1
|
Wang M, Faust M, Abbott S, Patel V, Chang E, Clark JI, Stella N, Muchowski PJ. Effects of a cannabidiol/terpene formulation on sleep in individuals with insomnia: a double-blind, placebo-controlled, randomized, crossover study. J Clin Sleep Med 2025; 21:69-80. [PMID: 39167421 DOI: 10.5664/jcsm.11324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
STUDY OBJECTIVES Cannabidiol (CBD) is increasingly used as a health supplement, though few clinical studies have demonstrated benefits. The primary objective of this study was to evaluate the effects of an oral CBD-terpene formulation on sleep physiology in individuals with insomnia. METHODS In this double-blind, placebo-controlled, randomized clinical trial, 125 individuals with insomnia received an oral administration of CBD (300 mg) and terpenes (1 mg each of linalool, myrcene, phytol, limonene, α-terpinene, α-terpineol, α-pinene, and β-caryophyllene) for ≥ 4 days/wk over 4 weeks using a crossover design. The study medication was devoid of Δ9-tetrahydrocannabinol. The primary outcome measure was the percentage of time participants spent in the combination of slow-wave sleep (SWS) and rapid eye movement (REM) sleep stages, as measured by a wrist-worn sleep-tracking device. RESULTS This CBD-terpene regimen marginally increased the mean nightly percentage of time participants spent in SWS + REM sleep compared to the placebo (mean [standard error], 1.3% [0.60%]; 95% confidence interval, 0.1-2.5%; P = .03). More robust increases were observed in participants with low baseline SWS + REM sleep, as well as in day sleepers. For select participants, the increase in SWS + REM sleep averaged as much as 48 minutes/night over a 4-week treatment period. This treatment had no effect on total sleep time, resting heart rate, or heart rate variability, and no adverse events were reported. CONCLUSIONS Select CBD-terpene ratios may increase SWS + REM sleep in some individuals with insomnia and may have the potential to provide a safe and efficacious alternative to over-the-counter sleep aids and commonly prescribed sleep medications. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Name: Evaluation of an Oral Cannabidiol (CBD)-Terpene Formulation on Sleep Physiology in Participants With Insomnia; URL: https://clinicaltrials.gov/study/NCT05233761; Identifier: NCT05233761. CITATION Wang M, Faust M, Abbott S, et al. Effects of a cannabidiol/terpene formulation on sleep in individuals with insomnia: a double-blind, placebo-controlled, randomized, crossover study. J Clin Sleep Med. 2025;21(1):69-80.
Collapse
Affiliation(s)
- Michael Wang
- Defined Research Institute, San Francisco, California
| | - Marcus Faust
- Defined Research Institute, San Francisco, California
| | - Scott Abbott
- Defined Research Institute, San Francisco, California
| | - Vikrant Patel
- Defined Research Institute, San Francisco, California
| | - Eric Chang
- Defined Research Institute, San Francisco, California
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
2
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
3
|
André R, Gomes AP, Pereira-Leite C, Marques-da-Costa A, Monteiro Rodrigues L, Sassano M, Rijo P, Costa MDC. The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1543. [PMID: 39598452 PMCID: PMC11870048 DOI: 10.3390/ph17111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
This study explores the complementary or synergistic effects of medicinal cannabis constituents, particularly terpenes, concerning their therapeutic potential, known as the entourage effect. A systematic review of the literature on cannabis "entourage effects" was conducted using the PRISMA model. Two research questions directed the review: (1) What are the physiological effects of terpenes and terpenoids found in cannabis? (2) What are the proven "entourage effects" of terpenes in cannabis? The initial approach involved an exploratory search in electronic databases using predefined keywords and Boolean phrases across PubMed/MEDLINE, Web of Science, and EBSCO databases using Medical Subject Headings (MeSH). Analysis of published studies shows no evidence of neuroprotective or anti-aggregatory effects of α-pinene and β-pinene against β-amyloid-mediated toxicity; however, modest lipid peroxidation inhibition by α-pinene, β pinene, and terpinolene may contribute to the multifaceted neuroprotection properties of these C. sativa L. prevalent monoterpenes and the triterpene friedelin. Myrcene demonstrated anti-inflammatory proprieties topically; however, in combination with CBD, it did not show significant additional differences. Exploratory evidence suggests various therapeutic benefits of terpenes, such as myrcene for relaxation; linalool as a sleep aid and to relieve exhaustion and mental stress; D-limonene as an analgesic; caryophyllene for cold tolerance and analgesia; valencene for cartilage protection; borneol for antinociceptive and anticonvulsant potential; and eucalyptol for muscle pain. While exploratory research suggests terpenes as influencers in the therapeutic benefits of cannabinoids, the potential for synergistic or additive enhancement of cannabinoid efficacy by terpenes remains unproven. Further clinical trials are needed to confirm any terpenes "entourage effects."
Collapse
Affiliation(s)
- Rebeca André
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
| | - Ana Patrícia Gomes
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
- SOMAÍ Pharmaceuticals, R. 13 de Maio 52, 2580-507 Carregado, Portugal; (A.M.-d.-C.)
| | - Catarina Pereira-Leite
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
- Laboratório Associado para a Química Verde, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | - Luis Monteiro Rodrigues
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
| | - Michael Sassano
- SOMAÍ Pharmaceuticals, R. 13 de Maio 52, 2580-507 Carregado, Portugal; (A.M.-d.-C.)
| | - Patricia Rijo
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria do Céu Costa
- Escola de Ciências e Tecnologias da Saúde (ECTS), CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.A.); (A.P.G.); (C.P.-L.); (L.M.R.)
- NICiTeS, Polytechnic Institute of Lusophony, ERISA-Escola Superior de Saúde Ribeiro Sanches, Rua do Telhal aos Olivais 8, 1950-396 Lisboa, Portugal
| |
Collapse
|
4
|
Chen L, Liu Y, Xu D, Zhang N, Chen Y, Yang J, Sun L. Beta-Myrcene as a Sedative-Hypnotic Component from Lavender Essential Oil in DL-4-Chlorophenylalanine-Induced-Insomnia Mice. Pharmaceuticals (Basel) 2024; 17:1161. [PMID: 39338324 PMCID: PMC11434966 DOI: 10.3390/ph17091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
With the increasing prevalence of insomnia-related diseases, the effective treatment of insomnia has become an important health research topic. Lavender (Lavandula angustifolia Mill.) essential oil (LEO) is a commonly used medicine for the treatment of insomnia and neurological disorders. However, neither the active components nor its sedative-hypnotic mechanism have been fully discovered. This study aimed to screen the main active terpenes and discover the possible mechanism of LEO through network pharmacology in the treatment of insomnia-related diseases, as well as to verify our hypothesis in insomnia mice. The results showed that, in LEO's 15 potential active ingredients, beta-myrcene had strong sedative-hypnotic effects through the serotonergic synaptic pathway according to the network pharmacological prediction. Further, PCPA(DL-4-chlorophenylalanine)-induced insomnia mice were treated with beta-myrcene for one day or seven days. The quiet state of insomnia mice was increased effectively, and the hypnotic effect was enhanced by anaobarbital sodium by prolonging sleep duration, decreasing sleep latency, and increasing the rate of falling asleep. Beta-myrcene reduced the damage to hypothalamic neuron cells induced by PCPA and increased neurotransmitter levels of GABA, 5-HT, and Glu in the serum and hypothalamus of insomnia mice. Meanwhile, beta-myrcene exerted an improvement in insomnia by upregulating relevant genes and protein expression in the serotonergic synaptic pathway. These results support the merit of the sedative-hypnotic activity of LEO. Beta-myrcene, a terpene in LEO, may be the main source of its sedative-hypnotic properties. It may serve as a good potential compound in future clinical studies on coping with insomnia.
