1
|
Alberto-Silva AS, Hemmer S, Bock HA, da Silva LA, Scott KR, Kastner N, Bhatt M, Niello M, Jäntsch K, Kudlacek O, Bossi E, Stockner T, Meyer MR, McCorvy JD, Brandt SD, Kavanagh P, Sitte HH. Bioisosteric analogs of MDMA: Improving the pharmacological profile? J Neurochem 2024; 168:2022-2042. [PMID: 38898705 PMCID: PMC11449655 DOI: 10.1111/jnc.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is re-emerging in clinical settings as a candidate for the treatment of specific neuropsychiatric disorders (e.g. post-traumatic stress disorder) in combination with psychotherapy. MDMA is a psychoactive drug, typically regarded as an empathogen or entactogen, which leads to transporter-mediated monoamine release. Despite its therapeutic potential, MDMA can induce dose-, individual-, and context-dependent untoward effects outside safe settings. In this study, we investigated whether three new methylenedioxy bioisosteres of MDMA improve its off-target profile. In vitro methods included radiotracer assays, transporter electrophysiology, bioluminescence resonance energy transfer and fluorescence-based assays, pooled human liver microsome/S9 fraction incubations, metabolic stability studies, isozyme mapping, and liquid chromatography coupled to high-resolution mass spectrometry. In silico methods included molecular docking. Compared with MDMA, all three MDMA bioisosteres (ODMA, TDMA, and SeDMA) showed similar pharmacological activity at human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) but decreased agonist activity at 5-HT2A/2B/2C receptors. Regarding their hepatic metabolism, they differed from MDMA, with N-demethylation being the only metabolic route shared, and without forming phase II metabolites. In addition, TDMA showed an enhanced intrinsic clearance in comparison to its congeners. Additional screening for their interaction with human organic cation transporters (hOCTs) and plasma membrane monoamine transporter (hPMAT) revealed a weaker interaction of the MDMA analogs with hOCT1, hOCT2, and hPMAT. Our findings suggest that these new MDMA bioisosteres might constitute appealing therapeutic alternatives to MDMA, sparing the primary pharmacological activity at hSERT, hDAT, and hNET, but displaying a reduced activity at 5-HT2A/2B/2C receptors and alternative hepatic metabolism. Whether these MDMA bioisosteres may pose lower risk alternatives to the clinically re-emerging MDMA warrants further studies.
Collapse
Affiliation(s)
- Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Selina Hemmer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Hailey A. Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leticia Alves da Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kenneth R. Scott
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St James Hospital, Dublin, Ireland
| | - Nina Kastner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Manan Bhatt
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Center for Research in Neuroscience, University of Insubria, Varese, Italy
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom
| | - Pierce Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St James Hospital, Dublin, Ireland
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Hellsberg E, Boytsov D, Chen Q, Niello M, Freissmuth M, Rudnick G, Zhang YW, Sandtner W, Forrest LR. Identification of the potassium-binding site in serotonin transporter. Proc Natl Acad Sci U S A 2024; 121:e2319384121. [PMID: 38652746 PMCID: PMC11067047 DOI: 10.1073/pnas.2319384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Clearance of serotonin (5-hydroxytryptamine, 5-HT) from the synaptic cleft after neuronal signaling is mediated by serotonin transporter (SERT), which couples this process to the movement of a Na+ ion down its chemical gradient. After release of 5-HT and Na+ into the cytoplasm, the transporter faces a rate-limiting challenge of resetting its conformation to be primed again for 5-HT and Na+ binding. Early studies of vesicles containing native SERT revealed that K+ gradients can provide an additional driving force, via K+ antiport. Moreover, under appropriate conditions, a H+ ion can replace K+. Intracellular K+ accelerates the resetting step. Structural studies of SERT have identified two binding sites for Na+ ions, but the K+ site remains enigmatic. Here, we show that K+ antiport can drive substrate accumulation into vesicles containing SERT extracted from a heterologous expression system, allowing us to study the residues responsible for K+ binding. To identify candidate binding residues, we examine many cation binding configurations using molecular dynamics simulations, predicting that K+ binds to the so-called Na2 site. Site-directed mutagenesis of residues in this site can eliminate the ability of both K+ and H+ to drive 5-HT accumulation into vesicles and, in patch clamp recordings, prevent the acceleration of turnover rates and the formation of a channel-like state by K+ or H+. In conclusion, the Na2 site plays a pivotal role in orchestrating the sequential binding of Na+ and then K+ (or H+) ions to facilitate 5-HT uptake in SERT.
