1
|
Zhang Y, Yang B, Sun W, Sun X, Zhao J, Li Q. Structural characterization of squash polysaccharide and its effect on STZ-induced diabetes mellitus model in MIN6 cells. Int J Biol Macromol 2024; 270:132226. [PMID: 38729469 DOI: 10.1016/j.ijbiomac.2024.132226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
A novel natural water-soluble acidic polysaccharide (PWESP-3) was isolated from squash with a molecular mass of 140.519 kDa, which was composed of arabinose (Ara, 35.30 mol%), galactose (Gal, 61.20 mol%), glucose (Glc, 1.80 mol%), and Mannuronic acid (ManA, 1.70 mol%) and contained Araf-(1→, →3)-Araf-(1→, →5)-Araf-(1→, Glcp-(1→, Galp-(1→, →3,5)-Araf-(1→, →2)-Glcp-(1→, →2)-Manp-(1→, →3)-Glcp-(1→, →4)-Galp-(1→, →3)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp-(1→, →4,6)-Galp-(1→ residues in the backbone. Moreover, the structure of PWESP-3 was identified by NMR spectra. The branch chain was connected to the main chain by the O-3 and O-4 atom of Gal. In addition, the effect of PWESP-3 on STZ-induced type I diabetes mellitus model in MIN6 cells was investigated. The results showed that PWESP-3 can increase the viability and insulin secretion of MIN6 cells and reduce the oxidative stress caused by ROS and NO. Meanwhile, PWESP-3 can also reduce the content of ATP, Ca2+, mitochondrial membrane potential and Caspase-3 activity in MIN6 cells. Furthermore, treatment with PWESP-3 can prevent single or double stranded DNA breaking to form DNA fragments and improve DNA damage in MIN6 cells, thereby avoiding apoptosis. Therefore, the above data highlight that PWESP-3 can improve the function of insulin secretion in STZ-induced MIN6 cells in vitro and can be used as an alternative food supplement to diabetes drugs.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Wei Sun
- Huage Wugu Holding Co., Ltd., Hebei 061600, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, China; China National Engineering Research Center for Fruit and Vegetable Processing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
2
|
Dos Reis Araujo T, Alves BL, Dos Santos LMB, Gonçalves LM, Carneiro EM. Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion. Rev Endocr Metab Disord 2024; 25:259-278. [PMID: 38048021 DOI: 10.1007/s11154-023-09856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic β cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Lohanna Monali Barreto Dos Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil.
| |
Collapse
|
3
|
Hussein A, Ghonimy A, Jiang H, Qin G, El‐Ashram S, Hussein S, Abd El‐Razek I, El‐Afifi T, Farouk MH. LC/MS analysis of mushrooms provided new insights into dietary management of diabetes mellitus in rats. Food Sci Nutr 2023; 11:2321-2335. [PMID: 37181306 PMCID: PMC10171545 DOI: 10.1002/fsn3.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023] Open
Abstract
Mushrooms possess antihyperglycemic effect on diabetic individuals due to their nonfibrous and fibrous bioactive compounds. This study aimed to reveal the effect of different types of mushrooms on plasma glucose level and gut microbiota composition in diabetic individuals. The effects of five different mushroom species (Ganoderma lucidum, GLM; Pleurotus ostreatus, POM; Pleurotus citrinopileatus, PCM; Lentinus edodes, LEM; or Hypsizigus marmoreus, HMM) on alloxan-induced diabetic rats were investigated in this study. The results indicated that LEM and HMM treatments showed lower plasma glucose levels. For the microbiota composition, ACE, Chao1, Shannon, and Simpson were significantly affected by PCM and LEM treatments (p < .05), while ACE, Shannon, and Simpson indexes were affected by HMM treatment (p < .01). Simpson index was affected in positive control (C+) and POM groups. All these four indices were lower in GLM treatment (p < .05). Dietary supplementation of mushrooms reduced plasma glucose level directly through mushrooms' bioactive compounds (agmatine, sphingosine, pyridoxine, linolenic, and alanine) and indirectly through stachyose (oligosaccharide) and gut microbiota modulation. In conclusion, LEM and HMM can be used as food additives to improve plasma glucose level and gut microbiome composition in diabetic individuals.