Collapse
Affiliation(s)
- Luge Chen
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Yingwei Liu
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Dawei Xu
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Na Zhang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| | - Jin Yang
- School of Traditional Chinese Medicine, Hubei University for Nationalities, Enshi 445000, China
| | - Lijuan Sun
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
5
|
Vora LK, Gholap AD, Hatvate NT, Naren P, Khan S, Chavda VP, Balar PC, Gandhi J, Khatri DK. Essential oils for clinical aromatherapy: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118180. [PMID: 38614262 DOI: 10.1016/j.jep.2024.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aromatherapy, a holistic healing practice utilizing the aromatic essences of plant-derived essential oils, has gained significant attention for its therapeutic potential in promoting overall well-being. Use of phytoconstituent based essential oil has played a significant role in the evolving therapeutic avenue of aromatherapy as a complementary system of medicine. AIM OF THE STUDY This comprehensive review article aims to explore the usage of essential oils for aromatherapy, shedding light on their diverse applications, scientific evidence, and safety considerations. Furthermore, the growing interest in using essential oils as complementary therapies in conjunction with conventional medicine is explored, underscoring the significance of collaborative healthcare approaches. MATERIALS AND METHODS Literature search was performed from databases like PubMed, ScienceDirect, Scopus, and Bentham using keywords like Aromatherapy, Aromatic Plants, Essential oils, Phytotherapy, and complementary medicine. The keywords were used to identify literature with therapeutic and mechanistic details of herbal agents with desired action. RESULTS The integration of traditional knowledge with modern scientific research has led to a renewed interest in essential oils as valuable tools in contemporary healthcare. Various extraction methods used to obtain essential oils are presented, emphasizing their impact on the oil's chemical composition and therapeutic properties. Additionally, the article scrutinizes the factors influencing the quality and purity of essential oils, elucidating the significance of standardization and certification for safe usage. A comprehensive assessment of the therapeutic effects of essential oils is provided, encompassing their potential as antimicrobial, analgesic, anxiolytic, and anti-inflammatory agents, among others. Clinical trials and preclinical studies are discussed to consolidate the existing evidence on their efficacy in treating diverse health conditions, both physical and psychological. Safety considerations are of paramount importance when employing essential oils, and this review addresses potential adverse effects, contraindications, and best practices to ensure responsible usage. CONCLUSIONS This comprehensive review provides valuable insights into the exploration of essential oils for aromatherapy, emphasizing their potential as natural and potent remedies for a wide range of ailments. By amalgamating traditional wisdom and modern research, this article aims to encourage further investigation into the therapeutic benefits of essential oils while advocating for their responsible and evidence-based incorporation into healthcare practices.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, 431213, Maharashtra, India
| | - Padmashri Naren
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Pankti C Balar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Jimil Gandhi
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
6
|
Li L, Wu X, Gong J, Wang Z, Dai W, Qiu L, Zuo H, Yi M, Yuan H, Hu M, Gao Z, Tian F. Activation of GABA type A receptor is involved in the anti-insomnia effect of Huanglian Wendan Decoction. Front Pharmacol 2024; 15:1389768. [PMID: 38846089 PMCID: PMC11153716 DOI: 10.3389/fphar.2024.1389768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
Huanglian Wendan Decoction (HWD) is a traditional Chinese medicine (TCM) prescribed to patients diagnosed with insomnia, which can achieve excellent therapeutic outcomes. As positively modulating the γ-aminobutyric acid (GABA) type A receptors (GABAARs) is the most effective strategy to manage insomnia, this study aimed to investigate whether the activation of GABAARs is involved in the anti-insomnia effect of HWD. We assessed the metabolites of HWD using LC/MS and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and tested the pharmacological activity in vitro and in vivo using whole-cell patch clamp and insomnia zebrafish model. In HEK293 cells expressing α1β3γ2L GABAARs, HWD effectively increased the GABA-induced currents and could induce GABAAR-mediated currents independent of the application of GABA. In the LC-MS (QToF) assay, 31 metabolites were discovered in negative ion modes and 37 metabolites were found in positive ion modes, but neither three selected active metabolites, Danshensu, Coptisine, or Dihydromyricetin, showed potentiating effects on GABA currents. 62 active metabolites of the seven botanical drugs were collected based on the TCMSP database and 19 of them were selected for patch-clamp verification according to the virtual docking simulations and other parameters. At a concentration of 100 μM, GABA-induced currents were increased by (+)-Cuparene (278.80% ± 19.13%), Ethyl glucoside (225.40% ± 21.77%), and β-Caryophyllene (290.11% ± 17.71%). In addition, (+)-Cuparene, Ethyl glucoside, and β-Caryophyllene could also serve as positive allosteric modulators (PAMs) and shifted the GABA dose-response curve (DRC) leftward significantly. In the PCPA-induced zebrafish model, Ethyl glucoside showed anti-insomnia effects at concentrations of 100 μM. In this research, we demonstrated that the activation of GABAARs was involved in the anti-insomnia effect of HWD, and Ethyl glucoside might be a key metabolite in treating insomnia.
Collapse
Affiliation(s)
- Liang Li
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Xiaorong Wu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| | - Jili Gong
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| | - Zhuqiang Wang
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Weibo Dai
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Li Qiu
- Zhongshan Institute for Drug Discovery, Zhongshan, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Hongyuan Zuo
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| | - Mengqin Yi
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| | - Hui Yuan
- Zhongshan Institute for Drug Discovery, Zhongshan, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mei Hu
- Pharmacology Laboratory, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| | - Zhaobing Gao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Zhongshan Institute for Drug Discovery, Zhongshan, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Zhongshan, China
| |
Collapse
|
7
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
8
|
Wróblewska-Łuczka P, Cabaj J, Bargieł J, Łuszczki JJ. Anticancer effect of terpenes: focus on malignant melanoma. Pharmacol Rep 2023; 75:1115-1125. [PMID: 37515699 PMCID: PMC10539410 DOI: 10.1007/s43440-023-00512-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is a highly aggressive and life-threatening form of skin cancer that accounts for a significant proportion of cancer-related deaths worldwide. Although conventional cancer therapies, such as surgical excision, chemotherapy, and radiation, have been used to treat malignant melanoma, their efficacy is often limited due to the development of resistance and adverse side effects. Therefore, there is a growing interest in developing alternative treatment options for melanoma that are more effective and less toxic. Terpenes, a diverse group of naturally occurring compounds of plant origin, have emerged as potential anticancer agents due to their ability to inhibit tumor growth and induce apoptosis in cancer cells. In this review, the current understanding of the anticancer effects of terpenes (including, thymoquinone, β-elemene, carvacrol, limonene, α-pinene, β-caryophyllene, perillyl alcohol, taxol, betulinic acid, α-bisabolol, ursolic acid, linalool, lupeol, and artesunate) was summarized, with a special focus on their potential as therapeutic agents for malignant melanoma.