Collapse
Affiliation(s)
- Eva Hellsberg
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Danila Boytsov
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Qingyang Chen
- School of Life Sciences, Higher Education Mega Center, Guangzhou University, Guangzhou510006, China
| | - Marco Niello
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University, New Haven, CT06510
| | - Yuan-Wei Zhang
- School of Life Sciences, Higher Education Mega Center, Guangzhou University, Guangzhou510006, China
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Department of Pharmacology, Medical University of Vienna, Vienna1090, Austria
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| |
Collapse
|
3
|
Alberto-Silva AS, Hemmer S, Bock HA, Alves da Silva L, Scott KR, Kastner N, Bhatt M, Niello M, Jäntsch K, Kudlacek O, Bossi E, Stockner T, Meyer MR, McCorvy JD, Brandt SD, Kavanagh P, Sitte HH. Bioisosteric analogs of MDMA with improved pharmacological profile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588083. [PMID: 38645142 PMCID: PMC11030374 DOI: 10.1101/2024.04.08.588083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ' ecstasy' ) is re-emerging in clinical settings as a candidate for the treatment of specific psychiatric disorders (e.g. post-traumatic stress disorder) in combination with psychotherapy. MDMA is a psychoactive drug, typically regarded as an empathogen or entactogen, which leads to transporter-mediated monoamine release. Despite its therapeutic potential, MDMA can induce dose-, individual-, and context-dependent untoward effects outside safe settings. In this study, we investigated whether three new methylenedioxy bioisosteres of MDMA improve its off-target profile. In vitro methods included radiotracer assays, transporter electrophysiology, bioluminescence resonance energy transfer and fluorescence-based assays, pooled human liver microsome/S9 fraction incubation with isozyme mapping, and liquid chromatography coupled to high-resolution mass spectrometry. In silico methods included molecular docking. Compared with MDMA, all three MDMA bioisosteres (ODMA, TDMA, and SeDMA) showed similar pharmacological activity at human serotonin and dopamine transporters (hSERT and hDAT, respectively) but decreased activity at 5-HT 2A/2B/2C receptors. Regarding their hepatic metabolism, they differed from MDMA, with N -demethylation being the only metabolic route shared, and without forming phase II metabolites. Additional screening for their interaction with human organic cation transporters (hOCTs) and plasma membrane transporter (hPMAT) revealed a weaker interaction of the MDMA analogs with hOCT1, hOCT2, and hPMAT. Our findings suggest that these new MDMA analogs might constitute appealing therapeutic alternatives to MDMA, sparing the primary pharmacological activity at hSERT and hDAT, but displaying a reduced activity at 5-HT 2A/2B/2C receptors and reduced hepatic metabolism. Whether these MDMA bioisosteres may pose lower risk alternatives to the clinically re-emerging MDMA warrants further studies.
Collapse
|
4
|
Lee KH, Won SJ, Oyinloye P, Shi L. Unlocking the Potential of High-Quality Dopamine Transporter Pharmacological Data: Advancing Robust Machine Learning-Based QSAR Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583803. [PMID: 38558976 PMCID: PMC10979915 DOI: 10.1101/2024.03.06.583803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sung Joon Won
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Precious Oyinloye
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
5
|
Mayer FP, Niello M, Bulling S, Zhang YW, Li Y, Kudlacek O, Holy M, Kooti F, Sandtner W, Rudnick G, Schmid D, Sitte HH. Mephedrone induces partial release at human dopamine transporters but full release at human serotonin transporters. Neuropharmacology 2023; 240:109704. [PMID: 37703919 DOI: 10.1016/j.neuropharm.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Mephedrone (4-methylmethcathinone) is a cathinone derivative that is recreationally consumed for its energizing and empathogenic effects. The stimulating properties are believed to arise from the ability of mephedrone to interact with the high-affinity transporters for dopamine (DA) (DAT) and norepinephrine (NET), whereas the entactogenic effect presumably relies on its activity at the serotonin (5-HT) transporter (SERT). Early studies found that mephedrone acts as a releaser at NET, DAT and SERT, and thus promotes efflux of the respective monoamines. Evidence linked drug-induced reverse transport of 5-HT via SERT to prosocial effects, whereas activity at DAT is strongly correlated with abuse liability. Consequently, we sought to evaluate the pharmacology of mephedrone at human (h) DAT and SERT, heterologously expressed in human embryonic kidney 293 cells, in further detail. In line with previous studies, we report that mephedrone evokes carrier-mediated release via hDAT and hSERT. We found this effect to be sensitive to the protein kinase C inhibitor GF109203X. Electrophysiological recordings revealed that mephedrone is actively transported by hDAT and hSERT. However, mephedrone acts as a full substrate of hSERT but as a partial substrate of hDAT. Furthermore, when compared to fully efficacious releasing agents at hDAT and hSERT (i.e. S(+)-amphetamine and para-chloroamphetamine, respectively) mephedrone displays greater efficacy as a releaser at hSERT than at hDAT. In summary, this study provides additional insights into the molecular mechanism of action of mephedrone at hDAT and hSERT.