Collapse
Affiliation(s)
- Abdelaziz Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | - Abdallah Ghonimy
- Fish Farming and Technology InstituteSuez Canal UniversityIsmailiaEgypt
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hailong Jiang
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Guixin Qin
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Saeed El‐Ashram
- School of Life Science and EngineeringFoshan UniversityFoshanChina
- Faculty of ScienceKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Saddam Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Ibrahim Abd El‐Razek
- Animal Production Department, Faculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Tarek El‐Afifi
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | | |
Collapse
|
4
|
Yan S, Yao N, Li X, Sun M, Yang Y, Cui W, Li B. The Association between the Differential Expression of lncRNA and Type 2 Diabetes Mellitus in People with Hypertriglyceridemia. Int J Mol Sci 2023; 24:ijms24054279. [PMID: 36901708 PMCID: PMC10002095 DOI: 10.3390/ijms24054279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Compared with diabetic patients with normal blood lipid, diabetic patients with dyslipidemia such as high triglycerides have a higher risk of clinical complications, and the disease is also more serious. For the subjects with hypertriglyceridemia, the lncRNAs affecting type 2 diabetes mellitus (T2DM) and the specific mechanisms remain unclear. Transcriptome sequencing was performed on peripheral blood samples of new-onset T2DM (six subjects) and normal blood control (six subjects) in hypertriglyceridemia patients using gene chip technology, and differentially expressed lncRNA profiles were constructed. Validated by the GEO database and RT-qPCR, lncRNA ENST00000462455.1 was selected. Subsequently, fluorescence in situ hybridization (FISH), real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) were used to observe the effect of ENST00000462455.1 on MIN6. When silencing the ENST00000462455.1 for MIN6 in high glucose and high fat, the relative cell survival rate and insulin secretion decreased, the apoptosis rate increased, and the expression of the transcription factors Ins1, Pdx-1, Glut2, FoxO1, and ETS1 that maintained the function and activity of pancreatic β cells decreased (p < 0.05). In addition, we found that ENST00000462455.1/miR-204-3p/CACNA1C could be the core regulatory axis by using bioinformatics methods. Therefore, ENST00000462455.1 was a potential biomarker for hypertriglyceridemia patients with T2DM.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
- School of Nursing, Jilin University, Changchun 130021, China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (W.C.); (B.L.); Tel.: +86-431-85619455 (W.C.); +86-43185619451 (B.L.)
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (W.C.); (B.L.); Tel.: +86-431-85619455 (W.C.); +86-43185619451 (B.L.)
| |
Collapse
|
5
|
Ruamyod K, Watanapa WB, Kakhai C, Nambundit P, Treewaree S, Wongsanupa P. Ferulic acid enhances insulin secretion by potentiating L-type Ca 2+ channel activation. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:99-105. [PMID: 36481247 DOI: 10.1016/j.joim.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion. METHODS We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively. RESULTS Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action. CONCLUSION This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Collapse
Affiliation(s)
- Katesirin Ruamyod
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wattana B Watanapa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Chanrit Kakhai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pimchanok Nambundit
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sukrit Treewaree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Parin Wongsanupa
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function. Mol Metab 2022; 64:101552. [PMID: 35863638 PMCID: PMC9352964 DOI: 10.1016/j.molmet.2022.101552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K+ and Ca2+ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar. Scope of review The molecular circuit of the GSIS in β-cells is described with emphasis on intermediates which are targetable for optical intervention. Various pharmacological agents modifying the release of insulin are reviewed along with their documented side effects. These are contrasted with optical approaches, which have already been employed for engineering β-cell function or are considered for future such applications. Principal obstacles are also discussed as the implementation of optogenetics is pondered for tissue engineering and biology applications of the pancreas. Major Conclusions Notable advances in optogenetic, optochemical and photopharmacological tools are rendering feasible the smart engineering of pancreatic cells and tissues with light-regulated function paving the way for novel solutions for addressing pancreatic pathologies including diabetes.
