1
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
2
|
Fukumoto-Inukai AK, Bermeo K, Arenas I, Rosendo-Pineda MJ, Pimentel-Cabrera JA, Garcia DE. AMPK inhibits voltage-gated calcium channel-current in rat chromaffin cells. Mol Cell Endocrinol 2024; 591:112275. [PMID: 38777212 DOI: 10.1016/j.mce.2024.112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Metabolic changes are critical in the regulation of Ca2+ influx in central and peripheral neuroendocrine cells. To study the regulation of L-type Ca2+ channels by AMPK we used biochemical reagents and ATP/glucose-concentration manipulations in rat chromaffin cells. AICAR and Compound-C, at low concentration, significantly induce changes in L-type Ca2+ channel-current amplitude and voltage dependence. Remarkably, an overlasting decrease in the channel-current density can be induced by lowering the intracellular level of ATP. Accordingly, Ca2+ channel-current density gradually diminishes by decreasing the extracellular glucose concentration. By using immunofluorescence, a decrease in the expression of CaV1.2 is observed while decreasing extracellular glucose, suggesting that AMPK reduces the number of functional Ca2+ channels into the plasma membrane. Together, these results support for the first time the dependence of metabolic changes in the maintenance of Ca2+ channel-current by AMPK. They reveal a key step in Ca2+ influx in secretory cells.
Collapse
Affiliation(s)
- A K Fukumoto-Inukai
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - K Bermeo
- Licenciatura en Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - I Arenas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - M J Rosendo-Pineda
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - J A Pimentel-Cabrera
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - D E Garcia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Garza-Carbajal A, Bavencoffe A, Herrera JJ, Johnson KN, Walters ET, Dessauer CW. Mechanism of gabapentinoid potentiation of opioid effects on cyclic AMP signaling in neuropathic pain. Proc Natl Acad Sci U S A 2024; 121:e2405465121. [PMID: 39145932 PMCID: PMC11348325 DOI: 10.1073/pnas.2405465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.
Collapse
Affiliation(s)
- Anibal Garza-Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Juan J. Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| |
Collapse
|
4
|
Shi R, Reichardt M, Fiegle DJ, Küpfer LK, Czajka T, Sun Z, Salditt T, Dendorfer A, Seidel T, Bruegmann T. Contractility measurements for cardiotoxicity screening with ventricular myocardial slices of pigs. Cardiovasc Res 2023; 119:2469-2481. [PMID: 37934066 PMCID: PMC10651213 DOI: 10.1093/cvr/cvad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 11/08/2023] Open
Abstract
AIMS Cardiotoxicity is one major reason why drugs do not enter or are withdrawn from the market. Thus, approaches are required to predict cardiotoxicity with high specificity and sensitivity. Ideally, such methods should be performed within intact cardiac tissue with high relevance for humans and detect acute and chronic side effects on electrophysiological behaviour, contractility, and tissue structure in an unbiased manner. Herein, we evaluate healthy pig myocardial slices and biomimetic cultivation setups (BMCS) as a new cardiotoxicity screening approach. METHODS AND RESULTS Pig left ventricular samples were cut into slices and spanned into BMCS with continuous electrical pacing and online force recording. Automated stimulation protocols were established to determine the force-frequency relationship (FFR), frequency dependence of contraction duration, effective refractory period (ERP), and pacing threshold. Slices generated 1.3 ± 0.14 mN/mm2 force at 0.5 Hz electrical pacing and showed a positive FFR and a shortening of contraction duration with increasing pacing rates. Approximately 62% of slices were able to contract for at least 6 days while showing stable ERP, contraction duration-frequency relationship, and preserved cardiac structure confirmed by confocal imaging and X-ray diffraction analysis. We used specific blockers of the most important cardiac ion channels to determine which analysis parameters are influenced. To validate our approach, we tested five drug candidates selected from the Comprehensive in vitro Proarrhythmia Assay list as well as acetylsalicylic acid and DMSO as controls in a blinded manner in three independent laboratories. We were able to detect all arrhythmic drugs and their respective mode of action on cardiac tissue including inhibition of Na+, Ca2+, and hERG channels as well as Na+/Ca2+ exchanger. CONCLUSION We systematically evaluate this approach for cardiotoxicity screening, which is of high relevance for humans and can be upscaled to medium-throughput screening. Thus, our approach will improve the predictive value and efficiency of preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Runzhu Shi
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- International Research Training Group 1816, University Medical Center Göttingen, Göttingen, Germany
| | - Marius Reichardt
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Dominik J Fiegle
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Linda K Küpfer
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Titus Czajka
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Thomas Seidel