Collapse
Affiliation(s)
- Felix P Mayer
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Simon Bulling
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Yang Li
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Fatemeh Kooti
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Diethart Schmid
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Center for Addiction Research and Science - AddRess, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria.
| |
Collapse
|
6
|
Brugnoli FR, Holy M, Niello M, Maier J, Hanreich M, Menzel M, Haberler M, Zulus N, Pickl T, Ivanova C, Muiznieks LD, Garlan B, Sitte HH. Development and validation of an automated microfluidic perfusion platform for parallelized screening of compounds in vitro. Basic Clin Pharmacol Toxicol 2023; 133:535-547. [PMID: 37658634 PMCID: PMC10952622 DOI: 10.1111/bcpt.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Monoamine transporters are of great interest for their role in the physiological activity of the body and their link to mental and behavioural disorders. Currently, static well-plate assays or manual perfusion systems are used to characterize the interaction of psychostimulants, antidepressants and drugs of abuse with the transporters but still suffer from significant drawbacks caused by lack of automation, for example, low reproducibility, non-comparability of results. An automated microfluidic platform was developed to address the need for more standardized procedures for cell-based assays. An automated system was used to control and drive the simultaneous perfusion of 12 channels on a microfluidic chip, establishing a more standardized protocol to perform release assays to study monoamine transporter-mediated substrate efflux. D-Amphetamine, GBR12909 (norepinephrine transporter) and p-chloroamphetamine, paroxetine (serotonin transporter) were used as control compounds to validate the system. The platform was able to produce the expected releasing (D-Amphetamine, p-chloroamphetamine) or inhibiting (GBR12909, paroxetine) profiles for the two transporters. The reduction of manual operation and introduction of automated flow control enabled the implementation of stronger standardized protocols and the possibility of obtaining higher throughput by increasing parallelization.
Collapse
Affiliation(s)
- Francesca R. Brugnoli
- Elvesys ‐ Microfluidic Innovation CenterParisFrance
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marcus Hanreich
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Mario Menzel
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Matthias Haberler
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Niklas Zulus
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Thomas Pickl
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | | | | | | | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
- Hourani Center for Applied Scientific ResearchAl‐Ahliyya Amman UniversityAmmanJordan
- Center for Addiction Research and Science ‐ AddRessMedical University ViennaViennaAustria
| |
Collapse
|
7
|
Deng S, Zhang H, Gou R, Luo D, Liu Z, Zhu F, Xue W. Structure-Based Discovery of a Novel Allosteric Inhibitor against Human Dopamine Transporter. J Chem Inf Model 2023. [PMID: 37410882 DOI: 10.1021/acs.jcim.3c00477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Human dopamine transporter (hDAT) regulates the reuptake of extracellular dopamine (DA) and is an essential therapeutic target for central nervous system (CNS) diseases. The allosteric modulation of hDAT has been identified for decades. However, the molecular mechanism underlying the transportation is still elusive, which hinders the rational design of allosteric modulators against hDAT. Here, a systematic structure-based method was performed to explore allosteric sites on hDAT in inward-open (IO) conformation and to screen compounds with allosteric affinity. First, the model of the hDAT structure was constructed based on the recently reported Cryo-EM structure of the human serotonin transporter (hSERT) and Gaussian-accelerated molecular dynamics (GaMD) simulation was further utilized for the identification of intermediate energetic stable states of the transporter. Then, with the potential druggable allosteric site on hDAT in IO conformation, virtual screening of seven enamine chemical libraries (∼440,000 compounds) was processed, resulting in 10 compounds being purchased for in vitro assay and with Z1078601926 discovered to allosterically inhibit hDAT (IC50 = 0.527 [0.284; 0.988] μM) when nomifensine was introduced as an orthosteric ligand. Finally, the synergistic effect underlying the allosteric inhibition of hDAT by Z1078601926 and nomifensine was explored using additional GaMD simulation and postbinding free energy analysis. The hit compound discovered in this work not only provides a good starting point for lead optimization but also demonstrates the usability of the method for the structure-based discovery of novel allosteric modulators of other therapeutic targets.