Collapse
|
7
|
Early Effects of Metabolic Syndrome on ATP-Sensitive Potassium Channels from Rat Pancreatic Beta Cells. Metabolites 2022; 12:metabo12040365. [PMID: 35448552 PMCID: PMC9030496 DOI: 10.3390/metabo12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic signs that increases the risk of developing type 2 two diabetes mellitus and cardiovascular diseases. MS leads to pancreatic beta cell exhaustion and decreased insulin secretion through unknown mechanisms in a time-dependent manner. ATP-sensitive potassium channels (KATP channels), common targets of anti-diabetic drugs, participate in the glucose-stimulated insulin secretion, coupling the metabolic status and electrical activity of pancreatic beta cells. We investigated the early effects of MS on the conductance, ATP and glybenclamide sensitivity of the KATP channels. We used Wistar rats fed with a high-sucrose diet (HSD) for 8 weeks as a MS model. In excised membrane patches, control and HSD channels showed similar unitary conductance and ATP sensitivity pancreatic beta cells in their KATP channels. In contrast, MS produced variability in the sensitivity to glybenclamide of KATP channels. We observed two subpopulations of pancreatic beta cells, one with similar (Gly1) and one with increased (Gly2) glybenclamide sensitivity compared to the control group. This study shows that the early effects of MS produced by consuming high-sugar beverages can affect the pharmacological properties of KATP channels to one of the drugs used for diabetes treatment.
Collapse
|
8
|
Tian L, Li X, Ding Y, Li M, Tang Y, Li D. The CLOCK protein regulates insulin secretion related with L-type calcium channels in rat pancreatic beta cells. Biochem Biophys Res Commun 2022; 589:116-122. [PMID: 34906901 DOI: 10.1016/j.bbrc.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circadian locomotor output cycles kaput protein (CLOCK) plays a crucial role in glucose homeostasis and controlling insulin secretion. However, the mechanism of the CLOCK regulating rhythmic insulin secretion has not been fully understood. METHODS Rhythmic expression of the CLOCK in rat pancreatic beta cell was detected. INS-1 cells were transfected with siRNAs to knockdown the CLOCK before the cells were incubated with different concentrations of glucose. Insulin secretion was analyzed by ELISA method. Expression of the L-type calcium channel protein (Cav1.2, Cacna1c) was determined both in the CLOCK-knockdown cells and the control cells. Calcium influx was probed by fluorescent. Chromatin immunoprecipitation (ChIP) test and dual-luciferase reporter gene experiments were applied to verify the relationship between the CLOCK and Cav1.2. RESULTS The CLOCK is abundantly expressed in rat pancreatic beta cells. Transcription level of the CLOCK showed rhythmicity in the beta cells. Compared to the control group, insulin release was significantly impaired with 25 mM glucose incubation in the CLOCK-knockdown group, but not showed with 2.5 mM glucose incubation. The expression of Cav1.2 and the influx of calcium were significantly decreased in the CLOCK-knockdown group with 25 mM glucose incubation. ChIP test indicted that the CLOCK bound to -444∼-454 region of the Cacna1c promoter of the INS-1 cells, but the binding was significantly reduced following the CLOCK-knockdown. Luciferase experiment was in accordance with the finding of ChIP. CONCLUSIONS The CLOCK mediating Cav1.2 expression may point out a potential pathway of circadian rhythm affecting insulin secretion.