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Filippini L, Ortner NJ, Kaserer T, Striessnig J. Ca v 1.3-selective inhibitors of voltage-gated L-type Ca 2+ channels: Fact or (still) fiction? Br J Pharmacol 2023; 180:1289-1303. [PMID: 36788128 PMCID: PMC10953394 DOI: 10.1111/bph.16060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Voltage-gated L-type Ca2+ -channels (LTCCs) are the target of Ca2+ -channel blockers (CCBs), which are in clinical use for the evidence-based treatment of hypertension and angina. Their cardiovascular effects are largely mediated by the Cav 1.2-subtype. However, based on our current understanding of their physiological and pathophysiological roles, Cav 1.3 LTCCs also appear as attractive drug targets for the therapy of various diseases, including treatment-resistant hypertension, spasticity after spinal cord injury and neuroprotection in Parkinson's disease. Since CCBs inhibit both Cav 1.2 and Cav 1.3, Cav 1.3-selective inhibitors would be valuable tools to validate the therapeutic potential of Cav 1.3 channel inhibition in preclinical models. Despite a number of publications reporting the discovery of Cav 1.3-selective blockers, their selectivity remains controversial. We conclude that at present no pharmacological tools exist that are suitable to confirm or refute a role of Cav 1.3 channels in cellular responses. We also suggest essential criteria for a small molecule to be considered Cav 1.3-selective.
Collapse
Affiliation(s)
- Ludovica Filippini
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
6
|
Kim DS, Pessah IN, Santana CM, Purnell BS, Li R, Buchanan GF, Rumbeiha WK. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol Sci 2023; 192:kfad022. [PMID: 36882182 PMCID: PMC10109532 DOI: 10.1093/toxsci/kfad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Cristina M Santana
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
- MRIGlobal, Kansas City, Missouri 64110, USA
| | - Benton S Purnell
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
- Department of Nerosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Rui Li
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Gordon F Buchanan
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
7
|
Harrison PJ, Husain SM, Lee H, Los Angeles AD, Colbourne L, Mould A, Hall NAL, Haerty W, Tunbridge EM. CACNA1C (Ca V1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology. Neuropharmacology 2022; 220:109262. [PMID: 36154842 DOI: 10.1016/j.neuropharm.2022.109262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
A role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field. First, there is now robust genomic evidence that common variants in VGCC subunit genes, notably CACNA1C which encodes the L-type calcium channel (LTCC) CaV1.2 subunit, are trans-diagnostically associated with psychiatric disorders including schizophrenia and bipolar disorder. Rare variants in these genes also contribute to the risk. Second, pharmacoepidemiological evidence supports the possibility that calcium channel blockers, which target LTCCs, might have beneficial effects on the onset or course of these disorders. This is especially true for calcium channel blockers that are brain penetrant. Third, long-range sequencing is revealing the repertoire of full-length LTCC transcript isoforms. Many novel and abundant CACNA1C isoforms have been identified in human and mouse brain, including some which are enriched compared to heart or aorta, and predicted to encode channels with differing functional and pharmacological properties. These isoforms may contribute to the molecular mechanisms of genetic association to psychiatric disorders. They may also enable development of therapeutic agents that can preferentially target brain LTCC isoforms and be of potential value for psychiatric indications.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Syed M Husain
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Hami Lee
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Arne Mould
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
8
|
Heckman CA, Ademuyiwa OM, Cayer ML. How filopodia respond to calcium in the absence of a calcium-binding structural protein: non-channel functions of TRP. Cell Commun Signal 2022; 20:130. [PMID: 36028898 PMCID: PMC9414478 DOI: 10.1186/s12964-022-00927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background For many cell types, directional locomotion depends on their maintaining filopodia at the leading edge. Filopodia lack any Ca2+-binding structural protein but respond to store-operated Ca2+ entry (SOCE). Methods SOCE was induced by first replacing the medium with Ca2+-free salt solution with cyclopiazonic acid (CPA). This lowers Ca2+ in the ER and causes stromal interacting molecule (STIM) to be translocated to the cell surface. After this priming step, CPA was washed out, and Ca2+ influx restored by addition of extracellular Ca2+. Intracellular Ca2+ levels were measured by calcium orange fluorescence. Regulatory mechanisms were identified by pharmacological treatments. Proteins mediating SOCE were localized by immunofluorescence and analyzed after image processing. Results Depletion of the ER Ca2+ increased filopodia prevalence briefly, followed by a spontaneous decline that was blocked by inhibitors of endocytosis. Intracellular Ca2+ increased continuously for ~ 50 min. STIM and a transient receptor potential canonical (TRPC) protein were found in separate compartments, but an aquaporin unrelated to SOCE was present in both. STIM1- and TRPC1-bearing