Collapse
Affiliation(s)
- Paula Wróblewska-Łuczka
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Justyna Cabaj
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Julia Bargieł
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland.
| |
Collapse
|
9
|
Santibáñez A, Jiménez-Ferrer E, Angulo-Bejarano PI, Sharma A, Herrera-Ruiz M. Coriandrum sativum and Its Utility in Psychiatric Disorders. Molecules 2023; 28:5314. [PMID: 37513187 PMCID: PMC10385770 DOI: 10.3390/molecules28145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Paola Isabel Angulo-Bejarano
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Ashutosh Sharma
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
10
|
Hashemi P, Ahmadi S. Alpha-pinene moderates memory impairment induced by kainic acid via improving the BDNF/TrkB/CREB signaling pathway in rat hippocampus. Front Mol Neurosci 2023; 16:1202232. [PMID: 37456525 PMCID: PMC10347414 DOI: 10.3389/fnmol.2023.1202232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The potential benefits of natural ingredients in the alleviation of neurodegenerative disorders are of great interest. Alpha-pinene (APN) is an essential oil belonging to monoterpenes with multiple beneficial effects. In this study, the possible improving effects of alpha-pinene on memory impairment induced by kainic acid and the underlying molecular mechanisms were examined. Methods Memory impairment was induced by i.c.v. injection of kainic acid (KA) in male Wistar rats. Alpha-pinene (50 mg/kg/day, i.p.) was injected for 21 days, including 14 days before the KA injection and seven days afterward. Spatial working memory and inhibitory avoidance (IA) memory performance were assessed five and even days following KA injection, respectively. The hippocampal protein levels of brain-derived neurotrophic factor (BDNF), tropomyosin-like receptor kinase B (TrkB), cAMP response element binding protein (CREB), and neuronal loss in the CA1 region were also examined. Results Results revealed that the i.c.v. injection of KA triggered memory impairment, which was notably diminished by alpha-pinene pre-and post-treatment. Histopathological evaluation revealed that alpha-pinene significantly moderated the attenuation in CA1 alive neurons induced by KA injection. Western blotting analysis confirmed that alpha-pinene pre-and post-treatment significantly reversed the KA-induced decreases in the hippocampal levels of BDNF, TrkB, phosphorylated TrkB, CREB, and phosphorylated CREB. Discussion These findings suggest that alpha-pinene pre-and post-treatment moderate memory impairment induced by KA by restoring the BDNF/TrkB/CREB signaling pathway in the rat hippocampus.
Collapse
|
11
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Nascimento JC, Gonçalves VS, Souza BR, Nascimento LDC, Carvalho BM, Ziegelmann PK, Goes TC, Guimarães AG. New approaches to the effectiveness of inhalation aromatherapy in controlling painful conditions: A systematic review with meta-analysis. Complement Ther Clin Pract 2022; 49:101628. [DOI: 10.1016/j.ctcp.2022.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
|
13
|
Johnson A, Stewart A, El-Hakim I, Hamilton TJ. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Sci Rep 2022; 12:17250. [PMID: 36241680 PMCID: PMC9568608 DOI: 10.1038/s41598-022-21552-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Terpenes possess a wide range of medicinal properties and are potential therapeutics for a variety of pathological conditions. This study investigated the acute effects of two cannabis terpenes, β-caryophyllene and α-pinene, on zebrafish locomotion, anxiety-like, and boldness behaviour using the open field exploration and novel object approach tests. β-caryophyllene was administered in 0.02%, 0.2%, 2.0%, and 4% doses. α-pinene was administered in 0.01%, 0.02%, and 0.1% doses. As α-pinene is a racemic compound, we also tested its (+) and (-) enantiomers to observe any differential effects. β-caryophyllene had only a sedative effect at the highest dose tested. α-pinene had differing dose-dependent effects on anxiety-like and motor variables. Specifically, (+)-α-pinene and (-)-α-pinene had significant effects on anxiety measures, time spent in the thigmotaxis (outer) or center zone, in the open field test, as well as locomotor variables, swimming velocity and immobility. (+ /-)-α-pinene showed only a small effect on the open field test on immobility at the 0.1% dose. This study demonstrates that α-pinene can have a sedative or anxiolytic effect in zebrafish and may have different medicinal properties when isolated into its (+) or (-) enantiomers.
Collapse
Affiliation(s)
- Andréa Johnson
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Alycia Stewart
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Ismaeel El-Hakim
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Pinus halepensis Essential Oil Ameliorates Aβ1-42-Induced Brain Injury by Diminishing Anxiety, Oxidative Stress, and Neuroinflammation in Rats. Biomedicines 2022; 10:biomedicines10092300. [PMID: 36140401 PMCID: PMC9496595 DOI: 10.3390/biomedicines10092300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
The Pinus L. genus comprises around 250 species, being popular worldwide for their medicinal and aromatic properties. The present study aimed to evaluate the P. halepensis Mill. essential oil (PNO) in an Alzheimer’s disease (AD) environment as an anxiolytic and antidepressant agent. The AD-like symptoms were induced in Wistar male rats by intracerebroventricular administration of amyloid beta1-42 (Aβ1-42), and PNO (1% and 3%) was delivered to Aβ1-42 pre-treated rats via inhalation route for 21 consecutive days, 30 min before behavioral assessments. The obtained results indicate PNO’s potential to relieve anxious–depressive features and to restore redox imbalance in the rats exhibiting AD-like neuropsychiatric impairments. Moreover, PNO presented beneficial effects against neuroinflammation and neuroapoptosis in the Aβ1-42 rat AD model.
Collapse
|
15
|
Effects of elevated ultraviolet-B on the floral and leaf characteristics of a medicinal plant Wedelia chinensis (Osbeck) Merr. along with essential oil contents. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
17
|
Xiao S, Liu S, Yu H, Xie Y, Guo Y, Fan J, Yao W. A Study on the Mechanism of the Sedative-hypnotic Effect of Cinnamomum camphora chvar. Borneol Essential Oil Based on Network Pharmacology. J Oleo Sci 2022; 71:1063-1073. [PMID: 35691835 DOI: 10.5650/jos.ess21278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this paper, we investigated the sedative-hypnotic effect of Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol), a by-product of steam distillation of Cinnamomum camphora chvar. Borneol, from which natural crystalline borneol (NCB, 98.4% borneol) is obtained. Using locomotor activity tests and pentobarbital sodium-induced sleep test, it was found that BEO significantly reduced locomotor activity (p < 0.05), shortened sleep latency (p < 0.0001), prolonged sleep duration (p < 0.05), and had a sedative-hypnotic effect. We constructed the "components-targets-signaling pathways" and "protein-protein interaction" (PPI) network of BEO using network pharmacology. The results show that the 24 active components of BEO acted on 17 targets, mainly through response to alkaloid and catecholamine transport, and neuroactive ligand-receptor interaction. The PPI network identified 12 key proteins, mainly dopamine receptor (DR)D2, opioid receptor mu 1 (OPRM1), and opioid receptor kappa 1 (OPRK1), and we further analyzed the active components and targets of BEO through molecular docking. The results showed that the active components and targets obtained by network pharmacology analyses had good binding activity, which reflected their multi-component, multi-target, multi-pathway action characteristics. This paper provides a theoretical basis for further study of the mechanism of action of BEO in the treatment of insomnia.
Collapse
Affiliation(s)
- Shanshan Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Shuyan Liu
- Department of Laboratory, Shijiazhuang People's Hospital
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | | | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| |
Collapse
|
18
|
Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical compounds from plants have been used as a medicinal source for various diseases. Aromachology is a unique field that studies the olfactory effects after inhaling aromatic compounds. Aromatherapy is a complementary treatment methodology involving the use of essential oils containing phytoncides and other volatile organic compounds for various physical and mental illnesses. Phytoncides possess an inherent medicinal property. Their health benefits range from treating stress, immunosuppression, blood pressure, respiratory diseases, anxiety, and pain to anti-microbial, anti-larvicidal, anti-septic, anti-cancer effects, etc. Recent advancements in aromatherapy include forest bathing or forest therapy. The inhalation of phytoncide-rich forest air has been proven to reduce stress-induced immunosuppression, normalize immune function and neuroendocrine hormone levels, and, thus, restore physiological and psychological health. The intricate mechanisms related to how aroma converts into olfactory signals and how the olfactory signals relieve physical and mental illness still pose enormous questions and are the subject of ongoing research. Aromatherapy using the aroma of essential oils/phytoncides could be more innovative and attractive to patients. Moreover, with fewer side effects, this field might be recognized as a new field of complementary medicine in alleviating some forms of physical and mental distress. Essential oils are important assets in aromatherapy, cosmetics, and food preservatives. The use of essential oils as an aromatherapeutic agent is widespread. Detailed reports on the effects of EOs in aromatherapy and their pharmacological effects are required to uncover its complete biological mechanism. This review is about the evolution of research related to phytoncides containing EOs in treating various ailments and provides comprehensive details from complementary medicine.
