1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
He T, Pu J, Ge H, Liu T, Lv X, Zhang Y, Cao J, Yu H, Lu Z, Du F. Elevated circulating LncRNA NORAD fosters endothelial cell growth and averts ferroptosis by modulating the miR-106a/CCND1 axis in CAD patients. Sci Rep 2024; 14:24223. [PMID: 39414920 PMCID: PMC11484692 DOI: 10.1038/s41598-024-76243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases, characterized by endothelial dysfunction and lipid accumulation. Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell behavior. This study aimed to investigate the role of lncRNA NORAD in endothelial cell proliferation and as a potential therapeutic target for atherosclerosis. A total of 75 CAD patients and 76 controls were recruited, and plasma NORAD levels were measured using qRT-PCR. HUVECs were transfected with si-NORAD to evaluate its effects on cell cycle, proliferation, migration, and apoptosis. Plasma NORAD levels were significantly elevated in CAD patients. The NORAD-miRNA-mRNA ceRNA regulatory network was constructed based on GEO database, and G1/S-specific cyclin-D1 (CCND1) was identified as one of the hub factors. NORAD deficiency suppressed cell migration and induced G1 cell cycle arrest in HUVECs by downregulating CCND1 in vitro. NORAD upregulated CCND1 in HUVECs via sponging miR-106a that inhibited cell migration. The dual-luciferase assay confirmed the direct targeting of miR-106a by NORAD, and overexpression of miR-106a inhibited HUVEC proliferation and migration. Si-NORAD transfection resulted in induced early apoptosis, increased intracellular ROS levels, decreased GSH levels, and reduced mitochondrial membrane potential. Additionally, si-NORAD decreased the expression of GPX4, FTH1, KEAP1, NCOA4, and Nrf2, while increasing Xct levels, confirming the involvement of ferroptosis. Our findings reveal that NORAD plays a critical role in endothelial cell proliferation, migration, and apoptosis, and its silencing induces ferroptosis. The regulatory network involving NORAD, miR-106a, and their target genes provides a potential therapeutic avenue for atherosclerosis.
Collapse
Affiliation(s)
- Tao He
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Junxing Pu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Haijing Ge
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China
| | - Tianli Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Xintong Lv
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Department of Cardiology of Zhongnan Hospital, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430071, China.
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Zhou Y, Huang Q, Li HG, Liang S, He B, Bao M. Arecoline inhibits the growth of Spodoptera litura by inducing intestinal metabolic dysfunction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106044. [PMID: 39277371 DOI: 10.1016/j.pestbp.2024.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Arecoline (ACL), an active constituent derived from Areca catechu L., exerts various pharmacological effects and serves as a potential plant-based insecticide. However, the effects of ACL on Spodoptera litura, an important and widely distributed agricultural pest, remain unknown. This study aimed to elucidate the mechanism underlying ACL-induced toxicity and its inhibitory effects on larval growth and development through intestinal pathology observations, intestinal transcriptome sequencing, intestinal digestive enzyme activity analysis. The results indicated that ACL exposure leads to pathological alterations in the S. litura midgut. Furthermore, the detection of digestive enzyme activity revealed that ACL inhibits the activities of acetyl CoA carboxylase, lipase, α-amylase, and trypsin. Simultaneously, upregulation of superoxide dismutase activity and downregulation of malondialdehyde levels were observed after ACL exposure. Transcriptome analysis identified 1118 genes that were significantly differentially expressed in the midgut after ACL exposure, potentially related to ACL toxic effects. Notably, ACL treatment downregulated key enzymes involved in lipid metabolism, such as fatty acid binding protein 2-like, pancreatic triacylglycerol lipase-like, pancreatic lipid-related protein 2-like, and fatty acid binding protein 1-like. Taken together, these results suggest that ACL induces midgut damage and impedes larval growth by suppressing digestive enzyme activity in the intestine. These findings can aid in the development of environmentally friendly plant-derived insecticides, utilizing ACL to effectively combat S. litura proliferation.
Collapse
Affiliation(s)
- Yi Zhou
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - Qiao Huang
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China
| | - Hai Gang Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China; School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - ShangJin Liang
- School of Pharmaceutical Science, Changsha Medical University, Hunan 410219, China
| | - BingSheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China.
| | - MeiHua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Hunan 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Hunan 410219, China.
| |
Collapse
|
5
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
6
|
Wu Y, Ma Y, Zhong W, Shen H, Ye J, Du S, Li P. Alleviation of endothelial dysfunction of Pheretima guillemi (Michaelsen)-derived protein DPf3 in ponatinib-induced thrombotic zebrafish and mechanisms explored through ox-LDL-induced HUVECs and TMT-based proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117669. [PMID: 38159828 DOI: 10.1016/j.jep.2023.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.
Collapse
Affiliation(s)
- Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Yunnan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Huijuan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jinhong Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Liang Y, Xu XD, Xu X, Cai YB, Zhu ZX, Zhu L, Ren K. Linc00657 promoted pyroptosis in THP-1-derived macrophages and exacerbated atherosclerosis via the miR-106b-5p/TXNIP/NLRP3 axis. Int J Biol Macromol 2023; 253:126953. [PMID: 37734516 DOI: 10.1016/j.ijbiomac.2023.126953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Long intergenic non-coding RNA 00657 (linc00657) is involved in various diseases, whereas its role in atherosclerosis (AS) development remains inconclusive. This study was designed to investigate the effects and underlying mechanisms of linc00657 in atherogenesis. The results showed that ox-LDL treatment significantly induced pyroptosis in human THP-1-derived macrophages. The secretion levels of LDH and pro-inflammatory factors were markedly enhanced, and the integrity of plasma membranes was disrupted in ox-LDL-treated THP-1-derived macrophages. These effects were significantly compensated after transfection with linc00657 siRNA and became more evident by linc00657 overexpression. Moreover, the effects of linc00657 overexpression on pyroptosis of THP-1-derived macrophages can also be robustly reversed by TXNIP knockdown or miR-106b-5p mimics transfection. Mechanistically, linc00657 enhanced TXNIP expression by competitively binding to miR-106b-5p, promoting NLRP3 inflammasome activation. Finally, we found that linc00657 overexpression significantly increased the expression of pyroptosis-related factors and decreased miR-106b-5p level in the aorta of high-fat-diet-fed apoE-/- mice. Furthermore, linc00657 up-regulation enlarged the plaque area, exacerbated plasma lipid profile, and increased pro-inflammatory cytokines levels in the serum, effects that were reversed by injection of miR-106b-5p agomir. This evidence indicated that linc00657 stimulated macrophage pyroptosis and aggravated the progression of AS via the miR-106b-5p/TXNIP/NLRP3 pathway.