Collapse
Affiliation(s)
- Linlin Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Tianjin Children's Hospital, Tianjin, 300134, China
| | - Xiaodong Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yi Ding
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Minli Li
- The Second People's Hospital of Changsha County, Hunan Province, 410129, China
| | - Yunzhao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Daiqing Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
9
|
Pánico P, Velasco M, Salazar AM, Picones A, Ortiz-Huidobro RI, Guerrero-Palomo G, Salgado-Bernabé ME, Ostrosky-Wegman P, Hiriart M. Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Front Endocrinol (Lausanne) 2022; 13:878280. [PMID: 35651975 PMCID: PMC9150370 DOI: 10.3389/fendo.2022.878280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Exposure to arsenic in drinking water is a worldwide health problem. This pollutant is associated with increased risk of developing chronic diseases, including metabolic diseases. Metabolic syndrome (MS) is a complex pathology that results from the interaction between environmental and genetic factors. This condition increases the risk of developing type 2 diabetes, cardiovascular diseases, and cancer. The MS includes at least three of the following signs, central obesity, impaired fasting glucose, insulin resistance, dyslipidemias, and hypertension. Here, we summarize the existing evidence of the multiple mechanisms triggered by arsenic to developing the cardinal signs of MS, showing that this pollutant could contribute to the multifactorial origin of this pathology.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Picones
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Guerrero-Palomo
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Eduardo Salgado-Bernabé
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
10
|
Jia JD, Jiang WG, Luo X, Li RR, Zhao YC, Tian G, Li YN. Vascular endothelial growth factor B inhibits insulin secretion in MIN6 cells and reduces Ca 2+ and cyclic adenosine monophosphate levels through PI3K/AKT pathway. World J Diabetes 2021; 12:480-498. [PMID: 33889292 PMCID: PMC8040075 DOI: 10.4239/wjd.v12.i4.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is characterized by insufficient insulin secretion caused by defective pancreatic β-cell function or insulin resistance, resulting in an increase in blood glucose. However, the mechanism involved in this lack of insulin secretion is unclear. The level of vascular endothelial growth factor B (VEGF-B) is significantly increased in T2D patients. The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation. It is speculated that VEGF-B is related to pancreatic β-cell dysfunction and is an important factor affecting β-cell secretion of insulin. As an in vitro model of normal pancreatic β-cells, the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects.
AIM To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation.
METHODS The MIN6 mouse pancreatic islet β-cell line was used as the model system. By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells, we examined the effects of VEGF-B on insulin secretion, Ca2+ and cyclic adenosine monophosphate (cAMP) levels, and the insulin secretion signaling pathway.
RESULTS Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells. Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1 (PLCγ1), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), and other proteins in the insulin secretion pathway. Upon knockdown of VEGF-B, MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1, PI3K, AKT, and other proteins.
CONCLUSION VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP. VEGF-B involvement in insulin secretion is related to the expression of PLCγ1, PI3K, AKT, and other signaling proteins. These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Jing-Dan Jia
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Wen-Guo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xu Luo
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Rong-Rong Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Yu-Chi Zhao
- Department of Surgery, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Geng Tian
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Ya-Na Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| |
Collapse
|
11
|
Daniel B, Livne A, Cohen G, Kahremany S, Sasson S. Endothelial Cell-Derived Triosephosphate Isomerase Attenuates Insulin Secretion From Pancreatic Beta Cells of Male Rats. Endocrinology 2021; 162:6042346. [PMID: 33341896 DOI: 10.1210/endocr/bqaa234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretion from pancreatic beta cells is tightly regulated by glucose and paracrine signals within the microenvironment of islets of Langerhans. Extracellular matrix from islet microcapillary endothelial cells (IMEC) affect beta-cell spreading and amplify insulin secretion. This study was aimed at investigating the hypothesis that contact-independent paracrine signals generated from IMEC may also modulate beta-cell insulin secretory functions. For this purpose, conditioned medium (CMp) preparations were prepared from primary cultures of rat IMEC and were used to simulate contact-independent beta cell-endothelial cell communication. Glucose-stimulated insulin secretion (GSIS) assays were then performed on freshly isolated rat islets and the INS-1E insulinoma cell line, followed by fractionation of the CMp, mass spectroscopic identification of the factor, and characterization of the mechanism of action. The IMEC-derived CMp markedly attenuated first- and second-phase GSIS in a time- and dose-dependent manner without altering cellular insulin content and cell viability. Size exclusion fractionation, chromatographic and mass-spectroscopic analyses of the CMp identified the attenuating factor as the enzyme triosephosphate isomerase (TPI). An antibody against TPI abrogated the attenuating activity of the CMp while recombinant human TPI (hTPI) attenuated GSIS from beta cells. This effect was reversed in the presence of tolbutamide in the GSIS assay. In silico docking simulation identified regions on the TPI dimer that were important for potential interactions with the extracellular epitopes of the sulfonylurea receptor in the complex. This study supports the hypothesis that an effective paracrine interaction exists between IMEC and beta cells and modulates glucose-induced insulin secretion via TPI-sulfonylurea receptor-KATP channel (SUR1-Kir6.2) complex attenuating interactions.