Collapse
|
19
|
Hartley N, McLachlan CS. Aromas Influencing the GABAergic System. Molecules 2022; 27:molecules27082414. [PMID: 35458615 PMCID: PMC9026314 DOI: 10.3390/molecules27082414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aromas have a powerful influence in our everyday life and are known to exhibit an array of pharmacological properties, including anxiolytic, anti-stress, relaxing, and sedative effects. Numerous animal and human studies support the use of aromas and their constituents to reduce anxiety-related symptoms and/or behaviours. Although the exact mechanism of how these aromas exert their anxiolytic effects is not fully understood, the GABAergic system is thought to be primarily involved. The fragrance emitted from a number of plant essential oils has shown promise in recent studies in modulating GABAergic neurotransmission, with GABAA receptors being the primary therapeutic target. This review will explore the anxiolytic and sedative properties of aromas found in common beverages, such as coffee, tea, and whisky as well aromas found in food, spices, volatile organic compounds, and popular botanicals and their constituents. In doing so, this review will focus on these aromas and their influence on the GABAergic system and provide greater insight into viable anxiety treatment options.
Collapse
Affiliation(s)
- Neville Hartley
- Department of Naturopathy and Western Herbal Medicine, Health Faculty, Fortitude Valley Campus, Torrens University Australia, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Craig S. McLachlan
- Centre for Healthy Futures, Health Faculty, Surry Hills Campus, Torrens University Australia, Sydney, NSW 2010, Australia;
| |
Collapse
|
20
|
Khan-Mohammadi-Khorrami MK, Asle-Rousta M, Rahnema M, Amini R. Neuroprotective effect of alpha-pinene is mediated by suppression of the TNF-α/NF-κB pathway in Alzheimer's disease rat model. J Biochem Mol Toxicol 2022; 36:e23006. [PMID: 35174932 DOI: 10.1002/jbt.23006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/04/2023]
Abstract
Monoterpene alpha-pinene possesses antioxidant, cardioprotective, and neuroprotective properties. We evaluated the effect of alpha-pinene on oxidative/nitrosative stress, neuroinflammation, and molecular and behavioral changes induced by beta-amyloid (Aβ)1-42 in rats and investigated the possible mechanisms of these outcomes. Male Wistar rats received alpha-pinene (50 mg/kg intraperitoneally) for 14 consecutive days after intrahippocampal injection of Aβ1-42 . Alpha-pinene decreased malondialdehyde and nitric oxide levels, increased glutathione content, and enhanced catalase activity in Aβ-injected rats. Also, messenger RNA expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor κB, and N-methyl- d-aspartate receptor subunits 2A and 2B reduced in the hippocampus of these animals. Besides this, alpha-pinene repressed the Aβ1-42 -induced reduction of nicotinic acetylcholine receptor α7 subunit and brain-derived neurotrophic factor expression. Treatment with alpha-pinene caused Aβ-receiving rats to spend more time in the target quadrant in the Morris water maze test and led to an increase in percentages of open arm entrance and time spent in the open arm in the elevated plus-maze test. We concluded that alpha-pinene strengthens the antioxidant system and prevents neuroinflammation in the hippocampus of rats receiving Aβ. It improves spatial learning and memory and reduces anxiety-like behavior in these animals. Consequently, alpha-pinene alleviates Aβ-induced oxidative/nitrosative stress, neuroinflammation, and behavioral deficits. It is probably a suitable candidate for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
21
|
Kooshki R, Nekouei A, Rafie F, Abbasnejad M, Rahbar I, Raoof M. α-Pinene influence on pulpal pain-induced learning and memory impairment in rats via modulation of the GABAA receptor. Adv Biomed Res 2022; 11:60. [PMID: 36124022 PMCID: PMC9482378 DOI: 10.4103/abr.abr_139_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 08/01/2021] [Indexed: 11/04/2022] Open
|
22
|
Elahinia A, Hassanpour S, Asghari A, Khaksar E. Prenatal exposure to α-pinine improves reflexive motor behaviours in mice offspring. Int J Dev Neurosci 2021; 82:124-132. [PMID: 34957588 DOI: 10.1002/jdn.10164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
α-pinene is a well-known compound representative of the monoterpenes group with a wide range of pharmacological activities. This article aims to determine effects of the prenatal exposure to α-pinene on reflexive motor behaviours in mice offspring. Forty pregnant female NMRI mice (8-10 weeks old) were allocated into four groups. Group 1 served as control and groups 2-4 were intraperitoneally (i.p.) injected α-pinene (0.1, 0.5 and 1 mg/kg) on 5, 8, 11, 14 and 17 days of gestation (GD). The control group was injected with saline at the same days. Following delivery, 20 pups from each litter were selected and reflexive motor behaviours determined using ambulation, hindlimb foot angle, surface righting, hindlimb strength, grip strength, front-limb suspension and negative geotaxis tests. Based on the findings of the present study, maternal exposure to α-pinene increased ambulation score, hind-limb suspension score, grip strength, front-limb suspension compared with the control group (P < 0.05). Also, prenatal exposure to α-pinene decreased surface righting, hind-limb foot angle and negative geotaxis in mice offspring compared with the control group (P < 0.05). α-pinene (0.1, 0.5 and 1 mg/kg) decreased blood MDA and increased SOD and GPx levels in mice offspring (P < 0.05). These results suggested α-pinene exposure during pregnancy has positive effect on reflexive motor behaviours in mice offspring possibly due to its antioxidant properties.
Collapse
Affiliation(s)
- Ali Elahinia
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehssan Khaksar
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
24
|
Weston-Green K, Clunas H, Jimenez Naranjo C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front Psychiatry 2021; 12:583211. [PMID: 34512404 PMCID: PMC8426550 DOI: 10.3389/fpsyt.2021.583211] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
"Medicinal cannabis" is defined as the use of cannabis-based products for the treatment of an illness. Investigations of cannabis compounds in psychiatric and neurological illnesses primarily focus on the major cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), which are hypothesised to benefit multiple illnesses manifesting cognitive impairment, neurodegeneration and neuro-inflammation, as well as chronic pain, epilepsy and post-traumatic stress disorder, respectively. The cannabis plant contains >500 compounds, including terpenes responsible for the flavour and fragrance profiles of plants. Recently, research has begun providing evidence on the potential use of certain plant-derived terpenes in modern medicine, demonstrating anti-oxidant, anti-inflammatory, and neuroprotective effects of these compounds. This review examined the effects of two key terpenes, pinene and linalool, on parameters relevant to neurological and psychiatric disorders, highlighting gaps in the literature and recommendations for future research into terpene therapeutics. Overall, evidence is mostly limited to preclinical studies and well-designed clinical trials are lacking. Nevertheless, existing data suggests that pinene and linalool are relevant candidates for further investigation as novel medicines for illnesses, including stroke, ischemia, inflammatory and neuropathic pain (including migraine), cognitive impairment (relevant to Alzheimer's disease and ageing), insomnia, anxiety, and depression. Linalool and pinene influence multiple neurotransmitter, inflammatory and neurotrophic signals as well as behaviour, demonstrating psycho-activity (albeit non-intoxicating). Optimising the phytochemical profile of cannabis chemovars to yield therapeutic levels of beneficial terpenes and cannabinoids, such as linalool, pinene and CBD, could present a unique opportunity to discover novel medicines to treat psychiatric and neurological illnesses; however, further research is needed.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Helen Clunas
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Carlos Jimenez Naranjo
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| |
Collapse
|
25
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
26
|
Um MY, Yoon M, Lee J, Jung J, Cho S. A Novel Potent Sleep-Promoting Effect of Turmeric: Turmeric Increases Non-Rapid Eye Movement Sleep in Mice Via Histamine H 1Receptor Blockade. Mol Nutr Food Res 2021; 65:e2100100. [PMID: 34003596 DOI: 10.1002/mnfr.202100100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/03/2021] [Indexed: 12/27/2022]
Abstract
SCOPE Turmeric has a broad spectrum of biological properties; however, the sleep-promoting effects of turmeric have not yet been reported. Thus, this study aims to investigate the effect of turmeric on sleep and the molecular mechanism underlying this effect. METHODS AND RESULTS Pentobarbital-induce sleep test and sleep-wake profile assessment using recorded electroencephalography are used to evaluate the hypnotic effects of the turmeric extract (TE) compared to diazepam on sleep in mice. Additionally, the molecular mechanism of TE's sleep effect is investigated using ex vivo electrophysiological recordings from brain slices in histamine H1 receptor (H1 R) knockout mice. Oral administration of TE and diazepam significantly reduce sleep latency and increase non-rapid eye movement sleep (NREMS) duration without delta activity in mice. Like doxepin, TE inhibits the H1 R agonist (2-pyridylethylamine dihydrochloride)-induced increase in action potentials in the hypothalamic neurons. In animal tests using neurotransmitter agonists or antagonists, TE effect mimick H1 R antagonistic effect of doxepin. Additionally, both reduce sleep latency and increase NREMS in wild-type mice, although these effects are not observed in H1 R knockout mice. CONCLUSION TE has a sleep-promoting effect owing to reduction in sleep latency and enhancement of NREMS via H1 R blockade; therefore, it could be useful in insomnia.