vesicles were trafficked on microtubules. During depletion, STIM1 migrated to the surface where it coincided with Orai in punctae, as expected. TRPC1 was partially colocalized with Vamp2, a rapidly releasable pool marker, and with phospholipases (PLCs). TRPC1 retreated to internal compartments during ER depletion. Replenishment of extracellular Ca2+ altered the STIM1 distribution, which came to resemble that of untreated cells. Vamp2 and TRPC1 underwent exocytosis and became homogeneously distributed on the cell surface. This was accompanied by an increased prevalence of filopodia, which was blocked by inhibitors of TRPC1/4/5 and endocytosis. Conclusions Because the media were devoid of ligands that activate receptors during depletion and Ca2+ replenishment, we could attribute filopodia extension to SOCE. We propose that the Orai current stimulates exocytosis of TRPC-bearing vesicles, and that Ca2+ influx through TRPC inhibits PLC activity. This allows regeneration of the substrate, phosphatidylinositol 4,5 bisphosphate (PIP2), a platform for assembling proteins, e. g. Enabled and IRSp53. TRPC contact with PLC is required but is broken by TRPC dissemination. This explains how STIM1 regulates the cell’s ability to orient itself in response to attractive or repulsive cues. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00927-y.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA.
| | - O M Ademuyiwa
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA
| | - M L Cayer
- Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
9
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
10
|
Lazcano-Pérez F, Bermeo K, Castro H, Salazar Campos Z, Arenas I, Zavala-Moreno A, Chávez-Villela SN, Jiménez I, Arreguín-Espinosa R, Fierro R, González-Márquez H, Garcia DE, Sánchez-Rodríguez J. A Sea Anemone Lebrunia neglecta Venom Fraction Decreases Boar Sperm Cells Capacitation: Possible Involvement of HVA Calcium Channels. Toxins (Basel) 2022; 14:toxins14040261. [PMID: 35448870 PMCID: PMC9030620 DOI: 10.3390/toxins14040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Sea anemones produce venoms characterized by a complex mixture of low molecular weight compounds, proteins and peptides acting on voltage-gated ion channels. Mammal sperm cells, like neurons, are characterized by their ion channels. Calcium channels seem to be implicated in pivotal roles such as motility and capacitation. In this study, we evaluated the effect of a low molecular weight fraction from the venom of the sea anemone Lebrunia neglecta on boar sperm cells and in HVA calcium channels from rat chromaffin cells. Spermatozoa viability seemed unaffected by the fraction whereas motility and sperm capacitation were notoriously impaired. The sea anemone fraction inhibited the HVA calcium current with partial recovery and no changes in chromaffin cells’ current kinetics and current–voltage relationship. These findings might be relevant to the pharmacological characterization of cnidarian venoms and toxins on voltage-gated calcium channels.
Collapse
Affiliation(s)
- Fernando Lazcano-Pérez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
| | - Karina Bermeo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Héctor Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Zayil Salazar Campos
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Isabel Arenas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Ariana Zavala-Moreno
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Sheila Narayán Chávez-Villela
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
| | - Irma Jiménez
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Reyna Fierro
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - David E. Garcia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Judith Sánchez-Rodríguez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
- Correspondence: ; Tel.: +52(998)8710009
| |
Collapse
|
11
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
12
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
13
|
Uema S, Horita M, Takadera T. Protective effects of calcium ions via L-type calcium channels and NMDA receptors on prostaglandin E 2-induced apoptosis in rat cortical cells. Mol Biol Rep 2021; 48:4517-4525. [PMID: 34089465 DOI: 10.1007/s11033-021-06472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Calcium ions mediate a variety of physiological responses of developing neurons including survival. The purpose of this study was to examine the effect of calcium influx through L-type calcium channels (LTCCs) or NMDA receptors on prostaglandin E2 (PGE2)-induced apoptosis in rat cortical cells. Cultures of rat cortical cells were prepared from an embryonic day 18 rat neocortex. After culturing for 2 or 8 days in vitro (DIV), the cells were subjected to PGE2 treatment for 48 h. FPL64176, an LTCC agonist, protected the cells at 2 and 8 DIV from PGE2-induced apoptosis. On the other hand, N-methyl-D-aspartate (NMDA), an agonist of NMDA receptor, protected the cells from PGE2-induced apoptosis only at 8 DIV. FPL64176 increased the calcium levels at 2 and 8 DIV, whereas NMDA increased the calcium levels only at 8 DIV. The protective effects of the LTCC agonist and NMDA on PGE2-induced apoptosis were blocked following treatment of the cells with protein kinase C inhibitors. Our results suggest that LTCCs and NMDA receptors modulate the cell death of developing cortical neurons possibly through a protein kinase C pathway.
