1
|
Stein C. Effects of pH on opioid receptor activation and implications for drug design. Biophys J 2024; 123:4158-4166. [PMID: 38970252 DOI: 10.1016/j.bpj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
G-protein-coupled receptors are integral membrane proteins that transduce chemical signals from the extracellular matrix into the cell. Traditional drug design has considered ligand-receptor interactions only under normal conditions. However, studies on opioids indicate that such interactions are very different in diseased tissues. In such microenvironments, protons play an important role in structural and functional alterations of both ligands and receptors. The pertinent literature strongly suggests that future drug design should take these aspects into account in order to reduce adverse side effects while preserving desired effects of novel compounds.
Collapse
Affiliation(s)
- Christoph Stein
- Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Experimental Anaesthesiology, Berlin, Germany.
| |
Collapse
|
2
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Martyniak A, Wędrychowicz A, Tomasik PJ. Endogenous Opioids in Crohn's Disease. Biomedicines 2023; 11:2037. [PMID: 37509676 PMCID: PMC10377721 DOI: 10.3390/biomedicines11072037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Caring for patients with Crohn's disease (CD) is a serious challenge in modern medicine. The increasing incidence of CD among adolescents and the severe course of the disease create the need for new methods of diagnosis and therapy. Endogenous opioids are a group of low molecular weight chemical compounds with analgesic and anti-inflammatory properties. Endorphins, enkephalins, and dynorphins may have potentially beneficial effects on the course of CD. Previous research data on this topic are inconsistent. Some authors have reported an increase in the concentration of leukocytes during the course of inflammatory bowel disease (IBD) while others have described a downward trend, explained by DPP-IV enzyme activity. Even fewer data are available on plasma endo-opioid level. There is also a lack of comprehensive studies that have assessed the endo-opioid system in patients with IBD. Therefore, the objective of this study was to measure the serum concentrations of human β-endorphin, human proenkephalin (A), and human big dynorphin in CD patients in the acute phase of the disease, during hospital treatment, and in the remission state. All determinations were performed using ELISA kits. The results of our study showed that the concentrations of all the tested endo-opioids, especially β-endorphin and proenkephalin (A), were reduced in adolescents with CD compared to those in the healthy control group, during the acute phase of the disease, and in the remission state. Modulation of the endogenous opioid system and the use of selective nonnarcotic agonists of opioid receptors seems to be promising goals in the future treatment of CD.
Collapse
Affiliation(s)
- Adrian Martyniak
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Przemysław J Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
4
|
Celik MÖ, Seitz V, Yergöz F, Dembla S, Blum NK, Schulz S, Stein C. Modulation of G-protein activation, calcium currents and opioid receptor phosphorylation by the pH-dependent antinociceptive agonist NFEPP. Front Mol Neurosci 2023; 16:1171855. [PMID: 37251645 PMCID: PMC10213447 DOI: 10.3389/fnmol.2023.1171855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide is a newly-designed pain killer selectively activating G-protein-coupled mu-opioid receptors (MOR) in acidic injured tissues, and therefore devoid of central side effects which are typically elicited at normal pH values in healthy tissues. However, the neuronal mechanisms underlying NFEPP's antinociceptive effects were not examined in detail so far. Voltage-dependent Ca2+ channels (VDCCs) in nociceptive neurons play a major role in the generation and inhibition of pain. In this study, we focused on the effects of NFEPP on calcium currents in rat dorsal root ganglion (DRG) neurons. The inhibitory role of the G-protein subunits Gi/o and Gβγ on VDCCs was investigated using the blockers pertussis toxin and gallein, respectively. GTPγS binding, calcium signals and MOR phosphorylation were also investigated. All experiments were performed at acidic and normal pH values using NFEPP in comparison to the conventional opioid agonist fentanyl. At low pH, NFEPP produced more efficient G-protein activation in transfected HEK293 cells and significantly reduced VDCCs in depolarized DRG neurons. The latter effect was mediated by Gβγ subunits, and NFEPP-mediated MOR phosphorylation was pH-dependent. Fentanyl's responses were not affected by pH changes. Our data indicate that NFEPP-induced MOR signaling is more effective at low pH and that the inhibition of calcium channels in DRG neurons underlies NFEPP's antinociceptive actions.