Collapse
Affiliation(s)
- Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
- Division of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Jaekwang Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Jonghoon Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
27
|
Abstract
Despite the fact that medical properties of Cannabis have been recognized for more than 5000 years, the use of Cannabis for medical purposes have recently reemerged and became more accessible. Cannabis is usually employed as a self-medication for the treatment of insomnia disorder. However, the effects of Cannabis on sleep depend on multiple factors such as metabolomic composition of the plant, dosage and route of administration. In the present chapter, we reviewed the main effect Cannabis on sleep. We focused on the effect of "crude or whole plant" Cannabis consumption (i.e., smoked, oral or vaporized) both in humans and experimental animal models.The data reviewed establish that Cannabis modifies sleep. Furthermore, a recent experimental study in animals suggests that vaporization (which is a recommended route for medical purposes) of Cannabis with high THC and negligible CBD, promotes NREM sleep. However, it is imperative to perform new clinical studies in order to confirm if the administration of Cannabis could be a beneficial therapy for the treatment of sleep disorders.
Collapse
|
28
|
Mass Spectrometry-Based Flavor Monitoring of Peruvian Chocolate Fabrication Process. Metabolites 2021; 11:metabo11020071. [PMID: 33530548 PMCID: PMC7911988 DOI: 10.3390/metabo11020071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Flavor is one of the most prominent characteristics of chocolate and is crucial in determining the price the consumer is willing to pay. At present, two types of cocoa beans have been characterized according to their flavor and aroma profile, i.e., (1) the bulk (or ordinary) and (2) the fine flavor cocoa (FFC). The FFC has been distinguished from bulk cocoa for having a great variety of flavors. Aiming to differentiate the FFC bean origin of Peruvian chocolate, an analytical methodology using gas chromatography coupled to mass spectrometry (GC-MS) was developed. This methodology allows us to characterize eleven volatile organic compounds correlated to the aromatic profile of FFC chocolate from this geographical region (based on buttery, fruity, floral, ethereal sweet, and roasted flavors). Monitoring these 11 flavor compounds during the chain of industrial processes in a retrospective way, starting from the final chocolate bar towards pre-roasted cocoa beans, allows us to better understand the cocoa flavor development involved during each stage. Hence, this methodology was useful to distinguish chocolates from different regions, north and south of Peru, and production lines. This research can benefit the chocolate industry as a quality control protocol, from the raw material to the final product.
Collapse
|
29
|
Basati G, Ghanadi P, Shakib P, Hamidi M, Amanolahi Baharvand P. Heartburn and effective herbal remedies: A systematic review study in Iranian ethnobotanical documents. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Every year, millions of people worldwide get sick with gastrointestinal diseases such as heartburn. Certain herbs contribute to the alleviation of heartburn, nausea, and improvement of digestion. Moreover, these herbs do not have as many side effects as synthetic drugs. As a health problem and one of the challenging issues in medical sciences, heartburn is common in children and adults worldwide. Hence, in the present study, we tried to report medicinal plants used in cultures and traditions of different regions of Iran to treat heartburn in children and adults. In this review study, articles of Iranian ethnobotanical sources were searched with the keywords of ethnobotanics, heartburn, children, adult, medicinal plants, and Iran. Journal articles published from 2010 to 2019 in several Iranian and International databases, including ISI Web of Science, PubMed, Scopus, ISC, Magiran, were searched to find relevant articles and information. Anethum graveolens L., Punica granatum L., Mentha pulegium, Thymus kotschyanus Boiss. & Hohen., Achillea millefolium, Ocimum basilicum, Nigella sativa, etc., are the plants used in different parts of Iran to treat heartburn.
Collapse
Affiliation(s)
- Gholam Basati
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Pardis Ghanadi
- Medical Student, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Majid Hamidi
- Department of Pediatrics, Shahrekord University of Medical Sciences, Shaharekord, Iran
| | | |
Collapse
|
30
|
Pina LTS, Guimarães AG, Santos WBDR, Oliveira MA, Rabelo TK, Serafini MR. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153422. [PMID: 33310306 DOI: 10.1016/j.phymed.2020.153422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilepsy affects more than 65 million people worldwide. Treatment for epileptic seizures is ineffective and has many adverse effects. For this reason, the search for new therapeutic options capable of filling these limitations is necessary. HYPOTHESIS/PURPOSE In this sense, natural products, such as monoterpenes, have been indicated as a new option to control neurological disorders such as epilepsy. STUDY DESIGN Therefore, the objective of this study was to review the monoterpenes that have anticonvulsive activity in animal models. METHODS The searches were performed in the PubMed, Web of Science and Scopus databases in September, 2020 and compiled studies using monoterpenes as an alternative to seizure. Two independent reviewers performed the study selection, data extraction and methodological quality assessment using the Syrcle tool. RESULTS 51 articles that described the anticonvulsant activity of 35 monoterpenes were selected with action on the main pharmacological target, including GABAA receptors, glutamate, calcium channels, sodium and potassium. In addition, these compounds are capable of reducing neuronal inflammation and oxidative stress caused by seizure. CONCLUSION These compounds stand out as a promising alternative for acting through different pharmacological mechanisms, which may not only reduce seizure, but also promote neuroprotective effect by reducing toxicity in brain regions. However, further studies are needed to determine the mechanism of action and safety assessment of these compounds.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Wagner B da R Santos
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
31
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
32
|
Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186506. [PMID: 32906736 PMCID: PMC7559006 DOI: 10.3390/ijerph17186506] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