Collapse
Affiliation(s)
- Bareket Daniel
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ariela Livne
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Guy Cohen
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | - Shirin Kahremany
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shlomo Sasson
- Institute for Drug Research, Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Ortiz-Huidobro RI, Velasco M, Larqué C, Escalona R, Hiriart M. Molecular Insulin Actions Are Sexually Dimorphic in Lipid Metabolism. Front Endocrinol (Lausanne) 2021; 12:690484. [PMID: 34220716 PMCID: PMC8251559 DOI: 10.3389/fendo.2021.690484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
The increment in energy-dense food and low physical activity has contributed to the current obesity pandemic, which is more prevalent in women than in men. Insulin is an anabolic hormone that regulates the metabolism of lipids, carbohydrates, and proteins in adipose tissue, liver, and skeletal muscle. During obesity, nutrient storage capacity is dysregulated due to a reduced insulin action on its target organs, producing insulin resistance, an early marker of metabolic dysfunction. Insulin resistance in adipose tissue is central in metabolic diseases due to the critical role that this tissue plays in energy homeostasis. We focused on sexual dimorphism on the molecular mechanisms of insulin actions and their relationship with the physiology and pathophysiology of adipose tissue. Until recently, most of the physiological and pharmacological studies were done in males without considering sexual dimorphism, which is relevant. There is ample clinical and epidemiological evidence of its contribution to the establishment and progression of metabolic diseases. Sexual dimorphism is a critical and often overlooked factor that should be considered in design of sex-targeted therapeutic strategies and public health policies to address obesity and diabetes.
Collapse
Affiliation(s)
- Rosa Isela Ortiz-Huidobro
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Myrian Velasco
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rene Escalona
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcia Hiriart
- Neurosciences Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Marcia Hiriart,
| |
Collapse
|
13
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
14
|
Barrera M, Hiriart M, Cocho G, Villarreal C. Type 2 diabetes progression: A regulatory network approach. CHAOS (WOODBURY, N.Y.) 2020; 30:093132. [PMID: 33003944 DOI: 10.1063/5.0011125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In order to elucidate central elements underlying type 2 diabetes, we constructed a regulatory network model involving 37 components (molecules, receptors, processes, etc.) associated to signaling pathways of pancreatic beta-cells. In a first approximation, the network topology was described by Boolean rules whose interacting dynamics predicted stationary patterns broadly classified as health, metabolic syndrome, and diabetes stages. A subsequent approximation based on a continuous logic analysis allowed us to characterize the progression of the disease as transitions between these states associated to alterations of cell homeostasis due to exhaustion or exacerbation of specific regulatory signals. The method allowed the identification of key transcription factors involved in metabolic stress as essential for the progression of the disease. Integration of the present analysis with existent mathematical models designed to yield accurate account of experimental data in human or animal essays leads to reliable predictions for beta-cell mass, insulinemia, glycemia, and glycosylated hemoglobin in diabetic fatty rats.
Collapse
Affiliation(s)
- M Barrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - M Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - G Cocho
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - C Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Blocking Ca 2+ Channel β 3 Subunit Reverses Diabetes. Cell Rep 2020; 24:922-934. [PMID: 30044988 PMCID: PMC6083041 DOI: 10.1016/j.celrep.2018.06.