Collapse
Affiliation(s)
- Yin Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524000, Guangdong, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Xi Xu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China
| | - Yang-Bo Cai
- Division of Hepatobiliary and Pancreas Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Zi-Xian Zhu
- Emergency and Trauma College, Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Lin Zhu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China.
| | - Kun Ren
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China.
| |
Collapse
|
8
|
Zhou Y, Wu YM, Fan R, Ouyang J, Zhou XL, Li ZB, Janjua MU, Li HG, Bao MH, He BS. Transcriptome analysis unveils the mechanisms of lipid metabolism response to grayanotoxin I stress in Spodoptera litura. PeerJ 2023; 11:e16238. [PMID: 38077416 PMCID: PMC10710133 DOI: 10.7717/peerj.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Background Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic importance due to being a polyphagous and world-distributed agricultural pest. However, agricultural practices involving chemical pesticides have caused resistance, resurgence, and residue problems, highlighting the need for new, environmentally friendly methods to control the spread of S. litura. Aim This study aimed to investigate the gut poisoning of grayanotoxin I, an active compound found in Pieris japonica, on S. litura, and to explore the underlying mechanisms of these effects. Methods S. litura was cultivated in a laboratory setting, and their survival rate, growth and development, and pupation time were recorded after grayanotoxin I treatment. RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the functions of these DEGs. ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase (HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H & E) staining was used to detect the development of the fat body. Results Grayanotoxin I treatment significantly suppressed the survival rate, growth and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285 DEGs were enriched in the categories of cuticle development, larvae longevity, fat digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA, lipase, and HOAD in the hemolymph of S. litura. Conclusion The results of this study demonstrated that grayanotoxin I inhibited the growth and development of S. litura. The mechanisms might, at least partly, be related to the interference of lipid synthesis, lipolysis, and fat body development. These findings provide valuable insights into a new, environmentally-friendly plant-derived insecticide, grayanotoxin I, to control the spread of S. litura.
Collapse
Affiliation(s)
- Yi Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Yong-mei Wu
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Rong Fan
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Jiang Ouyang
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Xiao-long Zhou
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Zi-bo Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| | - Muhammad Usman Janjua
- Changsha Medical University, School of International Education, Changsha, Hunan, China
| | - Hai-gang Li
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Mei-hua Bao
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
- Changsha Medical University, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha, Hunan, China
| | - Bin-sheng He
- Changsha Medical University, The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha, Hunan, China
| |
Collapse
|
9
|
Yu B, Shen K, Li T, Li J, Meng M, Liu W, Tang Q, Zhu T, Wang X, Leung SWS, Shi Y. Glycolytic enzyme PFKFB3 regulates sphingosine 1-phosphate receptor 1 in proangiogenic glomerular endothelial cells under diabetic condition. Am J Physiol Cell Physiol 2023; 325:C1354-C1368. [PMID: 37781737 PMCID: PMC10861147 DOI: 10.1152/ajpcell.00261.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.
Collapse
Affiliation(s)
- Baixue Yu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tingting Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mei Meng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjie Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qunye Tang
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
11
|
Bai R, Sun M, Chen Y, Zhuo S, Song G, Wang T, Zhang Z. H19 recruited m6A reader YTHDF1 to promote SCARB1 translation and facilitate angiogenesis in gastric cancer. Chin Med J (Engl) 2023:00029330-990000000-00649. [PMID: 37279381 DOI: 10.1097/cm9.0000000000002722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism. METHODS Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo. The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay. RESULTS In this study, we found that hypoxia-induced factor (HIF-1α) could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N6-methyladenosine (m6A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m6A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells. CONCLUSION HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.
Collapse
Affiliation(s)
- Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Yuanyuan Chen
- Department of Biochemistry, Nanjing Medical University, Nanjing, Jiangsu 211112, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianjun Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
12
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
13
|
Youssef AI, Khaled GM, Amleh A. Functional role and epithelial to mesenchymal transition of the miR-590-3p/MDM2 axis in hepatocellular carcinoma. BMC Cancer 2023; 23:396. [PMID: 37138218 PMCID: PMC10157954 DOI: 10.1186/s12885-023-10861-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND There is considerable evidence that microRNAs (miRNAs) regulate several key tumor-associated genes/pathways and may themselves have a dual regulatory function either as tumor suppressors or oncogenic miRNA, depending on the tumor type. MicroRNA-590-3p (miR-590-3p) is a small non-coding RNA involved in the initiation and progression of numerous tumors. However, its expression pattern and biological role in hepatocellular carcinoma (HCC) are controversial. RESULTS In the current work, computational and RT-qPCR analysis revealed that HCC tissues and cell lines exhibited miR-590-3p downregulation. Forced expression of miR-590-3p attenuated HepG2 cells proliferation, migration, and repressed EMT-related gene expression. Bioinformatic, RT-qPCR, and luciferase assays revealed that MDM2 is a direct functional target of miR-590-3p. Moreover, the knockdown of MDM2 mimicked the inhibitory effect of miR-590-3p in HepG2 cells. CONCLUSION We have identified not only novel targets for miR-590-3p in HCC, but also novel target genes for miR590-3p/MDM2 pathway in HCC like SNAIL, SLUG, ZEB1, ZEB2, and N-cadherin. Furthermore, these findings demonstrate a crucial role for MDM2 in the regulatory mechanism of EMT in HCC.
Collapse
Affiliation(s)
- Alaa Ibrahem Youssef
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Gehad Mahmoud Khaled
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Asma Amleh
- Department of Biotechnology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
14
|
Fu W, Liang D, Wu X, Chen H, Hong X, Wang J, Zhu T, Zeng T, Lin W, Chen S, Yan L, Ren M. Long noncoding RNA LINC01435 impedes diabetic wound healing by facilitating YY1-mediated HDAC8 expression. iScience 2022; 25:104006. [PMID: 35330681 PMCID: PMC8938286 DOI: 10.1016/j.isci.2022.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wan Fu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Xiaoying Wu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Hongxing Chen
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Xiaosi Hong
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Jiahuan Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Tianxin Zhu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Weijie Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou 510120, China
- Corresponding author
| |
Collapse
|
15
|
Screening and Identification of Putative Long Non-Coding RNA in Childhood Obesity: Evaluation of Their Transcriptional Levels. Biomedicines 2022; 10:biomedicines10030529. [PMID: 35327332 PMCID: PMC8945364 DOI: 10.3390/biomedicines10030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background and Methods: Long non-coding RNAs (LncRNAs) and microRNAs are involved in the pathogenesis of obesity, a multifactorial disease that is characterized by inflammation, cardiometabolic complications, and increased cancer risk among other co-morbidities. The up/down regulation of LncRNAs and microRNAs may play an important role in this condition to identify new diagnostic/prognostic markers. The aim of the study was to identify circulating inflammatory LncRNAs in obese adolescents (n = 54) and to evaluate whether their expression behaved differently compared to normal-weight adolescents (n = 26). To have a more complete insight, the expression of some circulating miRNAs that are linked to obesity (miR-33a, miR-223, miR-142, miR-199a, miR-181a, and miR-4454) were also analyzed. Results: LncRNAs and miRNAs were extracted simultaneously from plasma samples and amplified by Real-Time PCR. Among the 86 LncRNAs that were analyzed with custom pre-designed plates, only four (RP11-347E10.1, RP11-10K16.1, LINC00657, and SNHG12) were amplified in both normal-weight and obese adolescents and only SNHG12 showed significantly lower expression compared to the normal-weight adolescents (p = 0.026). Circulating miRNAs showed a tendency to increase in obese subjects, except for miR-181a expression. LncRNAs and miRNAs correlated with some clinical and metabolic parameters. Conclusions: Our results suggest the importance of these new biomarkers to better understand the molecular mechanisms of childhood obesity and its metabolic disorder.