Collapse
Affiliation(s)
- Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical Co., Ltd., Luzhou 646000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Boytsov D, Schicker K, Hellsberg E, Freissmuth M, Sandtner W. Allosteric modulators of solute carrier function: a theoretical framework. Front Physiol 2023; 14:1166450. [PMID: 37250134 PMCID: PMC10210158 DOI: 10.3389/fphys.2023.1166450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Large-scale drug screening is currently the basis for the identification of new chemical entities. This is a rather laborious approach, because a large number of compounds must be tested to cover the chemical space in an unbiased fashion. However, the structures of targetable proteins have become increasingly available. Thus, a new era has arguably been ushered in with the advent of methods, which allow for structure-based docking campaigns (i.e., virtual screens). Solute carriers (SLCs) are among the most promising drug targets. This claim is substantiated by the fact that a large fraction of the 400 solute carrier genes is associated with human diseases. The ability to dock large ligand libraries into selected structures of solute carriers has set the stage for rational drug design. In the present study, we show that these structure-based approaches can be refined by taking into account how solute carriers operate. We specifically address the feasibility of targeting solute carriers with allosteric modulators, because their actions differ fundamentally from those of ligands, which bind to the substrate binding site. For the pertinent analysis we used transition state theory in conjunction with the linear free energy relationship (LFER). These provide the theoretical framework to understand how allosteric modulators affect solute carrier function.
Collapse
Affiliation(s)
- D. Boytsov
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - K. Schicker
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E. Hellsberg
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Freissmuth
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - W. Sandtner
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Bhat S, El-Kasaby A, Kasture A, Boytsov D, Reichelt JB, Hummel T, Sucic S, Pifl C, Freissmuth M, Sandtner W. A mechanism of uncompetitive inhibition of the serotonin transporter. eLife 2023; 12:e82641. [PMID: 36648438 PMCID: PMC9883013 DOI: 10.7554/elife.82641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023] Open
Abstract
The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Ameya Kasture
- Department of Neurobiology, University of ViennaViennaAustria
| | - Danila Boytsov
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Julian B Reichelt
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas Hummel
- Department of Neurobiology, University of ViennaViennaAustria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Christian Pifl
- Center for Brain Research, Medical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
10
|
Farr CV, El-Kasaby A, Erdem FA, Sucic S, Freissmuth M, Sandtner W. Cooperative Binding of Substrate and Ions Drives Forward Cycling of the Human Creatine Transporter-1. Front Physiol 2022; 13:919439. [PMID: 35837012 PMCID: PMC9273935 DOI: 10.3389/fphys.2022.919439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Creatine serves as an ATP buffer and is thus an integral component of cellular energy metabolism. Most cells maintain their creatine levels via uptake by the creatine transporter (CRT-1, SLC6A8). The activity of CRT-1, therefore, is a major determinant of cytosolic creatine concentrations. We determined the kinetics of CRT-1 in real time by relying on electrophysiological recordings of transport-associated currents. Our analysis revealed that CRT-1 harvested the concentration gradient of NaCl and the membrane potential but not the potassium gradient to achieve a very high concentrative power. We investigated the mechanistic basis for the ability of CRT-1 to maintain the forward cycling mode in spite of high intracellular concentrations of creatine: this is achieved by cooperative binding of substrate and co-substrate ions, which, under physiological ion conditions, results in a very pronounced (i.e. about 500-fold) drop in the affinity of creatine to the inward-facing state of CRT-1. Kinetic estimates were integrated into a mathematical model of the transport cycle of CRT-1, which faithfully reproduced all experimental data. We interrogated the kinetic model to examine the most plausible mechanistic basis of cooperativity: based on this systematic exploration, we conclude that destabilization of binary rather than ternary complexes is necessary for CRT-1 to maintain the observed cytosolic creatine concentrations. Our model also provides a plausible explanation why neurons, heart and skeletal muscle cells must express a creatine releasing transporter to achieve rapid equilibration of the intracellular creatine pool.
