1
|
Huo Y, Karnawat R, Liu L, Knieß RA, Groß M, Chen X, Mayer MP. Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients. J Mol Biol 2024; 436:168772. [PMID: 39222679 DOI: 10.1016/j.jmb.2024.168772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.
Collapse
Affiliation(s)
- Yuantao Huo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Rishabh Karnawat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Lixia Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Robert A Knieß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Maike Groß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Xuemei Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Velasco‐Carneros L, Bernardo‐Seisdedos G, Maréchal J, Millet O, Moro F, Muga A. Pseudophosphorylation of single residues of the J-domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system. Protein Sci 2024; 33:e5105. [PMID: 39012012 PMCID: PMC11249846 DOI: 10.1002/pro.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.
Collapse
Affiliation(s)
- Lorea Velasco‐Carneros
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Ganeko Bernardo‐Seisdedos
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
- Department of Medicine, Faculty of Health SciencesUniversity of DeustoBilbaoSpain
| | - Jean‐Didier Maréchal
- Insilichem, Departament de QuímicaUniversitat Autònoma de Barcelona (UAB)Bellaterra (Barcelona)Spain
| | - Oscar Millet
- Precision Medicine and Metabolism LabCIC bioGUNEDerioSpain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC)University of Basque CountryLeioaSpain
- Department of Biochemistry and Molecular Biology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| |
Collapse
|
3
|
Sirois CL, Guo Y, Li M, Wolkoff NE, Korabelnikov T, Sandoval S, Lee J, Shen M, Contractor A, Sousa AMM, Bhattacharyya A, Zhao X. CGG repeats in the human FMR1 gene regulate mRNA localization and cellular stress in developing neurons. Cell Rep 2024; 43:114330. [PMID: 38865241 PMCID: PMC11240841 DOI: 10.1016/j.celrep.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.
Collapse
Affiliation(s)
- Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoun Lee
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Morishima Y, Lau M, Pratt WB, Osawa Y. Dynamic cycling with a unique Hsp90/Hsp70-dependent chaperone machinery and GAPDH is needed for heme insertion and activation of neuronal NO synthase. J Biol Chem 2023; 299:102856. [PMID: 36596358 PMCID: PMC9922822 DOI: 10.1016/j.jbc.2022.102856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is known to mediate heme insertion and activation of heme-deficient neuronal nitric oxide (NO) synthase (apo-nNOS) in cells by a highly dynamic interaction that has been extremely difficult to study mechanistically with the use of subcellular systems. In that the heme content of many critical hemeproteins is regulated by Hsp90 and the heme chaperone GAPDH, the development of an in vitro system for the study of this chaperone-mediated heme regulation would be extremely useful. Here, we show that use of an antibody-immobilized apo-nNOS led not only to successful assembly of chaperone complexes but the ability to show a clear dependence on Hsp90 and GAPDH for heme-mediated activation of apo-nNOS. The kinetics of binding for Hsp70 and Hsp90, the ATP and K+ dependence, and the absolute requirement for Hsp70 in assembly of Hsp90•apo-nNOS heterocomplexes all point to a similar chaperone machinery to the well-established canonical machine regulating steroid hormone receptors. However, unlike steroid receptors, the use of a purified protein system containing Hsp90, Hsp70, Hsp40, Hop, and p23 is unable to activate apo-nNOS. Thus, heme insertion requires a unique Hsp90-chaperone complex. With this newly developed in vitro system, which recapitulates the cellular process requiring GAPDH as well as Hsp90, further mechanistic studies are now possible to better understand the components of the Hsp90-based chaperone system as well as how this heterocomplex works with GAPDH to regulate nNOS and possibly other hemeproteins.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
LncRNA-MEG3 attenuates hyperglycemia-induced damage by enhancing mitochondrial translocation of HSP90A in the primary hippocampal neurons. Exp Cell Res 2022; 419:113320. [PMID: 35998683 DOI: 10.1016/j.yexcr.2022.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
The diabetic cognitive impairments are associated with high-glucose (HG)-induced mitochondrial dysfunctions in the brain. Our previous studies demonstrated that long non-coding RNA (lncRNA)-MEG3 alleviates diabetic cognitive impairments. However, the underlying mechanism has still remained elusive. Therefore, this study was designed to investigate whether the mitochondrial translocation of HSP90A and its phosphorylation are involved in lncRNA-MEG3-mediated neuroprotective effects of mitochondrial functions in HG-treated primary hippocampal neurons and diabetic rats. The primary hippocampal neurons were exposed to 75 mM glucose for 72 h to establish a HG model in vitro. Firstly, the RNA pull-down and RNA immunoprecipitation (RIP) assays clearly indicated that lncRNA-MEG3-associated mitochondrial proteins were Annexin A2, HSP90A, and Plectin. Although HG promoted the mitochondrial translocation of HSP90A and Annexin A2, lncRNA-MEG3 over-expression only enhanced the mitochondrial translocation of HSP90A, rather than Annexin A2, in the primary hippocampal neurons treated with or without HG. Meanwhile, Plectin mediated the mitochondrial localization of lncRNA-MEG3 and HSP90A. Furthermore, HSP90A threonine phosphorylation participated in regulating mitochondrial translocation of HSP90A, and lncRNA-MEG3 also enhanced mitochondrial translocation of HSP90A through suppressing HSP90A threonine phosphorylation. Finally, the anti-apoptotic role of mitochondrial translocation of HSP90A was found to be associated with inhibiting death receptor 5 (DR5) in HG-treated primary hippocampal neurons and diabetic rats. Taken together, lncRNA-MEG3 could improve mitochondrial functions in HG-exposed primary hippocampal neurons, and the underlying mechanisms were involved in enhanced mitochondrial translocation of HSP90A via suppressing HSP90A threonine phosphorylation, which may reveal a potential therapeutic target for diabetic cognitive impairments.