Collapse
Affiliation(s)
- Shota Uema
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Mizue Horita
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan
| | - Tsuneo Takadera
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| |
Collapse
|
14
|
Mitrokhin V, Gorbacheva L, Vachrushev N, Hadzi-Petrushev N, Kamkin A, Mladenov M. Cardiomyocytes' prolonged IL-2 incubation induces enhancement in L-type Ca 2+ channels mediated by inhibitory-kappaB kinase/nuclear factor-kappaB signalling. Basic Clin Pharmacol Toxicol 2021; 128:234-240. [PMID: 32946663 DOI: 10.1111/bcpt.13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
The main objective of this study was to determine the primary intracellular signalling pathway affected by prolonged (2 hours) incubation in interleukin-2 (IL-2). Based on the inflammatory nature of IL-2, priority was given to the involvement of inhibitory-kappaB kinase/nuclear factor-kappaB (IKK/NF-κB) signalling. All of the experiments were performed on freshly prepared cardiomyocytes isolated from rat left ventricles. After isolation, the whole-cell voltage-clamp recordings were performed on single cells. After 2 hours of incubation in IL-2, the current at 0 mV was approximately 100% higher than at the start of the incubation. ACHP, a highly specific kinase β inhibitor, in a concentration of 10 nmol/L, caused significant reduction in the ICa,L . IL-2 (2 ng/mL) in the presence of 0.1 μmol/L IMD-0354 as a specific inhibitor of IKKβ, caused nearly no changes in the ICa,L . IL-2 (3 ng/mL) induced a significant increase in phosphorylated NF-κB p65. The cardiomyocytes incubated in a Kraftbrühe solution containing IL-2 plus PDTC as a specific inhibitor of inducible nitric oxide synthase (iNOS) for 2 hours had a similar ICa,L increase compared to the cells incubated only in IL-2. IL-2-induced enhancement in L-type Ca2+ channels was mediated by IKK/NF-κB signalling, but not via iNOS-mRNA signalling.
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Lyubov Gorbacheva
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Nikita Vachrushev
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology "Saints Cyril and Methodius" University, Skopje, Macedonia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
- Faculty of Natural Sciences and Mathematics, Institute of Biology "Saints Cyril and Methodius" University, Skopje, Macedonia
| |
Collapse
|
15
|
Function of cone and cone-related pathways in Ca V1.4 IT mice. Sci Rep 2021; 11:2732. [PMID: 33526839 PMCID: PMC7851161 DOI: 10.1038/s41598-021-82210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
CaV1.4 L-type calcium channels are predominantly expressed in photoreceptor terminals playing a crucial role for synaptic transmission and, consequently, for vision. Human mutations in the encoding gene are associated with congenital stationary night blindness type-2. Besides rod-driven scotopic vision also cone-driven photopic responses are severely affected in patients. The present study therefore examined functional and morphological changes in cones and cone-related pathways in mice carrying the CaV1.4 gain-of function mutation I756T (CaV1.4-IT) using multielectrode array, patch-clamp and immunohistochemical analyses. CaV1.4-IT ganglion cell responses to photopic stimuli were seen only in a small fraction of cells indicative of a major impairment in the cone pathway. Though cone photoreceptors underwent morphological rearrangements, they retained their ability to release glutamate. Our functional data suggested a postsynaptic cone bipolar cell defect, supported by the fact that the majority of cone bipolar cells showed sprouting, while horizontal cells maintained contacts with cones and cone-to-horizontal cell input was preserved. Furthermore a reduction of basal Ca2+ influx by a calcium channel blocker was not sufficient to rescue synaptic transmission deficits caused by the CaV1.4-IT mutation. Long term treatments with low-dose Ca2+ channel blockers might however be beneficial reducing Ca2+ toxicity without major effects on ganglion cells responses.