The aim of this research work is to analyze the chemistry and diversity of forest VOCs (volatile organic compounds) and to outline their evidence-based effects on health. This research work was designed as a narrative overview of the scientific literature. Inhaling forest VOCs like limonene and pinene can result in useful antioxidant and anti-inflammatory effects on the airways, and the pharmacological activity of some terpenes absorbed through inhalation may be also beneficial to promote brain functions by decreasing mental fatigue, inducing relaxation, and improving cognitive performance and mood. The tree composition can markedly influence the concentration of specific VOCs in the forest air, which also exhibits cyclic diurnal variations. Moreover, beneficial psychological and physiological effects of visiting a forest cannot be solely attributed to VOC inhalation but are due to a global and integrated stimulation of the five senses, induced by all specific characteristics of the natural environment, with the visual component probably playing a fundamental role in the overall effect. Globally, these findings can have useful implications for individual wellbeing, public health, and landscape design. Further clinical and environmental studies are advised, since the majority of the existing evidence is derived from laboratory findings.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, 43022 Monticelli Terme PR, Italy
- Institute of Public Health, University of Parma, 43125 Parma PR, Italy
- Correspondence:
| | - Davide Donelli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
- AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy
| | - Grazia Barbieri
- Binini Partners S.r.l. Engineering and Architecture, 42121 Reggio Emilia RE, Italy;
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK;
| | - Valentina Maggini
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| | - Fabio Firenzuoli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| |
Collapse
|
33
|
Noor AAM, Yusuf SM, Wahab WNAWA, Adam MFIC, Sul’ain MD. Evaluation on composition, antioxidant and toxicity of Melaleuca cajuputi leaves. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
35
|
Turkheimer FE, Fagerholm ED, Vignando M, Dafflon J, Da Costa PF, Dazzan P, Leech R. A GABA Interneuron Deficit Model of the Art of Vincent van Gogh. Front Psychiatry 2020; 11:685. [PMID: 32754073 PMCID: PMC7370815 DOI: 10.3389/fpsyt.2020.00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Vincent van Gogh was one of the most influential artists of the Western world, having shaped the post-impressionist art movement by shifting its boundaries forward into abstract expressionism. His distinctive style, which was not valued by the art-buying public during his lifetime, is nowadays one of the most sought after. However, despite the great deal of attention from academic and artistic circles, one important question remains open: was van Gogh's original style a visual manifestation distinct from his troubled mind, or was it in fact a by-product of an impairment that resulted from the psychiatric illness that marred his entire life? In this paper, we use a previously published multi-scale model of brain function to piece together a number of disparate observations about van Gogh's life and art. In particular, we first quantitatively analyze the brushwork of his large production of self-portraits using the image autocorrelation and demonstrate a strong association between the contrasts in the paintings, the occurrence of psychiatric symptoms, and his simultaneous use of absinthe-a strong liquor known to affect gamma aminobutyric acid (GABA) alpha receptors. Secondly, we propose that van Gogh suffered from a defective function of parvalbumin interneurons, which seems likely given his family history of schizophrenia and his addiction to substances associated with GABA action. This could explain the need for the artist to increasingly amplify the contrasts in his brushwork as his disease progressed, as well as his tendency to merge esthetic and personal experiences into a new form of abstraction.
Collapse
Affiliation(s)
- Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Lytra K, Tomou EM, Chrysargyris A, Drouza C, Skaltsa H, Tzortzakis N. Traditionally Used Sideritis cypria Post.: Phytochemistry, Nutritional Content, Bioactive Compounds of Cultivated Populations. Front Pharmacol 2020; 11:650. [PMID: 32477129 PMCID: PMC7235332 DOI: 10.3389/fphar.2020.00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Sideritis species are recognized as important medicinal plants and their commercial demand is continuously on the rise both in the European and in the global market. Consequently, the cultivation of Sideritis species has been occurred to successfully meet the need for mass production of high-quality plant material. The present study was undertaken in order to investigate the chemical composition of cultivated S. cypria. Infusions of flowers and leaves were prepared separately, according to the European Medicine Agency (EMA) monograph. The infusion of the flowers revealed the presence of four flavones, isoscutellarein-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside, its 4′-O-methyl-derivative, 4′-O-methyl-hypolaetin-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside, and isoscutellarein-7-O-[6′″-O-acetyl-β-D-allopyranosyl-(1→2)]-6″-O-acetyl-β-D-glucopyranoside; four phenylethanoid glucosides, acteoside, leucosceptoside A, lamalboside, and leonoside A; one iridoid, melittoside, and one phenolic acid, chlorogenic acid, while the infusion of the leaves of the same population afforded the same first two flavones; five phenylethanoid glucosides, acteoside, leucosceptoside A, lavandulifolioside, leonoside A, and lamalboside; melittoside and chlorogenic acid. The structural elucidation of the isolated compounds was undertaken by high-field NMR spectroscopy. Moreover, the essential oils of the flowers and leaves were studied by GC-MS, separately. In addition, the mineral, bioactive compounds, protein and carbohydrate contents were evaluated for both plant materials.
Collapse
Affiliation(s)
- Krystalia Lytra
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Chryssoula Drouza
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
37
|
Cardoso P, Nunes T, Pinto R, Sá C, Matos D, Figueira E. Rhizobium response to sole and combined exposure to cadmium and the phytocompounds alpha-pinene and quercetin. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:444-458. [PMID: 32189147 DOI: 10.1007/s10646-020-02184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Soils can be contaminated with substances arising from anthropogenic sources, but also with natural bioactive compounds produced by plants, such as terpenes and flavonoids. While terpenes and flavonoids have received much less attention from research studies than metals, the effects that phytocompounds can have on soil organisms such as beneficial microorganisms should not be neglected. Herein we report the sole and combined exposure of Rhizobium to cadmium, to the monoterpene alpha-pinene and to the flavanol quercetin. A range of environmentally relevant concentrations of the phytocompounds was tested. Physiological (growth, protein content and intracellular Cd concentration), oxidative damage (lipid peroxidation, protein carbonylation) and antioxidant mechanisms (superoxide dismutase, catalase, glutathione, glutathione-S-transferases, protein electrophoretic profiles) were assessed. Results suggest that exposure to both phytocompounds do not influence Rhizobium growth, but for combined exposure to phytocompounds and Cd, different responses are observed. At low concentrations, phytocompounds seem to relieve the stress imposed by Cd by increasing antioxidant responses, but at high concentrations this advantage is lost and membrane damage may even be exacerbated. Thus, the presence of bioactive phytocompounds in soil may influence the tolerance of microorganisms to persistent toxicants, and may change their impact on the environment.