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated Ca2+ channels (Cav) are essential for pancreatic beta cell function as they mediate Ca2+ influx, which leads to insulin exocytosis. The β3 subunit of Cav (Cavβ3) has been suggested to regulate cytosolic Ca2+ ([Ca2+]i) oscillation frequency and insulin secretion under physiological conditions, but its role in diabetes is unclear. Here, we report that islets from diabetic mice show Cavβ3 overexpression, altered [Ca2+]i dynamics, and impaired insulin secretion upon glucose stimulation. Consequently, in high-fat diet (HFD)-induced diabetes, Cavβ3-deficient (Cavβ3−/−) mice showed improved islet function and enhanced glucose tolerance. Normalization of Cavβ3 expression in ob/ob islets by an antisense oligonucleotide rescued the altered [Ca2+]i dynamics and impaired insulin secretion. Importantly, transplantation of Cavβ3−/− islets into the anterior chamber of the eye improved glucose tolerance in HFD-fed mice. Cavβ3 overexpression in human islets also impaired insulin secretion. We thus suggest that Cavβ3 may serve as a druggable target for diabetes treatment. Pancreatic islets from diabetic mice have increased level of Cavβ3 Overexpression of Cavβ3 in islets alters Ca2+ dynamics and impairs insulin secretion Deficiency of Cavβ3 prevents islet dysfunction and glucose intolerance in diabetes Blocking Cavβ3 improves islet function and glucose tolerance after onset of diabetes
Collapse
|
16
|
Selvaraj C, Selvaraj G, Kaliamurthi S, Cho WC, Wei DQ, Singh SK. Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Curr Drug Targets 2020; 21:132-147. [PMID: 31538892 DOI: 10.2174/1389450119666190920152249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Ion channels are integral proteins expressed in almost all living cells and are involved in muscle contraction and nutrient transport. They play a critical role in the normal functioning of the excitable tissues of the nervous system and regulate the action potential and contraction events. Dysfunction of genes encodes ion channel proteins, which disrupt the channel function and lead to a number of diseases, among which is type 1 diabetes mellitus (T1DM). Therefore, understanding the complex mechanism of ion channel receptors is necessary to facilitate the diagnosis and management of treatment. In this review, we summarize the mechanism of important ion channels and their potential role in the regulation of insulin secretion along with the limitations of ion channels as therapeutic targets. Furthermore, we discuss the recent investigations of the mechanism regulating the ion channels in pancreatic beta cells, which suggest that ion channels are active participants in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dong-Qing Wei
- Center of Interdisciplinary Sciences-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China
- Department of Bioinformatics, The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer-Aided Drug Design, and Molecular Modeling Lab, Science Block, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| |
Collapse
|
17
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
18
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
19
|
Sulis PM, Dambrós BF, Mascarello A, dos Santos ARS, Yunes RA, Nunes RJ, Frederico MJS, Barreto Silva FRM. Sulfonyl(thio)urea derivative induction of insulin secretion is mediated by potassium, calcium, and sodium channel signal transduction. J Cell Physiol 2018; 234:10138-10147. [DOI: 10.1002/jcp.27680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Paola Miranda Sulis
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Alessandra Mascarello
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Adair Roberto Soares dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Rosendo Augusto Yunes
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Ricardo José Nunes
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| |
Collapse
|
20
|
Carbamazepine, a beta-cell protecting drug, reduces type 1 diabetes incidence in NOD mice. Sci Rep 2018; 8:4588. [PMID: 29545618 PMCID: PMC5854601 DOI: 10.1038/s41598-018-23026-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/01/2023] Open
Abstract
Pancreatic beta-cells are selectively destroyed by the host immune system in type 1 diabetes. Thus, drugs that preserve beta-cell mass and/or function have the potential to prevent or slow the progression of this disease. We recently reported that the use-dependent sodium channel blocker, carbamazepine, protects beta-cells from inflammatory cytokines in vitro. Here, we tested the effects of carbamazepine treatment in female non-obese diabetic (NOD) mice by supplementing LabDiet 5053 with 0.5% w/w carbamazepine to achieve serum carbamazepine levels of 14.98 ± 3.19 µM. Remarkably, diabetes incidence over 25 weeks, as determined by fasting blood glucose, was ~50% lower in carbamazepine treated animals. Partial protection from diabetes in carbamazepine-fed NOD mice was also associated with improved glucose tolerance at 6 weeks of age, prior to the onset of diabetes in our colony. Less insulitis was detected in carbamazepine treated NOD mice at 6 weeks of age, but we did not observe differences in CD4+ and CD8+ T cell composition in the pancreatic lymph node, as well as circulating markers of inflammation. Taken together, our results demonstrate that carbamazepine reduces the development of type 1 diabetes in NOD mice by maintaining functional beta-cell mass.