Collapse
|
16
|
Abdelaleem OO, Shaker OG, Mohamed MM, Ahmed TI, Elkhateeb AF, Abdelghaffar NK, Ahmed NA, Khalefa AA, Hemeda NF, Mahmoud RH. Differential Expression of Serum TUG1, LINC00657, miR-9, and miR-106a in Diabetic Patients With and Without Ischemic Stroke. Front Mol Biosci 2022; 8:758742. [PMID: 35237654 PMCID: PMC8882980 DOI: 10.3389/fmolb.2021.758742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ischemic stroke is one of the serious complications of diabetes. Non-coding RNAs are established as promising biomarkers for diabetes and its complications. The present research investigated the expression profiles of serum TUG1, LINC00657, miR-9, and miR-106a in diabetic patients with and without stroke. Methods: A total of 75 diabetic patients without stroke, 77 patients with stroke, and 71 healthy controls were recruited in the current study. The serum expression levels of TUG1, LINC00657, miR-9, and miR-106a were assessed using quantitative real-time polymerase chain reaction assays. Results: We observed significant high expression levels of LINC00657 and miR-9 in the serum of diabetic patients without stroke compared to control participants. At the same time, we found marked increases of serum TUG1, LINC00657, and miR-9 and a marked decrease of serum miR-106a in diabetic patients who had stroke relative to those without stroke. Also, we revealed positive correlations between each of TUG1, LINC00657, and miR-9 and the National Institutes of Health Stroke Scale (NIHSS). However, there was a negative correlation between miR-106a and NIHSS. Finally, we demonstrated a negative correlation between LINC00657 and miR-106a in diabetic patients with stroke. Conclusion: Serum non-coding RNAs, TUG1, LINC00657, miR-9, and miR-106a displayed potential as novel molecular biomarkers for diabetes complicated with stroke, suggesting that they might be new therapeutic targets for the treatment of diabetic patients with stroke.
Collapse
Affiliation(s)
- Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed M. Mohamed
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ahmed F. Elkhateeb
- Department of Critical Care, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Noha K. Abdelghaffar
- Department of Clinical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Naglaa A. Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A. Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nada F. Hemeda
- Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
17
|
Zhu Z, Li J, Tong R, Zhang X, Yu B. Astaxanthin suppresses End MT by LOX-1 pathway in ox-LDL-induced HUVECs. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Astaxanthin (ASX) is carotenoid with the highest antioxidant activity in various cell types and reverse atherosclerosis. However, the roles and detailed mechanisms of ASX in atherosclerosis associated endothelial injury remains unclear. Methods In vitro atherosclerosis model was established in HUVECs by incubation with oxidized low-density lipoprotein (ox-LDL). Cell viability and oxidative stress were measured. The mRNA and protein expressions of lectin-like ox-LDL receptor (LOX-1) and other related genes were determined. Results ox-LDL reduced cell viability of HUVECs, and induced oxidative stress, as evidenced by elevated cellular malondialdehyde (MDA) and decreased superoxide dismutase (SOD). Pretreatment with ASX (50, 100, 200, and 400 μM) markedly reversed the reduction in cell viability and an increase in migration of HUVECs induced by ox-LDL (50 μg/mL). ASX attenuated the increase in the endothelial-to-mesenchymal transition (EndMT) process, as evidenced by increased CD31 and decreased α-SMA and vimentin proteins by ASX treatment in HUVECs. Furthermore, ASX attenuated the increase in MDA and decrease in SOD induced by ox-LDL, increased supernatant NO production, attenuated the increase in iNOS and decrease in eNOS in HUVECs with ox-LDL. ASX enhanced mRNA and protein expressions of the lectin-like ox-LDL receptor (LOX-1), which was dependent on ASX’s antioxidant activity. The inhibitory effect of ASX on EndMT could be abolished by overexpression of LOX-1 in HUVECs induced by ox-LDL. Conclusions Our data speculate that ASX prevents ox-LDL-induced endothelial cell injury and EndMT by inducing antioxidant property (SOD and NO) and decreasing LOX-1 expression.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jinyu Li
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Rui Tong
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xiaorong Zhang
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
18
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
19
|
Pei J, Li Y, Min Z, Dong Q, Ruan J, Wu J, Hua X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: their longitudinal changes and correlations with risk of fetal growth restriction. Ir J Med Sci 2021; 191:1251-1257. [PMID: 34159524 DOI: 10.1007/s11845-021-02664-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
AIMS The term "fetal growth restriction (FGR)" is commonly used to describe fetuses with an estimated fetal weight that is less than 10th percentile for gestational age. This study aimed to investigate the longitudinal change of microRNA-590-3p (miR-590-3p), vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and matrix metalloproteinase (MMP)9 expressions in early, middle, and late pregnancy, and their correlations with the fetal growth restriction (FGR) risk. METHODS Totally, 970 pregnant women in early pregnancy were enrolled, and their plasma samples were, respectively, acquired in early pregnancy (at 10th or 11th week of gestational age), middle pregnancy (at 20th or 21st week of gestational age), and late pregnancy (at 33th or 34th week of gestational age) for miR-590-3p, VEGF, PIGF, and MMP9 determinations. RESULTS MiR-590-3p underwent a growing trend, but VEGF, PIGF, and MMP9 experienced declined trend along with pregnancy (all P < 0.001). Furthermore, the negative association of miR-590-3p with VEGF, PIGF, and MMP9 became stronger along with the pregnancy. Besides, miR-590-3p expression in middle and late pregnancy was higher, but VEGF, PIGF, and MMP9 expressions in middle and late pregnancy were lower in women affected by FGR compared to normal pregnant women (all P < 0.001). In addition, miR-590-3p, VEGF, PIGF, and MMP9 expression in middle and late pregnancy were of good value in predicting FGR risk. CONCLUSIONS miR-590-3p exhibits a growing trend during pregnancy, and its expression in middle and late pregnancy is associated with increased FGR risk via interaction with VEGF, PIGF, and MMP9.