Collapse
Affiliation(s)
- Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tiago Nunes
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Pinto
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carina Sá
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diana Matos
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
38
|
Woo J, Lee CJ. Sleep-enhancing Effects of Phytoncide Via Behavioral, Electrophysiological, and Molecular Modeling Approaches. Exp Neurobiol 2020; 29:120-129. [PMID: 32408402 PMCID: PMC7237266 DOI: 10.5607/en20013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep is indispensable for living animals to live and maintain a normal life. Due to the growing number of people suffering from sleep disorders such as insomnia, there have been increasing interests in environmentally friendly therapeutic approaches for sleep disorders to avoid any side effects of pharmacological treatment using synthetic hypnotics. It has been widely accepted that the various beneficial effects of forest, such as relieving stress and anxiety and enhancing immune system function, are caused by plant-derived products, also known as phytoncide. Recently, it has been reported that the sleep-enhancing effects of phytoncide are derived from pine trees such as (-)-α-pinene and 3-carene. These are the major constituents of pine tree that potentiate the inhibitory synaptic responses by acting as a positive modulator for GABAA-BZD receptor. In this review, we discuss the effects of phytoncide on sleep and review the latest approaches of sleep-related behavioral assay, electrophysiological recording, and molecular modeling technique.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Cell and Gene Th erapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
39
|
Rai K, Agrawal SB. Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:773-792. [PMID: 32255939 PMCID: PMC7113363 DOI: 10.1007/s12298-020-00780-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 05/22/2023]
Abstract
In the present study sensitivity of a medicinal plant Eclipta alba L. (Hassk) (False daisy) was assessed under intermittent (IT) and continuous (CT) doses of elevated ultraviolet-B (eUV-B). Eclipta alba is rich in medicinally important phytochemical constituents, used against several diseases. The hypothesis of this study is that alterations in UV-B dose may modify the quantity and quality of medicinally valuable components with changes in the morphological and physiological parameters of test plant. To fulfill our hypothesis IT and CT of eUV-B (ambient ± 7.2 kJ m-2 day-2) was given for 130 and 240 h respectively to assess the impact of UV-B stress. Growth and physiological parameters were adversely affected under both the treatments with varying magnitude. The observation of leaf surfaces showed increase in stomatal and trichome densities suggesting the adaptive resilience of the plants against UV-B. Besides, biosynthesis of wedelolactone, a major medicinal compound of E. alba was observed to be stimulated under UV-B exposure. The essential oil content was reduced under IT while increased under CT. A total of 114 compounds were identified from oil extract of E. alba. n-Pentadecane (25.79%), n-Octadecane (12.98%), β-Farnesene (9.43%), α-Humulene (4.95%) (E)-Caryophyllene (4.87%), Phytol (4.25%), α-Copaene (2.26%), Humulene epoxide (1.46%), β-Pinene (1.07) and β-Caryophyllene oxide (1.06%) were identified as major components of oil. CT induced the synthesis of some medicinally important compounds such as α-terpineol, δ-cadinene, linolenic acid, methyl linoleate and myristic acid amide. Hence, the study revealed that continuous UV-B exposure of low intensity could be helpful for commercial exploitation of essential oil in E. alba.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
40
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
41
|
Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int J Mol Sci 2020; 21:ijms21062187. [PMID: 32235725 PMCID: PMC7139849 DOI: 10.3390/ijms21062187] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Forest trees are a major source of biogenic volatile organic compounds (BVOCs). Terpenes and terpenoids are known as the main BVOCs of forest aerosols. These compounds have been shown to display a broad range of biological activities in various human disease models, thus implying that forest aerosols containing these compounds may be related to beneficial effects of forest bathing. In this review, we surveyed studies analyzing BVOCs and selected the most abundant 23 terpenes and terpenoids emitted in forested areas of the Northern Hemisphere, which were reported to display anti-inflammatory activities. We categorized anti-inflammatory processes related to the functions of these compounds into six groups and summarized their molecular mechanisms of action. Finally, among the major 23 compounds, we examined the therapeutic potentials of 12 compounds known to be effective against respiratory inflammation, atopic dermatitis, arthritis, and neuroinflammation among various inflammatory diseases. In conclusion, the updated studies support the beneficial effects of forest aerosols and propose their potential use as chemopreventive and therapeutic agents for treating various inflammatory diseases.
Collapse
|
42
|
Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L.D. Jayaweera S, A. Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, C. Cho W, Sharifi-Rad J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019; 9:E738. [PMID: 31739596 PMCID: PMC6920849 DOI: 10.3390/biom9110738] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
α- and β-pinene are well-known representatives of the monoterpenes group, and are found in many plants' essential oils. A wide range of pharmacological activities have been reported, including antibiotic resistance modulation, anticoagulant, antitumor, antimicrobial, antimalarial, antioxidant, anti-inflammatory, anti-Leishmania, and analgesic effects. This article aims to summarize the most prominent effects of α- and β-pinene, namely their cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as their effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain. Finally, we will also discuss the bioavailability, administration, as well as their biological activity and clinical applications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Shashi Upadhyay
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora-263643, Uttarakhand, India;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar-246174, Uttarakhand, India
| | - Sumali L.D. Jayaweera
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan;
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
43
|
Woo J, Yang H, Yoon M, Gadhe CG, Pae AN, Cho S, Lee CJ. 3-Carene, a Phytoncide from Pine Tree Has a Sleep-enhancing Effect by Targeting the GABA A-benzodiazepine Receptors. Exp Neurobiol 2019; 28:593-601. [PMID: 31698551 PMCID: PMC6844839 DOI: 10.5607/en.2019.28.5.593] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
3-Carene, a bicyclic monoterpene, is one of the major components of the pine tree essential oils. It has been reported that, in addition to its known properties as a phytoncide, 3-carene has anti-inflammatory, antimicrobial, and anxiolytic effects. We have previously demonstrated that α-pinene, the major component of pine tree, has a hypnotic effect through GABAA-benzodiazepine (BZD) receptors. However, a hypnotic effect of 3-carene has not been studied yet. Here, we report that oral administration of 3-carene increases the sleep duration and reduces sleep latency in pentobarbital- induced sleep test. 3-Carene potentiates the GABAA receptor-mediated synaptic responses by prolonging the decay time constant of inhibitory synaptic responses. These enhancing effects of 3-carene are reproduced by zolpidem, a modulator for GABAA-BZD receptor, and fully inhibited by flumazenil, an antagonist for GABAA-BZD receptor. The molecular docking of 3-carene to the BZD site of GABAA protein structure, suggests that 3-carene binds to the BZD site of α1 and ϒ2 subunits of GABAA-BZD receptor. These results indicate that, similar to α-pinene, 3-carene shows a sleep-enhancing effect by acting as a positive modulator for GABAA-BZD receptor.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Department of Neuroscience, Division of Bio- Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Hyejin Yang
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Changdev G Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02791, Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - C Justin Lee
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Department of Neuroscience, Division of Bio- Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.,Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
44
|
Kwon S, Jung JH, Cho S, Moon KD, Lee J. Dieckol is a natural positive allosteric modulator of GABAA-benzodiazepine receptors and enhances inhibitory synaptic activity in cultured neurons. Nutr Neurosci 2019; 24:835-842. [DOI: 10.1080/1028415x.2019.1681089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sangoh Kwon
- S&D Research and Development Institute, Cheongju, Republic of Korea
- Major in Food Biotechnology, School of Food Science & Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Hoon Jung
- Research group of Functional Food Materials, Division of Functional Food, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Kwang-Deog Moon
- Major in Food Biotechnology, School of Food Science & Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jaekwang Lee
- Research group of Functional Food Materials, Division of Functional Food, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
45
|
Dougnon G, Ito M. Sedative effects of the essential oil from the leaves of Lantana camara occurring in the Republic of Benin via inhalation in mice. J Nat Med 2019; 74:159-169. [PMID: 31446559 DOI: 10.1007/s11418-019-01358-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
Lantana camara Linn. (Verbenaceae) is used traditionally for its numerous medicinal properties such as antimalarial, antibacterial, anticancer and anti-inflammatory. In the present study, we investigated the chemical composition of essential oil from the leaves of L. camara (LCEO) occurring in the Republic of Benin (West Africa) in comparison with LCEOs from other regions; evaluated its sedative effects in mice via inhalation administration; and identified the compounds responsible for activity. LCEO was extracted by hydrodistillation and chemical analyses of the oil were performed by GC and GC/MS. The oil was dominated by monoterpene hydrocarbons (60.58%) and oxygenated monoterpenes (33.39%), among which sabinene (38.81%) and 1,8-cineole (28.90%) were the most abundant. LCEO administered via inhalation to mice significantly decreased locomotor activity in a dose-dependent manner, mainly at the doses of 0.0004 and 0.04 mg per 400 μL of triethyl citrate (TEC). The oil was fractionated to give two fractions, which were further investigated, and revealed that both sabinene and 1,8-cineole were the principal active compounds. The results of the present study indicated that via inhalation administration, LCEO and its main constituents could be considered as promising candidates for the management of dementia, insomnia, attention deficit hyperactivity disorder and other central nervous system-associated diseases.