Collapse
|
6
|
Sottile ML, Cuello-Carrión FD, Gómez LC, Semino S, Ibarra J, García MB, Gonzalez L, Vargas-Roig LM, Nadin SB. DNA Damage Repair Proteins, HSP27, and Phosphorylated-HSP90α as Predictive/Prognostic Biomarkers of Platinum-based Cancer Chemotherapy: An Exploratory Study. Appl Immunohistochem Mol Morphol 2022; 30:425-434. [PMID: 35639358 DOI: 10.1097/pai.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Platinum analogs are commonly used for cancer treatment. There is increasing interest in finding biomarkers which could predict and overcome resistance, because to date there is no reliable predictive/prognostic marker for these compounds. Here we studied the immunohistochemical expression of proteins involved in DNA damage response and repair (γH2AX, 53BP1, ERCC1, MLH1, and MSH2) in primary tumor tissues from patients treated with platinum-based chemotherapy. Levels and localization of Heat Shock Protein (HSP)27 and phospho-(Thr5/7)-HSP90α (p-HSP90α) were also determined. The implications in clinical response, disease-free survival and overall survival were analyzed. High γH2AX and 53BP1 expressions were associated with poor clinical response. Nuclear p-HSP90α, as well as nuclear absence and low cytoplasmic expression of HSP27 correlated with good response. Patients with high γH2AX and high cytoplasmic HSP27 expressions had shorter overall survival and disease-free survival. MLH1, MSH2, or ERCC1 were not associated with clinical response or survival. We report the potential utility of p-HSP90α, HSP27, γH2AX, and 53BP1 as predictive/prognostic markers for platinum-based chemotherapy. We present the first study that evaluates the predictive and prognostic value of p-HSP90α in primary tumors. Our research opens new possibilities for clinical oncology and shows the usefulness of immunohistochemistry for predicting chemotherapy response and prognosis in cancer.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Laura C Gómez
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Jorge Ibarra
- Regional Integration Cancer Center, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
7
|
The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases. J Pers Med 2021; 11:jpm11121373. [PMID: 34945845 PMCID: PMC8709342 DOI: 10.3390/jpm11121373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that interacts with up to 10% of the proteome. The extensive involvement in protein folding and regulation of protein stability within cells makes Hsp90 an attractive therapeutic target to correct multiple dysfunctions. Many of the clients of Hsp90 are found in pathways known to be pathogenic in the heart, ranging from transforming growth factor β (TGF-β) and mitogen activated kinase (MAPK) signaling to tumor necrosis factor α (TNFα), Gs and Gq g-protein coupled receptor (GPCR) and calcium (Ca2+) signaling. These pathways can therefore be targeted through modulation of Hsp90 activity. The activity of Hsp90 can be targeted through small-molecule inhibition. Small-molecule inhibitors of Hsp90 have been found to be cardiotoxic in some cases however. In this regard, specific targeting of Hsp90 by modulation of post-translational modifications (PTMs) emerges as an attractive strategy. In this review, we aim to address how Hsp90 functions, where Hsp90 interacts within pathological pathways, and current knowledge of small molecules and PTMs known to modulate Hsp90 activity and their potential as therapeutics in cardiac diseases.
Collapse
|
8
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
9
|
Pan C, Kang J, Hwang JS, Li J, Boese AC, Wang X, Yang L, Boggon TJ, Chen GZ, Saba NF, Shin DM, Magliocca KR, Jin L, Kang S. Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nat Commun 2021; 12:4960. [PMID: 34400618 PMCID: PMC8368102 DOI: 10.1038/s41467-021-24845-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling. GR nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected after platinum treatment, and align with patient treatment resistance. Co-treatment with dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of the MAST1 inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory effect of dexamethasone on inflammation in vivo. These findings not only provide insights into the underlying mechanism of GR in cisplatin resistance but also offer an effective alternative therapeutic strategy to improve the clinical outcome of patients receiving platinum-based chemotherapy with GR agonists.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jung Seok Hwang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Likun Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Amere Subbarao S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting. Inflammopharmacology 2021; 29:343-366. [PMID: 33723711 PMCID: PMC7959277 DOI: 10.1007/s10787-021-00796-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is an intrinsic defence mechanism triggered by the immune system against infection or injury. Chronic inflammation allows the host to recover or adapt through cellular and humoral responses, whereas acute inflammation leads to cytokine storms resulting in tissue damage. In this review, we present the overlapping outcomes of cancer inflammation with virus-induced inflammation. The study emphasises how anti-inflammatory drugs that work against cancer inflammation may work against the inflammation caused by the viral infection. It is established that the cytokine storm induced in response to SARS-CoV-2 infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, we review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them. We also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2 induced cytokine storm. In this review, we emphasise on various possibilities to reduce SARS-CoV-2 induced cytokine storm.