Collapse
Affiliation(s)
- Jindan Pei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Yan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Zhihong Min
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Qi Dong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Jiali Ruan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Juan Wu
- Department of Gynecology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaolin Hua
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China.
| |
Collapse
|
20
|
You LN, Tai QW, Xu L, Hao Y, Guo WJ, Zhang Q, Tong Q, Zhang H, Huang WK. Exosomal LINC00161 promotes angiogenesis and metastasis via regulating miR-590-3p/ROCK axis in hepatocellular carcinoma. Cancer Gene Ther 2021; 28:719-736. [PMID: 33414518 DOI: 10.1038/s41417-020-00269-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 01/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with few effective options for therapeutic treatment in its advanced stages. While exosomal LINC00161 has been identified as a potential biomarker for HCC, its regulatory function and clinical values remain largely unknown. LINC00161 expressions in serum-derived exosomes from HCC patients and HCC cells were determined by qRT-PCR. The ability of proliferation, migration, and angiogenesis in HUVECs was assessed by MTT, Transwell, and tube formation. Luciferase reporter assay and AGO2-RIP assay were conducted to explore the interactions among LINC00161, miR-590-3p, and ROCK2. The level of ROCK signal-related proteins was examined by Western blotting and immunohistochemistry (IHC) assay. Subcutaneous tumor growth was observed in nude mice, in which in vivo metastasis was observed following tail vein injection of HCC cells. High levels of LINC00161 were detected in both serum-derived exosomes from HCC patients and the supernatants of HCC cell lines and were significantly associated with poor survival. Functional study demonstrated that exosomal LINC00161 derived from HCC-cells were significantly associated with enhanced proliferation, migration, and angiogenesis in HUVECs in vitro, all of which were effectively inhibited when LINC00161 was sliced with shRNA in HCC-cells. In vivo experiment showed that LINC00161 loss inhibited tumorigenesis and metastasis of HCC. Mechanistic study revealed that exosome-carried LINC00161 directly targeted miR-590-3p and induced its downstream target ROCK2, finally activating growth/metastasis-related signals in HCC. Exosome-carried LINC00161 promotes HCC tumorigenesis through inhibiting miR-590-3p to activate the ROCK2 signaling pathway, suggesting that LINC00161 may be used as potential targets to improve HCC treatment efficiency.
Collapse
Affiliation(s)
- Li-Na You
- Department of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, PR China.,Traditional Chinese Medicine Gynecology, Maternal and Child Health Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830011, PR China
| | - Qin-Wen Tai
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Lin Xu
- Department of Hepatobiliary& Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518000, PR China
| | - Yi Hao
- Department of Ultrasound Medicine, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Wen-Jia Guo
- Cancer Institute, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Qiao Zhang
- Department of Pulmonary Medicine, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Qing Tong
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, PR China
| | - Heng Zhang
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China
| | - Wu-Kui Huang
- Department of General Surgery, ShenZhen Hospital of Southern Medical University, Shenzhen, 518000, PR China. .,InterventionaL Diagnosis and Treatment Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, PR China.
| |
Collapse
|
21
|
Zhong C, Huang X, Qin Y, Miao H, Zhou W. Effect of Long Non-Coding RNA Small Nucleolar RNA Host Gene 14 Targeting miR-93-5p on Oxidized Low-Density Lipoprotein-Induced Endothelial Cell Injury and Its Mechanism. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore the influence and mechanism of lncRNA SNHG14 on oxidized low-density lipoprotein (oxLDL)-induced vascular endothelial cell injury, cellular levels of SNHG14 and miRNA-93-5p were detected in oxLDL-induced vascular endothelial cells by RT-qPCR, and the levels of MDA, SOD and
GSH-Px were detected by ELISA. Flow cytometry was used to detect cellular apoptosis, and western blot analysis was used to determine the abundance of Bcl-2 and Bax proteins. SNHG14 small interfering RNA or miRNA-93-5p mimics were transfected into vascular endothelial cells to interfere with
SNHG14 expression or overexpress miRNA-93-5p. To study the effects of interfering with SNHG14 expression or overexpression of miRNA-93-5p, the levels of MDA, SOD and GSH-Px, apoptosis and the levels of Bcl-2 and Bax protein were studied in oxLDL-induced endothelial cells with either altered
SNHG14 expression or overexpressed miRNA-93-5p. A dual-luciferase reporter gene experiment verified the regulatory connection between SNHG14 and miRNA-93-5p. After oxLDL acted on vascular endothelial cells, the expression levels of SNHG14 were significantly increased, while the expression
levels of miRNA-93-5p were significantly reduced, MDA levels were increased, and SOD and GSH-Px activities were reduced. Both the apoptosis rate and Bax protein levels were significantly increased, and Bcl-2 expression was reduced. Interference with SNHG14 expression or overexpression of miRNA-93-5p
can reduce the MDA content in oxLDL-induced vascular endothelial cells, increase the activity of SOD and GSH-Px, and reduce the apoptosis rate and Bax protein levels, and promote Bcl-2 expression. SNHG14 targeted to negatively regulate miRNA-93-5p expression, inhibited miRNA-93-5p expression
and reversed the interference of SNHG14 expression with oxLDL-induced variation in MDA, SOD and GSH-Px levels, apoptosis rate, and Bax and Bcl-2 protein levels. Interference of SNHG14 expression may reduce oxidative stress and apoptosis of vascular endothelial cells induced by oxLDL by negatively
regulating the expression of miRNA-93-5p.