Collapse
Affiliation(s)
- Melih Özgür Celik
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Viola Seitz
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fatih Yergöz
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dembla
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Stefan Schulz
- Department of Pharmacology, Universitätsklinikum Jena, Jena, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Ligand-Free Signaling of G-Protein-Coupled Receptors: Relevance to μ Opioid Receptors in Analgesia and Addiction. Molecules 2022; 27:molecules27185826. [PMID: 36144565 PMCID: PMC9503102 DOI: 10.3390/molecules27185826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous G-protein-coupled receptors (GPCRs) display ligand-free basal signaling with potential physiological functions, a target in drug development. As an example, the μ opioid receptor (MOR) signals in ligand-free form (MOR-μ*), influencing opioid responses. In addition, agonists bind to MOR but can dissociate upon MOR activation, with ligand-free MOR-μ* carrying out signaling. Opioid pain therapy is effective but incurs adverse effects (ADRs) and risk of opioid use disorder (OUD). Sustained opioid agonist exposure increases persistent basal MOR-μ* activity, which could be a driving force for OUD and ADRs. Antagonists competitively prevent resting MOR (MOR-μ) activation to MOR-μ*, while common antagonists, such as naloxone and naltrexone, also bind to and block ligand-free MOR-μ*, acting as potent inverse agonists. A neutral antagonist, 6β-naltrexol (6BN), binds to but does not block MOR-μ*, preventing MOR-μ activation only competitively with reduced potency. We hypothesize that 6BN gradually accelerates MOR-μ* reversal to resting-state MOR-μ. Thus, 6BN potently prevents opioid dependence in rodents, at doses well below those blocking antinociception or causing withdrawal. Acting as a ‘retrograde addiction modulator’, 6BN could represent a novel class of therapeutics for OUD. Further studies need to address regulation of MOR-μ* and, more broadly, the physiological and pharmacological significance of ligand-free signaling in GPCRs.
Collapse
|
6
|
Tan M, Wang H, Gao C, Jiang Z, Yin Y, Xing R, Hu L, Xu J, Zhang M, Xie Y. Agonists Specific for κ-Opioid Receptor Induces Apoptosis of HCC Cells Through Enhanced Endoplasmic Reticulum Stress. Front Oncol 2022; 12:844214. [PMID: 35433440 PMCID: PMC9008754 DOI: 10.3389/fonc.2022.844214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer pain is an important factor affecting life quality of patients especially in the advanced stage and relieving pain is one of fundamental strategies for cancer treatment. Opioids such as morphine are the most widely used in clinics. However, they have been reported to be associated with the occurrence and development of several types of cancer. Thus, search for an opioid that has analgesic effect and can retard cancer progress simultaneously is critical for cancer management. In this study, we first examined the expression of μ and κ (MOR and KOR) in cell lines and tumor tissues of hepatocellular carcinoma (HCC), a malignant tumor with high mortality, and then compared the effects of opioid receptors-specific agonists on malignant phenotypes of HCC cells in vitro and tumor growth in an HCC xenograft mouse model. KOR and MOR were found to be highly expressed in HCC cell lines and HCC tissues. The KOR-specific agonist U50488h, oxycodone (agonist for both KOR and MOR) and the MOR-specific agonist morphine inhibited HCC cell proliferation, while only U50488h and oxycodone suppressed colony formation and migration of HCC cells. U50488h and oxycodone, but not morphine, induced HCC apoptosis. Further detection of PERK, GRP78 and CHOP revealed that PERK signaling was upregulated by treatment with U50488h, while treatment with the PERK inhibitor GSK2656157 partially reversed the promotion of apoptosis and inhibition of cell proliferation by U50488h, indicating that endoplasmic reticulum stress is associated with its suppressing effect on HCC malignant phenotypes. Similar to the in vitro results, HCC growth was significantly reduced by administration of U50488h and oxycodone, but not by morphine, in the HCC xenograft mouse model. PERK and caspase-3 in the HCC tissues were up-regulated by U50488h treatment as detected by immunohistochemistry and western blotting. Taken together, our results revealed that activation of KOR by U50488h inhibited malignant phenotypes of HCC both in vitro and in vivo, while activation of MOR by morphine did not have such effect. Because of their dual roles in the relief of pain and in the suppression of malignant phenotypes, opioids such as U50488h that act on KOR should be considered as the first choice for HCC management.