Collapse
Affiliation(s)
| | | | | | | | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Ponleitner M, Szöllősi D, El-Kasaby A, Koban F, Freissmuth M, Stockner T. Thermal Unfolding of the Human Serotonin Transporter: Differential Effect by Stabilizing and Destabilizing Mutations and Cholesterol on Thermodynamic and Kinetic Stability. Mol Pharmacol 2022; 101:95-105. [PMID: 34866045 DOI: 10.1124/molpharm.121.000413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022] Open
Abstract
Folding-deficient mutants of solute carrier 6 (SLC6) family members have been linked to human diseases. The serotonin transporter [(SERT)/SLC6A4] is an important drug target in the treatment of depression, anxiety, and obsessive-compulsive disorders and-with structural information in several conformational states-one of the best understood transporters. Here, we surmised that thermal unfolding offered a glimpse on the folding energy landscape of SLC6 transporters. We carried out molecular dynamic (MD) simulations to understand the mechanistic basis for enhanced and reduced stability, respectively, of the thermostabilized variant SERT-Y110A/I291A/T439S, which had previously been used for crystallization of human SERT in the outward-facing state, and of the folding-deficient SERT-P601A/G602A. We also examined the hydrophobic mismatch caused by the absence of cholesterol to explore the contribution of cholesterol to protein stability. When compared with wild type SERT, the thermodynamic and kinetic stability of SERT-Y110A/I291A/T439S was enhanced. In the other instances, changes in these two components were not correlated: the mutations in SERT-P601A/G602A led to a drop in thermodynamic but an increase in kinetic stability. The divergence was even more pronounced after cholesterol depletion, which reduced thermodynamic stability but increased the kinetic stability of wild type SERT to a level comparable to that of SERT-Y110A/I291A/T439S. We conclude that the low cholesterol content of the endoplasmic reticulum facilitates progression of the folding trajectory by reducing the energy difference between folding intermediates and the native state. SIGNIFICANCE STATEMENT: Point mutations in solute carrier 6 (SLC6) family members cause folding diseases. The serotonin transporter [(SERT)/SLC6A4] is a target for antidepressants and the best understood SLC6. This study produced molecular dynamics simulations and examined thermal unfolding of wild type and mutant SERT variants to understand their folding energy landscape. In the folding-deficient SERT-P012A/G602A, changes in kinetic and thermodynamic stability were not correlated. Similarly, cholesterol depletion lowered thermodynamic but enhanced kinetic stability. These observations allow for rationalizing the action of pharmacochaperones.
Collapse
Affiliation(s)
- Markus Ponleitner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Daniel Szöllősi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundle domain. J Biol Chem 2022; 298:101613. [PMID: 35065961 PMCID: PMC8867121 DOI: 10.1016/j.jbc.2022.101613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter’s engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.
Collapse
|
14
|
Bhat S, Niello M, Schicker K, Pifl C, Sitte HH, Freissmuth M, Sandtner W. Handling of intracellular K + determines voltage dependence of plasmalemmal monoamine transporter function. eLife 2021; 10:67996. [PMID: 34061030 PMCID: PMC8192120 DOI: 10.7554/elife.67996] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, for example, membrane voltage and/or the transmembrane K+ gradient. We have addressed this by recording uptake of endogenous substrates or the fluorescent substrate APP+(4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET, or SERT. We have shown that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Division of Neurophysiology and Neuropharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Maier J, Rauter L, Rudin D, Niello M, Holy M, Schmid D, Wilson J, Blough BE, Gannon BM, Murnane KS, Sitte HH. α-PPP and its derivatives are selective partial releasers at the human norepinephrine transporter: A pharmacological characterization of interactions between pyrrolidinopropiophenones and high and low affinity monoamine transporters. Neuropharmacology 2021; 190:108570. [PMID: 33864800 DOI: 10.1016/j.neuropharm.2021.108570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
