytes and structural cells, while bronchodilators act to prevent or reverse shortening of airway smooth muscle (ASM), the pivotal tissue regulating bronchomotor tone. Advances in our understanding of the biology of G protein-coupled receptors (GPCRs) and biased agonism offers unique opportunities to modulate GPCR function that include the use of pepducins and allosteric modulators. Recent evidence suggests that small molecule inhibitors of Gαq as well as pepducins targeting Gq-coupled receptors can broadly inhibit contractile agonist-induced ASM function. Given these advances, new therapeutic approaches can be leveraged to diminish the global rise in morbidity and mortality associated with asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, Suite 4211, New Brunswick, NJ 08901, United States.
| | - Tonio Pera
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Stephen B Liggett
- USF Health Office of Research, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Raymond B Penn
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
43
|
Ortiz Zacarías NV, Lenselink EB, IJzerman AP, Handel TM, Heitman LH. Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends Pharmacol Sci 2018; 39:547-559. [PMID: 29653834 DOI: 10.1016/j.tips.2018.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
Recent crystal structures of multiple G protein-coupled receptors (GPCRs) have revealed a highly conserved intracellular pocket that can be used to modulate these receptors from the inside. This novel intracellular site partially overlaps with the G protein and β-arrestin binding site, providing a new manner of pharmacological intervention. Here we provide an update of the architecture and function of the intracellular region of GPCRs, until now portrayed as the signaling domain. We review the available evidence on the presence of intracellular binding sites among chemokine receptors and other class A GPCRs, as well as different strategies to target it, including small molecules, pepducins, and nanobodies. Finally, the potential advantages of intracellular (allosteric) ligands over orthosteric ligands are also discussed.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
44
|
Dale P, Head V, Dowling MR, Taylor CW. Selective inhibition of histamine-evoked Ca 2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells. Cell Calcium 2017; 71:53-64. [PMID: 29604964 PMCID: PMC5893132 DOI: 10.1016/j.ceca.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 01/29/2023]
Abstract
β2-adrenoceptors, via cAMP and PKA, inhibit histamine-evoked Ca2+ signals in human bronchial airway smooth muscle cells. Responses to other Ca2+-mobilizing receptors are unaffected or minimally affected by cAMP. There is no consistent relationship between the amounts of cAMP produced by different stimuli and inhibition of histamine-evoked Ca2+ release. Local delivery of cAMP within hyperactive signaling junctions stimulates PKA. PKA inhibits an early step in the signaling pathway activated by H1 histamine receptors.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.
Collapse
Affiliation(s)
- Philippa Dale
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Victoria Head
- Novartis Institutes for BioMedical Research, Fabrikstrasse, CH-4056, Basel, Switzerland
| | - Mark R Dowling
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Colin W Taylor
- Department of Pharmacology,Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
45
|
Zhang H, Xiong XF, Boesgaard MW, Underwood CR, Bräuner-Osborne H, Strømgaard K. Structure-Activity Relationship Studies of the Cyclic Depsipeptide Natural Product YM-254890, Targeting the GqProtein. ChemMedChem 2017; 12:830-834. [DOI: 10.1002/cmdc.201700155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/02/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Zhang
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Xiao-Feng Xiong
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Michael W. Boesgaard
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Christina R. Underwood
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
46
|
Kamato D, Mitra P, Davis F, Osman N, Chaplin R, Cabot PJ, Afroz R, Thomas W, Zheng W, Kaur H, Brimble M, Little PJ. Ga q proteins: molecular pharmacology and therapeutic potential. Cell Mol Life Sci 2017; 74:1379-1390. [PMID: 27815595 PMCID: PMC11107756 DOI: 10.1007/s00018-016-2405-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Partha Mitra
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Davis
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Narin Osman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
- Department of Immunology, Monash University, Melbounre, VIC, 3004, Australia
| | - Rebecca Chaplin
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Rizwana Afroz
- Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh
| | - Walter Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, 4102, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Harveen Kaur
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret Brimble
- Department of Chemistry, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
- School of Medical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
47
|
Hamilton JR, Trejo J. Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annu Rev Pharmacol Toxicol 2016; 57:349-373. [PMID: 27618736 DOI: 10.1146/annurev-pharmtox-011613-140016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors (GPCRs) that transduce cellular responses to extracellular proteases. PARs have important functions in the vasculature, inflammation, and cancer and are important drug targets. A unique feature of PARs is their irreversible proteolytic mechanism of activation that results in the generation of a tethered ligand that cannot diffuse away. Despite the fact that GPCRs have proved to be the most successful class of druggable targets, the development of agents that target PARs specifically has been challenging. As a consequence, researchers have taken a remarkable diversity of approaches to develop pharmacological entities that modulate PAR function. Here, we present an overview of the diversity of therapeutic agents that have been developed against PARs. We further discuss PAR biased signaling and the influence of receptor compartmentalization, posttranslational modifications, and dimerization, which are important considerations for drug development.
Collapse
Affiliation(s)
- Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
48
|
Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:78-88. [PMID: 27318251 DOI: 10.1016/j.ibmb.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajie Chen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
49
|
From biased signalling to polypharmacology: unlocking unique intracellular signalling using pepducins. Biochem Soc Trans 2016; 44:555-61. [DOI: 10.1042/bst20150230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Indexed: 01/06/2023]
Abstract
For over a decade, pepducins have been utilized to develop unique pharmacological profiles that have been particularly challenging for traditional drug discovery methods. It is becoming increasingly clear that these cell-penetrating lipopeptides can access receptor conformations that are currently not accessible through orthosteric targeting. This review addresses the emerging concepts in the development of pepducins including the elicitation of biased signalling, pepducin polypharmacology and recent insight into their mechanism of action.
Collapse
|
50
|
Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc Natl Acad Sci U S A 2016; 113:4524-9. [PMID: 27071102 DOI: 10.1073/pnas.1521706113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.
Collapse
|