Collapse
Affiliation(s)
- Mengyuan Tan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Immunology, Anhui Medical University, Hefei, China
| | - Hanyu Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Immunology, Anhui Medical University, Hefei, China
| | - Cheng Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhen Jiang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Yin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruyi Xing
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ling Hu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiegou Xu
- Department of Immunology, Anhui Medical University, Hefei, China
- *Correspondence: Jiegou Xu, ; Min Zhang, ; Yanhu Xie,
| | - Min Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Jiegou Xu, ; Min Zhang, ; Yanhu Xie,
| | - Yanhu Xie
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Jiegou Xu, ; Min Zhang, ; Yanhu Xie,
| |
Collapse
|
7
|
Sakamaki G, Johnson K, Mensinger M, Hmu E, Klein AH. Loss of SUR1 subtype K ATP channels alters antinociception and locomotor activity after opioid administration. Behav Brain Res 2021; 414:113467. [PMID: 34274374 PMCID: PMC11019344 DOI: 10.1016/j.bbr.2021.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Opioid signaling can occur through several downstream mediators and influence analgesia as well as reward mechanisms in the nervous system. KATP channels are downstream targets of the μ opioid receptor and contribute to morphine-induced antinociception. The aim of the present work was to assess the role of SUR1-subtype KATP channels in antinociception and hyperlocomotion of synthetic and semi-synthetic opioids. Adult male and female mice wild-type (WT) and SUR1 deficient (KO) mice were assessed for mechanical and thermal antinociception after administration of either buprenorphine, fentanyl, or DAMGO. Potassium flux was assessed in the dorsal root ganglia and superficial dorsal horn cells in WT and KO mice. Hyperlocomotion was also assessed in WT and KO animals after buprenorphine, fentanyl, or DAMGO administration. SUR1 KO mice had attenuated mechanical antinociception after systemic administration of buprenorphine, fentanyl, and DAMGO. Potassium flux was also attenuated in the dorsal root ganglia and spinal cord dorsal horn cells after acute administration of buprenorphine and fentanyl. Hyperlocomotion after administration of morphine and buprenorphine was potentiated in SUR1 KO mice, but was not seen after administration of fentanyl or DAMGO. These results suggest SUR1-subtype KATP channels mediate the antinociceptive response of several classes of opioids (alkaloid and synthetic/semi-synthetic), but may not contribute to the "drug-seeking" behaviors of all classes of opioids.
Collapse
Affiliation(s)
- Gerald Sakamaki
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Megan Mensinger
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Eindray Hmu
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States.
| |
Collapse
|
8
|
Seth R, Kuppalli SS, Nadav D, Chen G, Gulati A. Recent Advances in Peripheral Opioid Receptor Therapeutics. Curr Pain Headache Rep 2021; 25:46. [PMID: 33970352 DOI: 10.1007/s11916-021-00951-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Although opioids are excellent analgesics, they are associated with severe short- and long-term side effects that are especially concerning for the treatment of chronic pain. Peripherally acting opioid receptor agonists promise to mitigate the more serious centrally mediated side effects of opioids, and the goal of this paper is to identify and elaborate on recent advances in these peripheral opioid receptor therapeutics. RECENT FINDINGS Peripheral opioid receptor agonists are effective analgesics that at the same time circumvent the problem of centrally mediated opioid side effects by (1) preferentially targeting peripheral opioid receptors that are often the source of the pain and (2) their markedly diminished permeability or activity across the blood-brain barrier. Recent novel bottom-up approaches have been notable for the design of therapeutics that are either active only at inflamed tissue, as in the case of fentanyl-derived pH-sensitive opioid ligands, or too bulky or hydrophilic to cross the blood-brain barrier, as in the case of morphine covalently bound to hyperbranched polyglycerols. Recent innovations in peripheral opioid receptor therapeutics of pH-sensitive opioid ligands and limiting opioid permeability across the blood-brain barrier have had promising results in animal models. While this is grounds for optimism that some of these therapeutics will be efficacious in human subjects at a future date, each drug must undergo individualized testing for specific chronic pain syndromes to establish not only the nuances of each drug's therapeutic effect but also a comprehensive safety profile.