Collapse
Affiliation(s)
- Godfried Dougnon
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
46
|
Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2745453. [PMID: 31467573 PMCID: PMC6699265 DOI: 10.1155/2019/2745453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022]
Abstract
α-Pinene, an organic terpene compound found in coniferous trees, is used as a safe food additive and is contained in many essential oils. Moreover, some studies have shown that α-pinene suppresses neuronal activity. In this study, we investigated whether inhalation of α-pinene suppresses dizocilpine (MK-801-) induced schizophrenia-like behavioural abnormalities in mice. Mice inhaled α-pinene 1 h before the first MK-801 injection. Thirty minutes after MK-801 injection, the open field, spontaneous locomotor activity, elevated plus maze, Y-maze, tail suspension, hot plate, and grip strength tests were conducted as behavioural experiments. Inhalation of α-pinene suppressed the activity of mice in the spontaneous locomotor activity test and although it did not suppress the MK-801-induced increased locomotor activity in the open field test, it remarkably decreased the time that the mice remained in the central area. Inhalation of α-pinene suppressed the MK-801-induced increased total distance travelled in the Y-maze test, whereas it did not alter the MK-801-induced reduced threshold of antinociception in the hot plate test. In the tail suspension and grip strength tests, there was no effect on mouse behaviour by administration of MK-801 and inhalation of α-pinene. These results suggest that α-pinene acts to reduce MK-801-induced behavioural abnormalities resembling those seen in neuropsychiatric disorders. Therefore, both medicinal plants and essential oils containing α-pinene may have potential for therapeutic treatment of schizophrenia.
Collapse
|
47
|
Uchenna AP, Charity ON, Abbey B. Effect of Simultaneous Snail Slime-aided Degradation and Yeast Fermentation on Terpenoid Composition of Plantain Pseudostem Waste. Curr Pharm Biotechnol 2019; 20:459-464. [DOI: 10.2174/1389201020666190408120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/15/2018] [Accepted: 04/01/2019] [Indexed: 11/22/2022]
Abstract
Background:
In this study, local sustainable enzyme sources involving excised digestive
juice of African land snail and yeast were utilized to achieve the simultaneous saccharification (SSF)
and fermentation (SSF) of plantain pseudostem (PPS) waste, and afterwards their effects on terpenoids
using gas chromatography coupled to a flame ionization detector (GC-FID), were examined.
Methods:
The most abundant terpenoids were found in the order α-pinene > borneol > camphor > humulene
> β-caryophellene, while the least in abundance were cis ocimene (8.78x10-6 mg/100g), and
cyperene (1.81x10-5 mg/100g). The application of exclusive fermentation and SSF respectively elevated
azuluene by 95.46 and 99.6%, while pinene-2-ol was elevated by 83.02 and 98.57%, respectively.
Results:
Both exclusive fermentation and SSF had no effect on myrcene, cyperene, ethyl cinnamate,
germacrene b, valencene, beta selinene, aromadendrene, and taraxerol, while the degree of degradation
of some of the terpenoids by both processes was respectively as follows; gama muurolene (100%),
β-caryophyllene (97.60 and 93.14%), α-terpinenyl acetate (91.95 and 83.16%), geranyl acetate (94.81
and 43.87%), and terpinen-4-ol (94.40 and 57.00%).
Conclusion:
The findings of this study encourage the imminent application of simultaneous saccharification
and fermentation for the enhancement of bioactivities of terpenoids.
Collapse
Affiliation(s)
- Amadi P. Uchenna
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Ogunka-Nnoka Charity
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Bene Abbey
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers State, Nigeria
| |
Collapse
|
48
|
Bagherifar S, Sourestani MM, Zolfaghari M, Mottaghipisheh J, Zomborszki ZP, Csupor D. Chemodiversity of Volatile Oil Contents of Various Parts of 10 Iranian Prangos ferulacea Accessions, With Analysis of Antiradical Potential. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19851985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study aimed at assessing the influence of ecological factors on volatile oil content and antiradical potential of Prangos ferulacea. The essential oil (EO) content and composition of different plant parts were also compared. Among 22 identified compounds by gas chromatography (GC) flame ionization detector and GC-mass spectrometry, monoterpene hydrocarbons as the major constituents contributed to 27.6% to 83.4% of the oil deriving from plants growing on the northern steeps of “Gandomkar” region at 2600 m (G.N-2600) and “Male-Amiri” at 2300 m height (MA.N-2300), respectively. Immature seed and leaf samples of “Male-Amiri” with 3.0% ± 0.16% and 0.79% ± 0.03% of EO content represented the samples with the highest and lowest EO yields, respectively. Whereas the EO of the leaves mostly contained δ-3-carene and α-bisabolol, other parts were rich in α- and β-pinene. Extracts of accessions “G.N-2600” (EC50 = 13.11 ± 0.69 μg/mL) and “M.S-2500” (10.55 ± 0.41 mmol TE/g) exhibited the most potent antiradical activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Oxygen Radical Absorbance Capacity (ORAC) assays, respectively. Because of the extensive use of this species in traditional foods and the remarkable bioactivities of α- and β-pinene and δ-3-carene, the EO of the plant can be considered as a valuable raw material in phytopharmaceutical and food industries.
Collapse
Affiliation(s)
- Soleyman Bagherifar
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
| | | | - Maryam Zolfaghari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
| | | | | | - Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Hungary
| |
Collapse
|
49
|
Mondino A, Cavelli M, González J, Santana N, Castro-Zaballa S, Mechoso B, Bracesco N, Fernandez S, Garcia-Carnelli C, Castro MJ, Umpierrez E, Murillo-Rodriguez E, Torterolo P, Falconi A. Acute effect of vaporized Cannabis on sleep and electrocortical activity. Pharmacol Biochem Behav 2019; 179:113-123. [DOI: 10.1016/j.pbb.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/24/2019] [Indexed: 01/31/2023]
|
50
|
Rahbar I, Abbasnejad M, Haghani J, Raoof M, Kooshki R, Esmaeili-Mahani S. The effect of central administration of alpha-pinene on capsaicin-induced dental pulp nociception. Int Endod J 2019; 52:307-317. [PMID: 30152861 DOI: 10.1111/iej.13006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/23/2018] [Indexed: 01/17/2023]
Abstract
AIM To assess the effects of central administration of α-pinene alone and in combination with either bicuculline or naloxone, as GABAA and μ-opioid receptor antagonists, respectively, on capsaicin-induced dental pulp stimulation in rats. METHODOLOGY Forty-eight adult male Wistar rats aged 2 months (230-270 g) were cannulated via their lateral ventricles for the central administration of the drugs. α-Pinene was injected at 0.1, 0.2 and 0.4 μmol L-1 . Then, dental pulp stimulation was induced by intradental application of capsaicin solution (100 μg), and nociceptive scores were recorded for up to 40 min. For investigation of the anti-inflammatory effects of α-pinene, expression of COX-2 in the subnucleolus caudalis (Vc) of rats was determined using immunofluorescence staining. Nonparametric repeated measure Friedman and Kruskal-Wallis tests as well as parametric one-way analysis of variance were used for the statistical analysis. RESULTS α-Pinene at 0.2 and 0.4 μmol L-1 was able to decrease capsaicin-induced nociception. Moreover, there was a significant increase in the expression of COX-2-positive cells in the Vc of capsaicin-treated rats (P < 0.01). This effect was prohibited by α-pinene (0.4 μmol L-1 ). Co-administration of bicuculline (1 μg per rat) or naloxone (6 μg per rat) with α-pinene (0.4 μmol L-1 ), however, prevented the inhibitory effects of α-pinene on both capsaicin-induced pulp nociception and COX-2 over-expression. CONCLUSIONS Pinene exhibited significant curable effects on capsaicin-induced pulpal nociception and inflammation mainly via pharmacological interfacing with GABAA and μ-opioid receptors.
Collapse
Affiliation(s)
- I Rahbar
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
| | - M Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
| | - J Haghani
- Endodontology Research Center, Kerman University of Medical Sciences, Iran
| | - M Raoof
- Laboratory of Molecular Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - R Kooshki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
| | - S Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
| |
Collapse
|