Collapse
|
21
|
Effects of polysaccharide from Portulaca oleracea L. on voltage-gated Na + channel of INS-1 cells. Biomed Pharmacother 2018. [PMID: 29514130 DOI: 10.1016/j.biopha.2018.02.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous work showed that polysaccharide isolated from Portulaca oleracea L. (POP) has an insulinotropic effect. The voltage-gated Na+ channel (VGSC) in the excitement phase plays an important role. This work aims to study the effect of POP on the voltage-gated Na+ channel current (INa) and its channel dynamic characteristics in insulin-secreting β-cell line (INS-1) cells of rat. Our results revealed that POP can inhibit the amplitude of INa and improve cell survival in a concentration-dependent manner. POP concentration of 0.5 mg mL-1 reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, prolonged the time course of INa recovery from inactivation, and enhanced the activity-dependent attenuation of INa. Furthermore, 0.5 mg mL-1 POP or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited INa and also improved insulin synthesis and cell survival. Collectively, these results revealed that POP protects INS-1 cells and enhances the insulin synthesis in INS-1 cells, and the mechanism through the partial inhibition on INa channel is strongly recommended.
Collapse
|
22
|
Loos JA, Churio MS, Cumino AC. Anthelminthic activity of glibenclamide on secondary cystic echinococcosis in mice. PLoS Negl Trop Dis 2017; 11:e0006111. [PMID: 29190739 PMCID: PMC5726723 DOI: 10.1371/journal.pntd.0006111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Cystic echinococcosis (CE) is a worldwide parasitic zoonosis caused by the larval stage of Echinococcus granulosus. Current chemotherapy against this disease is based on the administration of benzimidazoles (BZMs). However, BZM treatment has a low cure rate and causes several side effects. Therefore, new treatment options are needed. The antidiabetic drug glibenclamide (Glb) is a second-generation sulfonylurea receptor inhibitor that has been shown to be active against protozoan parasites. Hence, we assessed the in vitro and in vivo pharmacological effects of Glb against the larval stage of E. granulosus. The in vitro activity was concentration dependent on both protoscoleces and metacestodes. Moreover, Glb combined with the minimum effective concentration of albendazole sulfoxide (ABZSO) was demonstrated to have a greater effect on metacestodes in comparison with each drug alone. Likewise, there was a reduction in the cyst weight after oral administration of Glb to infected mice (5 mg/kg of body weight administered daily for a period of 8 weeks). However, in contrast to in vitro assays, no differences in effectiveness were found between Glb + albendazole (ABZ) combined treatment and Glb monotherapy. Our results also revealed mitochondrial membrane depolarization and an increase in intracellular Ca2+ levels in Glb-treated protoscoleces. In addition, the intracystic drug accumulation and our bioinformatic analysis using the available E. granulosus genome suggest the presence of genes encoding sulfonylurea transporters in the parasite. Our data clearly demonstrated an anti-echinococcal effect of Glb on E. granulosus larval stage. Further studies are needed in order to thoroughly investigate the mechanism involved in the therapeutic response of the parasite to this sulfonylurea. In this work we demonstrated the in vitro and in vivo efficacy of Glb against the larval stage of Echinococcus granulosus. At the cellular level, the drug triggered mitochondrial membrane depolarization and increased intracellular Ca2+ levels, thus affecting ATP generation in the parasite. In addition, since intracystic Glb concentrations were higher than those used in the external medium, we proposed that the drug might enter the cyst through cell surface transporters. The observed effect of the drug on the growth of hydatid cysts in mice leads to the consideration of a novel role of Glb in CE treatment. Therefore, our further studies will focus on the evaluation of ABZ formulations with enhanced bioavailability to achieve an improved in vivo anti-echinococcal effect using both drugs simultaneously.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Sandra Churio
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- IFIMAR, Instituto de Investigaciones Físicas de Mar del Plata (CONICET-UNMdP), Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
23
|