Collapse
Affiliation(s)
- Raghav Seth
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Sumanth S Kuppalli
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Danielle Nadav
- Department of Anesthesiology, New York-Presbyterian/Weill Cornell Medicine, New York, NY, USA
| | - Grant Chen
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amitabh Gulati
- Department of Anesthesiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Dual Enkephalinase Inhibitors and Their Role in Chronic Pain Management. Curr Pain Headache Rep 2021; 25:29. [PMID: 33761014 DOI: 10.1007/s11916-021-00949-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dual enkephalinase inhibitors (DENKIs) are pain medications that indirectly activate opioid receptors and can be used as an alternative to traditional opioids. Understanding the physiology of enkephalins and their inhibitors and the pharmacology of these drugs will allow for proper clinical application for chronic pain patients in the future. RECENT FINDINGS DENKIs can be used as an alternative mode of analgesia for patients suffering from chronic pain by preventing the degradation of endogenous opioid ligands. By inhibiting the two major enkephalin-degrading enzymes (neprilysin and aminopeptidase N), DENKIs can provide analgesia with less adverse effects than nonendogenous opioids. The purpose of this paper is to review the current literature investigating DENKIs and explore their contribution to chronic pain management.
Collapse
|
10
|
Safa A, Lau AR, Aten S, Schilling K, Bales KL, Miller VA, Fitzgerald J, Chen M, Hill K, Dzwigalski K, Obrietan K, Phelps MA, Sadee W, Oberdick J. Pharmacological Prevention of Neonatal Opioid Withdrawal in a Pregnant Guinea Pig Model. Front Pharmacol 2021; 11:613328. [PMID: 33716726 PMCID: PMC7953910 DOI: 10.3389/fphar.2020.613328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
Newborns exposed to prenatal opioids often experience intense postnatal withdrawal after cessation of the opioid, called neonatal opioid withdrawal syndrome (NOWS), with limited pre- and postnatal therapeutic options available. In a prior study in pregnant mice we demonstrated that the peripherally selective opioid antagonist, 6β-naltrexol (6BN), is a promising drug candidate for preventive prenatal treatment of NOWS, and a therapeutic mechanism was proposed based on preferential delivery of 6BN to fetal brain with relative exclusion from maternal brain. Here, we have developed methadone (MTD) treated pregnant guinea pigs as a physiologically more suitable model, enabling detection of robust spontaneous neonatal withdrawal. Prenatal MTD significantly aggravates two classic maternal separation stress behaviors in newborn guinea pigs: calling (vocalizing) and searching (locomotion) - natural attachment behaviors thought to be controlled by the endogenous opioid system. In addition, prenatal MTD significantly increases the levels of plasma cortisol in newborns, showing that cessation of MTD at birth engages the hypothalamic-pituitary-adrenal (HPA) axis. We find that co-administration of 6BN with MTD prevents these withdrawal symptoms in newborn pups with extreme potency (ID50 ∼0.02 mg/kg), at doses unlikely to induce maternal or fetal withdrawal or to interfere with opioid antinociception based on many prior studies in rodents and non-human primates. Furthermore, we demonstrate a similarly high potency of 6BN in preventing opioid withdrawal in adult guinea pigs (ID50 = 0.01 mg/kg). This high potency appears to run counter to our pharmacokinetic studies showing slow 6BN transit of both the placenta and maternal blood brain barrier in guinea pigs, and calls into question the preferential delivery mechanism. Rather, it suggests a novel receptor mechanism to account for the selectively high potency of 6BN to suppress opioid dependence at all developmental stages, even in adults, as compared to its well-established low potency as a classical opioid antagonist. In conclusion, 6BN is an attractive compound for development of a preventive therapy for NOWS.