Collapse
|
11
|
Chen M, Huang R, Fu W, Ou L, Men L, Zhang Z, Yang S, Liu Q, Luan J. Xiaoyaosan (Tiaogan-Liqi therapy) protects peritoneal macrophages from corticosterone-induced stress by regulating the interaction between glucocorticoid receptor and ABCA1. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1506. [PMID: 33313251 PMCID: PMC7729347 DOI: 10.21037/atm-20-6505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Previous studies have reported that Xiaoyaosan (XYS), Tiaogan-Liqi therapy, has a protective function in depressive disorder, and can regulate body weight and corticosterone (CORT) level. However, little is known about the effect of XYS in treating atherosclerosis. This study aimed to explore the influence XYS on macrophage foam cell formation and related mechanism. Methods Rat peritoneal macrophages (PMs) were separated and stimulated with CORT and oxidized low density lipoprotein (ox-LDL). The serum was obtained from rats treated with different doses of XYS and was added into the medium for macrophages. Then, the cell activity and lipid content of PMs were measured through Cell Counting Kit-8 (CCK-8) assay and oil red staining, respectively. The expressions of glucocorticoid receptor (GR), ATP binding cassette subfamily A member 1 (ABCA1), and heat shock protein 90 (HSP90) were detected. In addition, overexpression of GR and ABCA1 was performed and the effect on XYS treatment was subsequently assessed. Results The CCK-8 assay showed the serum increased cell activity of CORT-induced stress PMs in a XYS dose-dependent manner. Oil red staining and enzyme-linked immunosorbent assay (ELISA) showed that the serum decreased lipids of PMs. In the XYS treated groups, HSP90 protein was decreased and protein levels of ABCA1 and GR were increased in cytoplasm, while GR protein in nucleus was decreased. Co-immunoprecipitation (Co-IP) assay indicated GR might interact with HSP90 and be involved with the function of XYS. Furthermore, overexpression of GR attenuated the protective function of XYS on CORT-induced stress in PMs, while overexpression of ABCA1 enhanced that. Conclusions This study denoted that XYS could protect PMs from CORT-induced stress by regulating the interaction of GR and ABCA1, which might contribute to the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Ou
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Men
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhong Zhang
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jienan Luan
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, the 4 Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
12
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
13
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
14
|
Sbiera S, Kendl S, Weigand I, Sbiera I, Fassnacht M, Kroiss M. Hsp90 inhibition in adrenocortical carcinoma: Limited drug synergism with mitotane. Mol Cell Endocrinol 2019; 480:36-41. [PMID: 30315857 DOI: 10.1016/j.mce.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/14/2018] [Accepted: 10/07/2018] [Indexed: 01/04/2023]
Abstract
90 kDa heat shock proteins (Hsp90) act as protein chaperones and play a role in modulating endoplasmic reticulum (ER) stress. Hsp90 inhibitors are under clinical investigation as cancer treatment. Mitotane therapy of adrenocortical carcinoma (ACC) has been shown to act through lipid-induced ER-stress. To explore the potential of Hsp90 inhibitors in ACC as a single agent and in combination with mitotane, we analyzed two independent gene expression data sets of adrenal tumors in silico and treated the ACC cell line model NCI-H295 with Hsp90 inhibitors BIIB021 (B) and CCT18159 (C) alone and in combination with mitotane. ER-stress markers were monitored by immunoblotting. Drug synergism was quantified using the median effect model with cell viability as read-out. Cytosolic Hsp90 isoforms AA1 and AB1 were significantly overexpressed in ACC. Viability of H295 cells was impaired by B and C as single agents with an EC50 of 5.7 × 10-6M and 12.1 × 10-6M. B but not C dose-dependently increased XBP1 splicing and CHOP expression indicative of ER-stress activation. ER-stress marker expression was enhanced by co-incubation of B with 10 μM but not 5 μM mitotane. Maximal CHOP expression was induced by 25 μM mitotane alone with no additional effect of B. Combination indices (CI) of B and C with mitotane ranged from 0.64 to 1.38 and 0.68 to 1.30, respectively where CI values < 0.5 support clinically-relevant drug synergism. In conclusion, Hsp90 paralogs are differentially expressed in ACC and B but not C activates ER-stress in ACC cells. No meaningful drug synergism of Hsp90 inhibitors with mitotane was observed.
Collapse
Affiliation(s)
- Silviu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Sabine Kendl
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Isabel Weigand
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Iuliu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Martin Fassnacht
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Division of Endocrinology and Diabetes, Würzburg, Germany.
| |
Collapse
|