Collapse
Affiliation(s)
- Chaochao Zhong
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Xinchong Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Yibin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Haihang Miao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Weiwei Zhou
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| |
Collapse
|
22
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
23
|
Meng Q, Pu L, Luo X, Wang B, Li F, Liu B. Regulatory Roles of Related Long Non-coding RNAs in the Process of Atherosclerosis. Front Physiol 2020; 11:564604. [PMID: 33192561 PMCID: PMC7604474 DOI: 10.3389/fphys.2020.564604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction, and peripheral vascular disease, which comprise serious hazards to human health. Atherosclerosis is characterized by the deposition of lipids on the interior walls of blood vessels, causing an inflammatory response of immune cells, endothelial cells, and smooth muscle cells, and a proliferation cascade reaction. Despite years of research, the underlying pathogenesis of AS is not fully defined. Recent advances in our understanding of the molecular mechanisms by which non-coding RNA influences the initiation and progression of AS have shown that long non-coding RNAs (lncRNAs) regulate important stages in the atherosclerotic process. In this review, we summarize current knowledge of lncRNAs, which influence the development of AS. We review the regulatory processes of lncRNAs on core stages of atherosclerotic progression, including lipid metabolism, inflammation, vascular cell proliferation, apoptosis, adhesion and migration, and angiogenesis. A growing body of evidence suggests that lncRNAs have great potential as new therapeutic targets for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xizi Luo
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Baisen Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Tian J, Cui P, Li Y, Yao X, Wu X, Wang Z, Li C. LINC02418 promotes colon cancer progression by suppressing apoptosis via interaction with miR-34b-5p/BCL2 axis. Cancer Cell Int 2020; 20:460. [PMID: 32973404 PMCID: PMC7507712 DOI: 10.1186/s12935-020-01530-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background LncRNAs act as functional regulators in tumor progression through interacting with various signaling pathways in multiple types of cancer. However, the effect of LINC02418 on colorectal cancer (CRC) progression and the underling mechanisms remain unclear. Methods LncRNA expression profile in CRC tissues was investigated by the TCGA database. The expressional level of LINC02418 in CRC patients was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Kaplan-Meier analyses was used to investigate the correlation between LINC02418 and overall survival (OS) of CRC patients. Cell proliferative, migratory and invasive abilities were detected by CCK-8 assays, colony formation assays and trans-well assays in HCT116 and LoVo cells which were stably transduced with sh-LINC02418 or sh-NC. The binding between LINC02418 and miR-34b-5p, and the interaction between miR-34b-5p and BCL2 were determined by dual-luciferase assays. Western blot experiments were conducted to further explore the effect of miR-34b-5p on BCL2 signaling pathway. Rescue experiments were performed to uncover the role of LINC02418/miR-34b-5p/BCL2 axis in CRC progression. Results LINC02418 was upregulated in human colon cancer samples when compared with adjacent tissue, and its high expressional level correlated with poor prognosis of CRC patients. LINC02418 promoted cancer progression by enhancing tumor growth, cell mobility and invasiveness of colon cancer cells. Additionally, LINC02418 could physically bind to miR-34b-5p and subsequently affect BCL2 signaling pathway. Down-regulation of LINC02418 reduced cell proliferation, while transfection of miR-34b-5p inhibitor or BCL2 into LINC02418-silenced CRC cells significantly promoted CRC cells growth. Conclusions LINC02418 was upregulated in human CRC samples and could be used as the indicator for prediction of prognosis. LINC02418 acted as a tumor driver by negatively regulating cell apoptosis through LINC02418/miR-34b-5p/BCL2 axis in CRC.
Collapse
Affiliation(s)
- Jun Tian
- Department of General Surgery, Zhangjiagang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600 Jiangsu China
| | - Peng Cui
- Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399 China
| | - Yifei Li
- Department of Geriatrics, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021 Jilin China
| | - Xuequan Yao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu China
| | - Xiaoyu Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu China
| | - Zhirong Wang
- Department of Orthopaedics, Zhangjiagang Traditional Chinese Medicine Hospital, Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600 Jiangsu China
| | - Chunsheng Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033 Jilin China
| |
Collapse
|
25
|
Mignone P, Pio G, D'Elia D, Ceci M. Exploiting transfer learning for the reconstruction of the human gene regulatory network. Bioinformatics 2020; 36:1553-1561. [PMID: 31608946 DOI: 10.1093/bioinformatics/btz781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION The reconstruction of gene regulatory networks (GRNs) from gene expression data has received increasing attention in recent years, due to its usefulness in the understanding of regulatory mechanisms involved in human diseases. Most of the existing methods reconstruct the network through machine learning approaches, by analyzing known examples of interactions. However, (i) they often produce poor results when the amount of labeled examples is limited, or when no negative example is available and (ii) they are not able to exploit information extracted from GRNs of other (better studied) related organisms, when this information is available. RESULTS In this paper, we propose a novel machine learning method that overcomes these limitations, by exploiting the knowledge about the GRN of a source organism for the reconstruction of the GRN of the target organism, by means of a novel transfer learning technique. Moreover, the proposed method is natively able to work in the positive-unlabeled setting, where no negative example is available, by fruitfully exploiting a (possibly large) set of unlabeled examples. In our experiments, we reconstructed the human GRN, by exploiting the knowledge of the GRN of Mus musculus. Results showed that the proposed method outperforms state-of-the-art approaches and identifies previously unknown functional relationships among the analyzed genes. AVAILABILITY AND IMPLEMENTATION http://www.di.uniba.it/∼mignone/systems/biosfer/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Paolo Mignone
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy
| | - Gianvito Pio
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy
| | - Domenica D'Elia
- Institute for Biomedical Technologies, CNR, Institute for Biomedical Technologies, Bari 70126, Italy
| | - Michelangelo Ceci
- Department of Computer Science, University of Bari Aldo Moro, Bari 70125, Italy.,National Interuniversity Consortium for Informatics (CINI), Roma 00185, Italy.,Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| |
Collapse
|
26
|
Zareba L, Fitas A, Wolska M, Junger E, Eyileten C, Wicik Z, De Rosa S, Siller-Matula JM, Postula M. MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 2020; 38:601-617. [PMID: 33036721 DOI: 10.1016/j.ccl.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs and microRNAs, play an important role in coronary artery disease onset and progression. The ability of ncRNAs to simultaneously regulate many target genes allows them to modulate various key processes involved in atherosclerosis, including lipid metabolism, smooth muscle cell proliferation, autophagy, and foam cell formation. This review focuses on the therapeutic potential of the most important ncRNAs in coronary artery disease. Moreover, various other promising microRNAs and long noncoding RNAs that attract substantial scientific interest as potential therapeutic targets in coronary artery disease and merit further investigation are presented.
Collapse
Affiliation(s)
- Lukasz Zareba
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Eva Junger
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n-Anchieta, São Paulo 09606-045, Brazil
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., Warsaw 02-097, Poland; Longevity Center, Warsaw, Poland.
| |
Collapse
|
27
|
Wu H, Liu T, Hou H. Knockdown of LINC00657 inhibits ox-LDL-induced endothelial cell injury by regulating miR-30c-5p/Wnt7b/β-catenin. Mol Cell Biochem 2020; 472:145-155. [PMID: 32577947 DOI: 10.1007/s11010-020-03793-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in the pathogenesis, development, and treatment of atherosclerosis (AS). The endothelial cell injury is a feature of AS. However, the role and mechanism of lncRNA LINC00657 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury remain unclear. The serum samples were collected from 32 AS patients and normal volunteers. Ox-LDL-treated human umbilical vein endothelial cells (HUVEC) were used for the experiments in vitro. The levels of LINC00657, microRNA (miR)-30c-5p and Wnt family member 7B (Wnt7b) were measured by quantitative real-time polymerase chain reaction or western blot. The expression levels of proteins in Wnt7b/β-catenin pathway or endothelial-mesenchymal transition (EndMT) were detected by western blot. The secretion of inflammatory cytokine was examined by enzyme linked immunosorbent assay (ELISA). Cell viability and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, flow cytometry, and western blot. The target association of miR-30c-5p and LINC00657/Wnt7b was analyzed via dual-luciferase reporter assay and RNA pull-down assay. LINC00657 expression was increased in AS serum and ox-LDL-treated HUVEC cells. LINC00657 knockdown suppressed ox-LDL-induced Wnt7b/β-catenin activation, EndMT, inflammatory response, and apoptosis in HUVEC cells. MiR-30c-5p was bound to LINC00657 and it knockdown reversed the role of LINC00657 inhibition in ox-LDL-induced HUVEC cell injury. MiR-30c-5p targeted Wnt7b to inhibit ox-LDL-induced Wnt7b/β-catenin activation, EndMT, inflammatory response, and apoptosis in HUVEC cells. Silence of LINC00657 repressed ox-LDL-induced injury via inhibiting EndMT, inflammatory response, and apoptosis in HUVEC cells by regulating miR-30c-5p/Wnt7b/β-catenin, indicating a potential target for treatment of AS.