Collapse
Affiliation(s)
- Alireza Safa
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Allison R. Lau
- Department of Psychology, California National Primate Research Center, Animal Behavior Graduate Group, University of California, Davis, CA, United States
| | - Sydney Aten
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Karl Schilling
- Anatomisches Institute, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Karen L. Bales
- Department of Psychology, California National Primate Research Center, Animal Behavior Graduate Group, University of California, Davis, CA, United States
| | - Victoria A. Miller
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Min Chen
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Kasey Hill
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Kyle Dzwigalski
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Karl Obrietan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mitch A. Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
- Aether Therapeutics Inc., Austin, TX, United States
| | - John Oberdick
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
12
|
Sadee W, Oberdick J, Wang Z. Biased Opioid Antagonists as Modulators of Opioid Dependence: Opportunities to Improve Pain Therapy and Opioid Use Management. Molecules 2020; 25:E4163. [PMID: 32932935 PMCID: PMC7571197 DOI: 10.3390/molecules25184163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Opioid analgesics are effective pain therapeutics but they cause various adverse effects and addiction. For safer pain therapy, biased opioid agonists selectively target distinct μ opioid receptor (MOR) conformations, while the potential of biased opioid antagonists has been neglected. Agonists convert a dormant receptor form (MOR-μ) to a ligand-free active form (MOR-μ*), which mediates MOR signaling. Moreover, MOR-μ converts spontaneously to MOR-μ* (basal signaling). Persistent upregulation of MOR-μ* has been invoked as a hallmark of opioid dependence. Contrasting interactions with both MOR-μ and MOR-μ* can account for distinct pharmacological characteristics of inverse agonists (naltrexone), neutral antagonists (6β-naltrexol), and mixed opioid agonist-antagonists (buprenorphine). Upon binding to MOR-μ*, naltrexone but not 6β-naltrexol suppresses MOR-μ*signaling. Naltrexone blocks opioid analgesia non-competitively at MOR-μ*with high potency, whereas 6β-naltrexol must compete with agonists at MOR-μ, accounting for ~100-fold lower in vivo potency. Buprenorphine's bell-shaped dose-response curve may also result from opposing effects on MOR-μ and MOR-μ*. In contrast, we find that 6β-naltrexol potently prevents dependence, below doses affecting analgesia or causing withdrawal, possibly binding to MOR conformations relevant to opioid dependence. We propose that 6β-naltrexol is a biased opioid antagonist modulating opioid dependence at low doses, opening novel avenues for opioid pain therapy and use management.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Aether Therapeutics Inc., 4200 Marathon Blvd. Austin, TX 78756, USA
- Pain and Addiction Research Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - John Oberdick
- Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Zaijie Wang
- Departments of Pharmaceutical Sciences and Neurology, University of Illinois at Chicago. Chicago, IL 60612, USA;
| |
Collapse
|
13
|
|
14
|
Berthiaume S, Abdallah K, Blais V, Gendron L. Alleviating pain with delta opioid receptor agonists: evidence from experimental models. J Neural Transm (Vienna) 2020; 127:661-672. [PMID: 32189076 DOI: 10.1007/s00702-020-02172-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The use of opioids for the relief of pain and headache disorders has been studied for years. Nowadays, particularly because of its ability to produce analgesia in various pain models, delta opioid receptor (DOPr) emerges as a promising target for the development of new pain therapies. Indeed, their potential to avoid the unwanted effects commonly observed with clinically used opioids acting at the mu opioid receptor (MOPr) suggests that DOPr agonists could be a therapeutic option. In this review, we discuss the use of opioids in the management of pain in addition to describing the evidence of the analgesic potency of DOPr agonists in animal models.
Collapse
Affiliation(s)
- Sophie Berthiaume
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Khaled Abdallah
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Véronique Blais
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| |
Collapse
|