Collapse
|
16
|
Gonzalez-Montelongo MDC, Fountain SJ. Neuropeptide Y facilitates P2X1 receptor-dependent vasoconstriction via Y1 receptor activation in small mesenteric arteries during sympathetic neurogenic responses. Vascul Pharmacol 2021; 136:106810. [PMID: 33181321 DOI: 10.1016/j.vph.2020.106810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022]
Abstract
ATP, norepinephrine and NPY are co-released by sympathetic nerves innervating arteries. ATP elicits vasoconstriction via activation of smooth muscle P2X receptors. The functional interaction between neuropeptide Y (NPY) and P2X receptors in arteries is not known. In this study we investigate the effect of NPY on P2X1-dependent vasoconstriction in mouse mesenteric arteries. Suramin or P2X1 antagonist NF449 abolished α,β-meATP evoked vasoconstrictions. NPY lacked any direct vasoconstrictor effect but facilitated the vasoconstrictive response to α,β-meATP. Mesenteric arteries expressed Y1 and Y4 receptors, but not Y2 or Y5. Y1 receptor inhibition (BIBO3304) reversed NPY facilitation of the α,β-meATP-evoked vasoconstriction. L-type Ca2+ channel antagonism (nifedipine) had no effect on α,β-meATP-evoked vasoconstrictions, but completely reversed NPY facilitation. Electrical field stimulation evoked sympathetic neurogenic vasoconstriction. Neurogenic responses were dependent upon dual α1-adrenergic (prazosin) and P2X1 (NF449) receptor activation. Y1 receptor antagonism partially reduced neurogenic vasoconstriction. Isolation of the P2X1 component by α1-adrenergic blockade allowed faciliatory effects of Y1 receptor activation to be explored. Y1 receptor antagonism reduced the P2X1 receptor component during neurogenic vasoconstriction. α1-adrenergic and P2X1 receptors are post-junctional receptors during sympathetic neurogenic vasoconstriction in mesenteric arteries. In conclusion, we have identified that NPY lacks a direct vasoconstrictor effect in mesenteric arteries but can facilitate vasoconstriction by enhancing the activity of P2X1, following activation by exogenous agonists or during sympathetic nerve stimulation. The mechanism of P2X1 facilitation by NPY involved activation of the NPY Y1 receptor and the L-type Ca2+ channel.
Collapse
Affiliation(s)
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
17
|
Williams B, Lopez JA, Maddox JW, Lee A. Functional impact of a congenital stationary night blindness type 2 mutation depends on subunit composition of Ca v1.4 Ca 2+ channels. J Biol Chem 2020; 295:17215-17226. [PMID: 33037074 DOI: 10.1074/jbc.ra120.014138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated Cav1 and Cav2 Ca2+ channels are comprised of a pore-forming α1 subunit (Cav1.1-1.4, Cav2.1-2.3) and auxiliary β (β1-4) and α2δ (α2δ-1-4) subunits. The properties of these channels vary with distinct combinations of Cav subunits and alternative splicing of the encoding transcripts. Therefore, the impact of disease-causing mutations affecting these channels may depend on the identities of Cav subunits and splice variants. Here, we analyzed the effects of a congenital stationary night blindness type 2 (CSNB2)-causing mutation, I745T (IT), in Cav1.4 channels typical of those in human retina: Cav1.4 splice variants with or without exon 47 (Cav1.4+ex47 and Cav1.4Δex47, respectively), and the auxiliary subunits, β2X13 and α2δ-4. We find that IT caused both Cav1.4 splice variants to activate at significantly more negative voltages and with slower deactivation kinetics than the corresponding WT channels. These effects of the IT mutation, along with unexpected alterations in ion selectivity, were generally larger in channels lacking exon 47. The weaker ion selectivity caused by IT led to hyperpolarizing shifts in the reversal potential and large outward currents that were evident in channels containing the auxiliary subunits β2X13 and α2δ-4 but not in those with β2A and α2δ-1. We conclude that the IT mutation stabilizes channel opening and alters ion selectivity of Cav1.4 in a manner that is strengthened by exclusion of exon 47 and inclusion of β2X13 and α2δ-4. Our results reveal complex actions of IT in modifying the properties of Cav1.4 channels, which may influence the pathological consequences of this mutation in retinal photoreceptors.