Collapse
Affiliation(s)
- Haojie Wu
- Department of Cardiology, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Tingting Liu
- Department of Respiratory Medicine, The Second Medical Center of PLA General Hospital, Beijing, China
| | - Hong Hou
- Department of Cardiology, Xi'an No. 3 Hospital, No. 10, East Section of Fengcheng Third Road, Weiyang District, Xi'an, 710000, Shaanxi, China.
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
28
|
A Novel Putative Role of TNK1 in Atherosclerotic Inflammation Implicating the Tyk2/STAT1 Pathway. Mediators Inflamm 2020; 2020:6268514. [PMID: 32694928 PMCID: PMC7368939 DOI: 10.1155/2020/6268514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Atherosclerosis is a chronic inflammatory disease which is responsible for many clinical manifestations. The present study was to investigate the anti-inflammatory functions and mechanisms of TNK1 in atherosclerosis. Methods The ApoE(-/-) mice and human carotid endarterectomy (CEA) atherosclerotic plaques were used to investigate the differential expression of TNK1. The ApoE(-/-) mice were fed with high-fat diet (HFD) or normal-fat diet (NFD) for 8 weeks; the aorta was separated and stained with oil red O to evaluate the formation of atherosclerosis. TNK1 in mice aorta was measured by qPCR. The human CEA were obtained and identified as ruptured and stable plaques. The level of TNK1 was measured by qPCR and Western-blot staining. Further studies were conducted in THP-1 cells to explore the anti-inflammatory effects of TNK1. We induced the formation of macrophages by incubating THP-1 cells with PMA (phorbol 12-myristate 13-acetate). Afterwards, oxidized low-density lipoprotein (oxLDL) was used to stimulate the inflammation, and the secretion of inflammatory factors was measured by ELISA and qPCR. The levels of TNK1, total STAT1 and Tyk2, and the phosphorylation of STAT1 and Tyk2 were measured by western blot to uncover the mechanisms of TNK1. Results The oil red O staining indicated obvious deposition of lipid on the aorta of ApoE(-/-) mice after 8-week HFD treatment. The TNK1 level was much higher in both the HFD-fed ApoE(-/-) mice aorta arch and the ruptured human CEA plaques. We found that TNK1 was highly expressed in THP-1 cells, compared to other atherosclerotic related cells (HUVEC, HBMEC, and HA-VSMC), indicating TNK1 might be involved in the inflammation. Suppressing the expression of TNK1 by shTNK1 inhibited the oxLDL-induced secretion of inflammatory factors, such as IL-12, IL-6, and TNF-α. ShTNK1 also inhibited the uptake of lipid and decreased the cellular cholesterol content in THP-1 cells. Furthermore, the shTNK1 suppressed the oxLDL-induced phosphorylation of Tyk2 and STAT1. Conclusion TNK1 participated in the inflammation in atherosclerosis. shTNK1 suppressed the oxLDL-induced inflammation and lipid deposition in THP-1 cells. The mechanism might be related to the Tyk2/STAT signal pathway.
Collapse
|
29
|
Chu L, Yu L, Liu J, Song S, Yang H, Han F, Liu F, Hu Y. Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of miR-190a-3p. Aging (Albany NY) 2020; 11:1456-1470. [PMID: 30837348 PMCID: PMC6428093 DOI: 10.18632/aging.101845] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
To detect the aberrantly expressed long non-coding RNAs in glioblastoma, two pairs of glioblastoma and adjacent normal tissues were firstly analyzed by RNA sequencing. Long intergenic non-coding RNA LINC00657 was considered to play a vital role in glioblastoma based on the results of RNA sequencing. Hence, we aimed to investigate the mechanisms by which LINC00657 regulated the tumorigenesis of glioblastoma. The level of LINC00657 in 40 glioblastoma samples and glioblastoma cell lines was detected by RT-qPCR. LINC00657 was significantly decreased in patients with glioblastoma compared with adjacent normal tissues. Overexpression of LINC00657 inhibited proliferation, colony formation, invasion and migration in glioma cells via inducing apoptosis. Dual luciferase report assay indicated LINC00657 was the target of miR-190a-3p. Overexpression of LINC00657 greatly inhibited the relative amount of miR-190a-3p. Besides, miR-190a-3p was found to be a negative regulator of PTEN. Additionally, active-caspase 3 was increased in cells transfected with pcDNA3.1-LINC00657. Finally, in vitro results were further confirmed by in vivo studies using nude mice bearing with glioblastoma tumors. In conclusion, LINC00657 was effective in inhibiting glioblastoma by acting as a molecular sponge of miR-190a-3p to regulate PTEN expression. Therefore, targeting LINC00657 may serve as a potential strategy for the treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Liangzhao Chu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lei Yu
- Prenatal Diagnosis Center, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shibin Song
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Feng Han
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fen Liu
- Department of Neurosurgery, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yaxin Hu
- Prenatal Diagnosis Center, Hospital affiliated to Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
30
|
Transthyretin Regulated by linc00657/miR-205-5p Promoted Cholesterol Metabolism by Inducing SREBP2-HMGCR and Inhibiting LXRα-CYP7A1. Arch Med Res 2020; 51:317-326. [DOI: 10.1016/j.arcmed.2020.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
|
31
|
Hang L, Peng Y, Xiang R, Li X, Li Z. Ox-LDL Causes Endothelial Cell Injury Through ASK1/NLRP3-Mediated Inflammasome Activation via Endoplasmic Reticulum Stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:731-744. [PMID: 32158192 PMCID: PMC7047838 DOI: 10.2147/dddt.s231916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Objective This study was to investigate the mechanism of inflammatory pathology modification induced by ox-LDL in endothelial cells. Methodology In this study, we firstly investigated the efflux of cholesterol of endothelial cells under the treatment of ox-LDL, and cell proliferation, ROS production, cell apoptosis was measured. Further, proteins of ASK1, NLRP3 inflammasomes and endoplasmic reticulum stress response were detected. Afterwards, ASK1 inhibitor (GS-4997) or endoplasmic reticulum stress (ERS) inhibitor (4-PBA) was used to measure the performance of endothelial cells. Results In this study, endothelial cells were treated with ox-LDLs alone or in combination with a GS-4997 or 4-PBA. Results showed that ox-LDLs attenuated the efflux of cholesterol from endothelial cells in a dose-dependent manner. Ox-LDLs inhibited the proliferation of endothelial cells, and induced their apoptosis and production of reactive oxygen species (ROS). Additionally, ox-LDLs upregulated the levels of phosphorylated ASK1, ERS-related proteins (chop, p-PERK, GRP78, and p-IRE-1), and inflammation-associated proteins (NLRP3, IL-1β, and caspase 1) in endothelial cells. Moreover, we proved that GS-4997 could partly reverse ox-LDL-mediated cell proliferation, apoptosis, ROS production, and inflammation in endothelial cells, and increase cholesterol efflux. We also found that 4-PBA could attenuate the effects of ox-LDLs on endothelial cell cholesterol efflux, proliferation, apoptosis, ROS production, and inflammation. Conclusion Our results suggest that cholesterol efflux from endothelial cells is reduced by ox-LDLs, and these reductions in cholesterol efflux are accompanied by increased NLRP3 inflammasome signaling, ASK1 and higher levels of endoplasmic reticulum stress. Our results suggest this axis as potential targets for treating atherosclerosis.