Serebrovska TV, Portnychenko AG, Drevytska TI, Portnichenko VI, Xi L, Egorov E, Gavalko AV, Naskalova S, Chizhova V, Shatylo VB. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood) 2017; 242:1542-1552. [PMID: 28758418 DOI: 10.1177/1535370217723578] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study aimed at examining beneficial effects of intermittent hypoxia training (IHT) under prediabetic conditions. We investigate the effects of three-week IHT on blood glucose level, tolerance to acute hypoxia, and leukocyte mRNA expression of hypoxia inducible factor 1α (HIF-1α) and its target genes, i.e. insulin receptor, facilitated glucose transporter-solute carrier family-2, and potassium voltage-gated channel subfamily J. Seven healthy and 11 prediabetic men and women (44-70 years of age) were examined before, next day and one month after three-week IHT (3 sessions per week, each session consisting 4 cycles of 5-min 12% O2 and 5-min room air breathing). We found that IHT afforded beneficial effects on glucose homeostasis in patients with prediabetes reducing fasting glucose and during standard oral glucose tolerance test. The most pronounced positive effects were observed at one month after IHT termination. IHT also significantly increased the tolerance to acute hypoxia (i.e. SaO2 level at 20th min of breathing with 12% O2) and improved functional parameters of respiratory and cardiovascular systems. IHT stimulated HIF-1α mRNA expression in blood leukocytes in healthy and prediabetic subjects, but in prediabetes patients the maximum increase was lagged. The greatest changes in mRNA expression of HIF-1α target genes occurred a month after IHT and coincided with the largest decrease in blood glucose levels. The higher expression of HIF-1α was positively associated with higher tolerance to hypoxia and better glucose homeostasis. In conclusion, our results suggest that IHT may be useful for preventing the development of type 2 diabetes. Impact statement The present study investigated the beneficial effects of intermittent hypoxia training (IHT) in humans under prediabetic conditions. We found that three-week moderate IHT induced higher HIF-1α mRNA expressions as well as its target genes, which were positively correlated with higher tolerance to acute hypoxia and better glucose homeostasis in both middle-aged healthy and prediabetic subjects. This small clinical trial has provided new data suggesting a potential utility of IHT for management of prediabetes patients.
Collapse
Affiliation(s)
| | - Alla G Portnychenko
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Tetiana I Drevytska
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Vladimir I Portnichenko
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Lei Xi
- 3 Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.,4 School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Egor Egorov
- 5 CELLGYM Technologies GmbH, Berlin 10623, Germany
| | - Anna V Gavalko
- 6 D.F. Chebotarev State Institute of Gerontology, Kiev 04114, Ukraine
| | | | | | - Valeriy B Shatylo
- 6 D.F. Chebotarev State Institute of Gerontology, Kiev 04114, Ukraine
| |
Collapse
|
24
|
Cyanidin Stimulates Insulin Secretion and Pancreatic β-Cell Gene Expression through Activation of l-type Voltage-Dependent Ca 2+ Channels. Nutrients 2017; 9:nu9080814. [PMID: 28788070 PMCID: PMC5579608 DOI: 10.3390/nu9080814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cyanidin is a natural anthocyanidin present in fruits and vegetables with anti-diabetic properties including stimulation of insulin secretion. However, its mechanism of action remains unknown. In this study, we elucidated the mechanisms of cyanidin for stimulatory insulin secretion from pancreatic β-cells. Rat pancreatic β-cells INS-1 were used to investigate the effects of cyanidin on insulin secretion, intracellular Ca2+ signaling, and gene expression. We detected the presence of cyanidin in the intracellular space of β-cells. Cyanidin stimulated insulin secretion and increased intracellular Ca2+ signals in a concentration-dependent manner. The Ca2+ signals were abolished by nimodipine, an l-type voltage-dependent Ca2+ channel (VDCC) blocker or under extracellular Ca2+ free conditions. Stimulation of cells with cyanidin activated currents typical for VDCCs and up-regulated the expression of glucose transporter 2 (GLUT2), Kir6.2, and Cav1.2 genes. Our findings indicate that cyanidin diffuses across the plasma membrane, leading to activation of l-type VDCCs. The increase in intracellular Ca2+ stimulated insulin secretion and the expression of genes involved in this process. These findings suggest that cyanidin could be used as a promising agent to stimulate insulin secretion.
Collapse
|
25
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
26
|
Elgoyhen AB, Barajas-López C. A Latin American Perspective on Ion Channels. Mol Pharmacol 2016; 90:286-7. [PMID: 27535998 DOI: 10.1124/mol.116.105510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.
Collapse
Affiliation(s)
- Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Héctor N Torres," Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina (A.B.E.), and División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, México (C.B.-L.)
| | - Carlos Barajas-López
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Héctor N Torres," Consejo Nacional de Investigaciones Científicas y Técnicas and Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina (A.B.E.), and División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, México (C.B.-L.)
| |
Collapse
|