Collapse
Affiliation(s)
- Brittany Williams
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa USA
| | - Josue A Lopez
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA
| | - J Wesley Maddox
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa USA.
| |
Collapse
|
18
|
Gunawan MG, Sangha SS, Shafaattalab S, Lin E, Heims-Waldron DA, Bezzerides VJ, Laksman Z, Tibbits GF. Drug screening platform using human induced pluripotent stem cell-derived atrial cardiomyocytes and optical mapping. Stem Cells Transl Med 2020; 10:68-82. [PMID: 32927497 PMCID: PMC7780813 DOI: 10.1002/sctm.19-0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Current drug development efforts for the treatment of atrial fibrillation are hampered by the fact that many preclinical models have been unsuccessful in reproducing human cardiac physiology and its response to medications. In this study, we demonstrated an approach using human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes (hiPSC-aCMs and hiPSC-vCMs, respectively) coupled with a sophisticated optical mapping system for drug screening of atrial-selective compounds in vitro. We optimized differentiation of hiPSC-aCMs by modulating the WNT and retinoid signaling pathways. Characterization of the transcriptome and proteome revealed that retinoic acid pushes the differentiation process into the atrial lineage and generated hiPSC-aCMs. Functional characterization using optical mapping showed that hiPSC-aCMs have shorter action potential durations and faster Ca2+ handling dynamics compared with hiPSC-vCMs. Furthermore, pharmacological investigation of hiPSC-aCMs captured atrial-selective effects by displaying greater sensitivity to atrial-selective compounds 4-aminopyridine, AVE0118, UCL1684, and vernakalant when compared with hiPSC-vCMs. These results established that a model system incorporating hiPSC-aCMs combined with optical mapping is well-suited for preclinical drug screening of novel and targeted atrial selective compounds.
Collapse
Affiliation(s)
- Marvin G Gunawan
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eric Lin
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Zachary Laksman
- Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.,Tibbits Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
McCusker P, Chan JD. Anti-schistosomal action of the calcium channel agonist FPL-64176. Int J Parasitol Drugs Drug Resist 2019; 11:30-38. [PMID: 31561039 PMCID: PMC6796685 DOI: 10.1016/j.ijpddr.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Subversion of parasite neuromuscular function is a key strategy for anthelmintic drug development. Schistosome Ca2+ signaling has been an area of particular interest for decades, with a specific focus on L-type voltage-gated Ca2+ channels (Cavs). However, the study of these channels has been technically challenging. One barrier is the lack of pharmacological probes that are active on flatworms, since the dihydropyridine (DHP) based ligands typically used to study Cavs are relatively ineffective on schistosomes. Here, we have characterized the effect of a structurally distinct putative L-type Cav agonist, FPL-64176, on schistosomes cultured ex vivo and in an in vivo murine model of infection. Unlike DHPs, FPL-64176 evokes rapid and sustained contractile paralysis of adult Schistosoma mansoni reminiscent of the anthelmintic praziquantel. This is accompanied by tegument disruption and an arrest of mitotic activity in somatic stem cells and germ line tissues. Interestingly, this strong ex vivo phenotype was temperature dependent, with FPL-64176 treatment being less potent at 37 °C than 23 °C. However, FPL-64176 caused intra-tegument lesions at the basement membrane of worms cultured ex vivo under both conditions, as well as an in vivo hepatic shift of parasites from the mesenteric vasculature of infected mice to the liver. Gene expression profiling of worms harvested following in vivo FPL-64176 exposure reveals differences in transcripts associated with muscle and extracellular matrix function, as well as female reproduction, which is consistent with the worm phenotypes observed following ex vivo drug treatment. These data advance FPL-64176 as a useful tool to study schistosome Ca2+ signaling, and the benzoyl pyrrole core as a hit compound that may be optimized to develop new parasite-selective leads.
Collapse
Affiliation(s)
- Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John D Chan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
20
|
Liu L, Huang XW, Yang H, Kuang SJ, Lian FH, Zhang MZ, Rao F, Shan ZX, Lin QX, Yang M, Lin JJ, Jiang S, Zhou ZL, Deng CY. Comparison of Ca 2+ Handling for the Regulation of Vasoconstriction between Rat Coronary and Renal Arteries. J Vasc Res 2019; 56:191-203. [DOI: 10.1159/000501614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
|