Collapse
Affiliation(s)
- Liwei Hang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China.,Department of Cardiology, Dongsheng People's Hospital, Erdos City, Inner Mongolia 017000, People's Republic of China
| | - Yan Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiangdong Li
- Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zhiliang Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, People's Republic of China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangdong, Guangdong 510280, People's Republic of China.,Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong 510280, People's Republic of China
| |
Collapse
|
32
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
33
|
Zhang J, Chou X, Zhuang M, Zhu C, Hu Y, Cheng D, Liu Z. LINC00657 activates PD-L1 to promote osteosarcoma metastasis via miR-106a. J Cell Biochem 2020; 121:4188-4195. [PMID: 31898338 DOI: 10.1002/jcb.29574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 01/14/2023]
Abstract
Osteosarcoma (OS) cells are one of the primary cancer-related causes of death around the world. Long noncoding RNAs are key for OS progression; however, the detailed molecular mechanism remains unknown. LINC00657, miR-106a, and programmed death ligand-1 (PD-L1) genes expression were detected by reverse transcription-quantitative PCR (RT-qPCR) and Western blot approaches. Invasion and lymphangiogenesis were studied using transwell invasion assay and lymphatic vessel formation assay, respectively. We used bioinformatic analyses to identify putative targets of LINC00657 and miR-106a. Luciferase activity was measured by dual-luciferase reporter assay. PD-L1 protein levels were examined by flow cytometry experiments. LINC00657 knockdown attenuates cell invasion and tumor growth of MG63 and lymphatic vessel formation. miR-106a directly binds LINC00657 and they regulate each other. Furthermore, miR-106a inhibitor strikingly enhanced lymphatic vessel formation and invasion of shLINC00657 MG63 cells. miR-106a mimic directly targeted and downregulated PD-L1. PD-L1 overexpression largely rescued miR-106a mimic-modulated OS cell metastasis. LINC00657 and PD-L1 were upregulated in clinical OS tumors compared to normal tissues. Lower expression levels of LINC00657 and PD-L1 were closely associated with higher overall survival of patients with OS. Here, we suggest a novel mechanism for LINC00657-regulated metastasis of OS cells by regulating the miR-106a/PD-L1 axis. Our conclusions facilitate the development of therapeutical approaches by targeting LINC00657.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xubin Chou
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Zhuang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chenlei Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yong Hu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Cheng
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
34
|
|
35
|
Bao MH, Lv QL, Szeto V, Wong R, Zhu SZ, Zhang YY, Feng ZP, Sun HS. TRPM2-AS inhibits the growth, migration, and invasion of gliomas through JNK, c-Jun, and RGS4. J Cell Physiol 2019; 235:4594-4604. [PMID: 31637708 DOI: 10.1002/jcp.29336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Physiology, Pathophysiology, and Pharmacology, Science Research Center, Changsha Medical University, Changsha, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Su-Zhen Zhu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying-Ying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Islam R, Lai C. A Brief Overview of lncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. EPIGENOMES 2019; 3:epigenomes3030020. [PMID: 34968230 PMCID: PMC8594677 DOI: 10.3390/epigenomes3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory RNA molecules and they are involved in many biological processes and disease developments. Several unique features of lncRNAs have been identified, such as tissue-and/or cell-specific expression pattern, which suggest that they could be potential candidates for therapeutic and diagnostic applications. More recently, the scope of lncRNA studies has been extended to endothelial biology research. Many of lncRNAs were found to be critically involved in the regulation of endothelial function and its associated disease progression. An improved understanding of endothelial biology can thus facilitate the discovery of novel biomarkers and therapeutic targets for endothelial dysfunction-associated diseases, such as abnormal angiogenesis, hypertension, diabetes, and atherosclerosis. Nevertheless, the underlying mechanism of lncRNA remains undefined in previous published studies. Therefore, in this review, we aimed to discuss the current methodologies for discovering and investigating the functions of lncRNAs and, in particular, to address the functions of selected lncRNAs in endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Rashidul Islam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Christopher Lai
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
- Correspondence: ; Tel.: +65-6592-1045
| |
Collapse
|
37
|
LncRNA MALAT1 protects human umbilical vein endothelial cells against ox-LDL triggered cell death through regulation of MGP. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Cao W, Xu C, Li X, Yang X. Twist1 promotes astrocytoma development by stimulating vasculogenic mimicry. Oncol Lett 2019; 18:846-855. [PMID: 31289562 DOI: 10.3892/ol.2019.10380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 04/17/2019] [Indexed: 01/13/2023] Open
Abstract
Astrocytomas are one of the most vascularized types tumor in human cancers. Micro-vascular proliferation is an important factor for the classification of astrocytoma. Vasculogenic mimicry (VM) is a novel tumor vascular model that develops independently of endothelial cells, and serves an important role in astrocytoma. Twist family bHLH transcription factor 1 (Twist1) is able to regulate the formation of VM; thus in the present study, the expression and importance of Twist1 was studied in astrocytoma tissues. The present study confirmed that the expression of Twist1 was associated with the grade of astrocytoma. Twist1 promotes the formation of VM and the development of astrocytomas, and may also regulate the formation of VM via vascular endothelial-cadherin and matrix metalloproteinase-9.
Collapse
Affiliation(s)
- Wei Cao
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Can Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
39
|
Du Q, Zhang X, Zhang X, Wei M, Xu H, Wang S. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1265-1271. [PMID: 30942630 DOI: 10.1080/21691401.2019.1594000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qing Du
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuezhi Zhang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Wei
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongmei Xu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shilei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
41
|
Yan L, Liu Z, Yin H, Guo Z, Luo Q. Silencing of MEG3 inhibited ox‐LDL‐induced inflammation and apoptosis in macrophages via modulation of the MEG3/miR‐204/CDKN2A regulatory axis. Cell Biol Int 2019; 43:409-420. [PMID: 30672051 DOI: 10.1002/cbin.11105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Long Yan
- Neurovascular SurgeryThe First Bethune Hospital of Jilin University71 Xinmin Street, Chaoyang DistrictChangchun City130012Jilin ProvincePeople's Republic of China
| | - Zhanchuan Liu
- The Second Hospital of Jilin UniversityChangchun City130012China
| | - Haoyuan Yin
- Neurovascular SurgeryThe First Bethune Hospital of Jilin University71 Xinmin Street, Chaoyang DistrictChangchun City130012Jilin ProvincePeople's Republic of China
| | - Zhenjie Guo
- Neurovascular SurgeryThe First Bethune Hospital of Jilin University71 Xinmin Street, Chaoyang DistrictChangchun City130012Jilin ProvincePeople's Republic of China
| | - Qi Luo
- Neurovascular SurgeryThe First Bethune Hospital of Jilin University71 Xinmin Street, Chaoyang DistrictChangchun City130012Jilin ProvincePeople's Republic of China
| |
Collapse
|
42
|
Wang L, Xia JW, Ke ZP, Zhang BH. Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol 2018; 234:5319-5326. [PMID: 30259979 DOI: 10.1002/jcp.27340] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, China
| | - Jing-Wen Xia
- Department of Cardiology, Shanghai Songjiang District Center Hospital, Shanghai, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bing-Hong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
LINC00657 played oncogenic roles in esophageal squamous cell carcinoma by targeting miR-615-3p and JunB. Biomed Pharmacother 2018; 108:316-324. [PMID: 30227324 DOI: 10.1016/j.biopha.2018.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prognosis of esophageal squamous cell carcinoma (ESCC) is relatively poor due to the absence of efficient treatment. In this manuscript, we have investigated the specific roles and molecular mechanisms of LINC00657 to order to identify novel therapeutic targets for ESCC. METHOD The LINC00657 expression in ESCC tissues and cell lines were evaluated by quantitative real-time PCR. The expression of LINC00657 in ESCC cells was regulated by lentivirus transfection. Online bioinformatics analysis tools were used to predict the potential targets of LINC00657 and miR-615-3p. TCGA database was used to analyze the prognosis of ESCC patients. Transwell, wound healing assay and MTT were performed to investigate the ESCC cells' biological functions. JunB expression was evaluated by Western blot. RESULT LINC00657 was moderately increased in ESCC both in vivo and in vitro and up regulated by irradiation. LINC00657 knockdown could inhibit the migration and proliferation of ESCC cells. And downregulation of LINC00657 significantly enhanced the radio-sensitivity. Moreover, LINC00657 could act as a ceRNA to increase the expression of JunB by binding to miR-615-3p. Meanwhile, overexpression of miR-615-3p resulted in anti-tumor effects and led to the down-regulation of JunB. Survival analysis from TCGA indicated that ESCC patients with higher JunB expression had significant poorer prognosis. CONCLUSION LINC00657 might be involved in regulating ESCC's response to radiation; and it functioned as an oncogene in ESCC by targeting miR-615-3p and JunB, providing novel potential therapeutic targets.
Collapse
|
44
|
Xu ZM, Huang F, Huang WQ. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease. Life Sci 2018; 211:157-171. [PMID: 30219334 DOI: 10.1016/j.lfs.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (LncRNAs) are involved in biological processes and the pathology of diseases and represent an important biomarker or therapeutic target for disease. Emerging evidence has suggested that lncRNAs modulate angiogenesis by regulating the angiogenic cell process-including vascular endothelial cells (VECs); stem cells, particularly bone marrow-derived stem cells, endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs); and vascular smooth muscle cells (VSMCs)-and participating in ischaemic heart disease (IHD). Therapeutic angiogenesis as an alternative therapy to promote coronary collateral circulation has been demonstrated to significantly improve the prognosis and quality of life of patients with IHD in past decades. Therefore, lncRNAs are likely to represent a novel therapeutic target for IHD through regulation of the angiogenesis process. This review summarizes the classification and functions of lncRNAs and their roles in regulating angiogenesis and in IHD, in the context of an overview of therapeutic angiogenesis in clinical trials.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Feng Huang
- Institute of Cardiovascular Diseases & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Wei-Qiang Huang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
45
|
Dong L, Hong H, Chen X, Huang Z, Wu W, Wu F. LINC02163 regulates growth and epithelial-to-mesenchymal transition phenotype via miR-593-3p/FOXK1 axis in gastric cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:607-615. [PMID: 29893595 DOI: 10.1080/21691401.2018.1464462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, long non-coding RNAs (lncRNAs) were involved in promoting gastric cancer (GC) initiation and progression. In the current study, we revealed that the expression level of LINC02163 was elevated in GC cell lines and tissues. Knockdown of LINC02163 inhibited GC cells growth and invasion both in vitro and in vivo. Mechanismly, LINC02163 exerted as a ceRNA and negatively regulated miR-593-3p expression. In addition, FOXK1 was identified as a down-stream target of miR-593-3p. The miR-593-3p/FOXK1 axis mediated LINC02163's effect on GC. To the best of our knowledge, our findings provided the first evidence that LINC02163 functioned as an oncogene in GC. LINC02163 may be a candidate prognostic biomarker and a target for new therapies in GC patients.
Collapse
Affiliation(s)
- Lemei Dong
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Huisuo Hong
- b Department of Anesthesiology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , P.R. China
| | - Xiaowei Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Zhiming Huang
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Wei Wu
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Fang Wu
- a Department of Gastroenterology , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| |
Collapse
|
46
|
Weirick T, Militello G, Uchida S. Long Non-coding RNAs in Endothelial Biology. Front Physiol 2018; 9:522. [PMID: 29867565 PMCID: PMC5960726 DOI: 10.3389/fphys.2018.00522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023] Open
Abstract
In recent years, the role of RNA has expanded to the extent that protein-coding RNAs are now the minority with a variety of non-coding RNAs (ncRNAs) now comprising the majority of RNAs in higher organisms. A major contributor to this shift in understanding is RNA sequencing (RNA-seq), which allows a largely unconstrained method for monitoring the status of RNA from whole organisms down to a single cell. This observational power presents both challenges and new opportunities, which require specialized bioinformatics tools to extract knowledge from the data and the ability to reuse data for multiple studies. In this review, we summarize the current status of long non-coding RNA (lncRNA) research in endothelial biology. Then, we will cover computational methods for identifying, annotating, and characterizing lncRNAs in the heart, especially endothelial cells.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|