While classical cathinones, such as methcathinone, have been shown to be monoamine releasing agents at human monoamine transporters, the subgroup of α-pyrrolidinophenones has thus far solely been characterized as monoamine transporter reuptake inhibitors. Herein, we report data from previously undescribed α-pyrrolidinopropiophenone (α-PPP) derivatives and compare them with the pharmacologically well-researched α-PVP (α-pyrrolidinovalerophenone). Radiotracer-based in vitro uptake inhibition assays in HEK293 cells show that the investigated α-PPP derivatives inhibit the human high-affinity transporters of dopamine (hDAT) and norepinephrine (hNET) in the low micromolar range, with α-PVP being ten times more potent. Similar to α-PVP, no relevant pharmacological activity was found at the human serotonin transporter (hSERT). Unexpectedly, radiotracer-based in vitro release assays reveal α-PPP, MDPPP and 3Br-PPP, but not α-PVP, to be partial releasing agents at hNET (EC50 values in the low micromolar range). Furthermore, uptake inhibition assays at low-affinity monoamine transporters, i.e., the human organic cation transporters (hOCT) 1-3 and human plasma membrane monoamine transporter (hPMAT), bring to light that all compounds inhibit hOCT1 and 2 (IC50 values in the low micromolar range) while less potently interacting with hPMAT and hOCT3. In conclusion, this study describes (i) three new hybrid compounds that efficaciously block hDAT while being partial releasers at hNET, and (ii) highlights the interactions of α-PPP-derivatives with low-affinity monoamine transporters, giving impetus to further studies investigating the interaction of drugs of abuse with OCT1-3 and PMAT.
Collapse
Affiliation(s)
- Julian Maier
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Laurin Rauter
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Deborah Rudin
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Marco Niello
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Marion Holy
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Diethart Schmid
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Physiology, Währingerstraße 13A, 1090, Vienna, Austria
| | - Joseph Wilson
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC, USA
| | - Bruce E Blough
- Research Triangle Institute, Center for Drug Discovery, Research Triangle Park, NC, USA
| | - Brenda M Gannon
- Mercer University College of Pharmacy, Mercer University Health Sciences Center, Department of Pharmaceutical Sciences, Atlanta, GA, USA; Louisiana State University Health Sciences Center, Shreveport, Department of Pharmacology Toxicology & Neuroscience and Louisiana Addiction Research Center, Shreveport, LA, USA
| | - Kevin S Murnane
- Mercer University College of Pharmacy, Mercer University Health Sciences Center, Department of Pharmaceutical Sciences, Atlanta, GA, USA; Louisiana State University Health Sciences Center, Shreveport, Department of Pharmacology Toxicology & Neuroscience and Louisiana Addiction Research Center, Shreveport, LA, USA
| | - Harald H Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währingerstraße 13A, 1090, Vienna, Austria; AddRess Centre for Addiction Research and Science, Medical University of Vienna, Währingerstraße 13A, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Bhat S, Guthrie DA, Kasture A, El-Kasaby A, Cao J, Bonifazi A, Ku T, Giancola JB, Hummel T, Freissmuth M, Newman AH. Tropane-Based Ibogaine Analog Rescues Folding-Deficient Serotonin and Dopamine Transporters. ACS Pharmacol Transl Sci 2021; 4:503-516. [PMID: 33860180 PMCID: PMC8033614 DOI: 10.1021/acsptsci.0c00102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 02/05/2023]
Abstract
![]()
Missense
mutations that give rise to protein misfolding are rare,
but collectively, defective protein folding diseases are consequential.
Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning),
but the underlying mechanisms remain enigmatic. Ibogaine and its active
metabolite noribogaine correct folding defects in the dopamine transporter
(DAT), but they rescue only a very limited number of folding-deficient
DAT mutant proteins, which give rise to infantile Parkinsonism and
dystonia. Herein, a series of analogs was generated by reconfiguring
the complex ibogaine ring system and exploring the structural requirements
for binding to wild-type transporters, as well as for rescuing two
equivalent synthetic folding-deficient mutants, SERT-PG601,602AA and DAT-PG584,585AA. The most active tropane-based
analog (9b) was also an effective pharmacochaperone in vivo in Drosophila harboring the DAT-PG584,585AA mutation and rescued 6 out of 13 disease-associated
human DAT mutant proteins in vitro. Hence, a novel
lead pharmacochaperone has been identified that demonstrates medication
development potential for patients harboring DAT mutations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Daryl A Guthrie
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Ameya Kasture
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - JoLynn B Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna 1090, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Waehringerstrasse 13a, Vienna 1090, Austria
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, United States
| |
Collapse
|
17
|
Niello M, Cintulová D, Raithmayr P, Holy M, Jäntsch K, Colas C, Ecker GF, Sitte HH, Mihovilovic MD. Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Front Pharmacol 2021; 12:654061. [PMID: 33897439 PMCID: PMC8063026 DOI: 10.3389/fphar.2021.654061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Mephedrone is a largely abused psychostimulant. It elicits the release of monoamines via the high affinity transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). Stereoselective metabolic reactions are involved in the inactivation and the elimination of its chemical structure. However, during these processes, several structures are generated and some of them have been reported to be still pharmacologically active. In this study 1) we have newly synthetized several putative mephedrone metabolites, 2) compared their activity at monoamine transporters, 3) generated quantitative structure activity relationships, and 4) exploited the chemical structure of the putative metabolites to screen a urine sample from a drug user and dissect mephedrone metabolism. We have found that most of the tested metabolites are weak inhibitors of monoamine transporters and that all of them are more potent at DAT and NET in comparison to SERT. The only exception is represented by the COOH-metabolite which shows no pharmacological activity at all three monoamine transporters. The enantioselectivity of mephedrone and its metabolites is present mainly at SERT, with only minor effects at DAT and NET being introduced when the β-keto group is reduced to an OH-group. Importantly, while at DAT the putative metabolites did not show changes in inhibitory potencies, but rather changes in their substrate/blocker profile, at SERT they showed mainly changes in inhibitory potencies. Molecular modeling suggests that the hydrophobic nature of a specific SERT subpocket may be involved in such loss of affinity. Finally, the assessment of the putative metabolites in one urine sample of mephedrone user displayed two previously uncharacterized metabolites, 4-COOH-nor-mephedrone (4-COOH-MC) and dihydro-4- nor-mephedrone (dihydro-4-MC). These results confirm and expand previous studies highlighting the importance of the stereochemistry in the pharmacodynamics of phase-1 metabolites of mephedrone, established their structure-activity relationships at DAT, NET and SERT and pave the way for a systematic dissection of mephedrone metabolic routes. Given the number of structures found having residual and modified pharmacological profiles, these findings may help in understanding the complex subjective effects of administered mephedrone. Moreover, the dissection of mephedrone metabolic routes may help in developing new therapies for treating psychostimulants acute intoxications.
Collapse
Affiliation(s)
- Marco Niello
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | | - Philip Raithmayr
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Kathrin Jäntsch
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Claire Colas
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | |
Collapse
|
18
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
19
|
Jayaraman K, Das AK, Luethi D, Szöllősi D, Schütz GJ, Reith MEA, Sitte HH, Stockner T. SLC6 transporter oligomerization. J Neurochem 2020; 157:919-929. [PMID: 32767560 PMCID: PMC8247324 DOI: 10.1111/jnc.15145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Transporters of the solute carrier 6 (SLC6) family mediate the reuptake of neurotransmitters such as dopamine, norepinephrine, serotonin, GABA, and glycine. SLC6 family members are 12 transmembrane helix‐spanning proteins that operate using the transmembrane sodium gradient for transport. These transporters assume various quaternary arrangements ranging from monomers to complex stoichiometries with multiple subunits. Dopamine and serotonin transporter oligomerization has been implicated in trafficking of newly formed proteins from the endoplasmic reticulum to the plasma membrane with a pre‐fixed assembly. Once at the plasma membrane, oligomers are kept fixed in their quaternary assembly by interaction with phosphoinositides. While it remains unclear how oligomer formation precisely affects physiological transporter function, it has been shown that oligomerization supports the activity of release‐type psychostimulants. Most recently, single molecule microscopy experiments unveiled that the stoichiometry differs between individual members of the SLC6 family. The present overview summarizes our understanding of the influence of plasma membrane constituents on transporter oligomerization, describes the known interfaces between protomers and discusses open questions. ![]()
Collapse
Affiliation(s)
- Kumaresan Jayaraman
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anand K Das
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends Pharmacol Sci 2020; 41:446-463. [PMID: 32471654 PMCID: PMC7610661 DOI: 10.1016/j.tips.2020.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotransmitter transporters (NTTs) are involved in the fine-tuning of brain neurotransmitter homeostasis. As such, they are implicated in a plethora of complex behaviors, including reward, movement, and cognition. During recent decades, compounds that modulate NTT functions have been developed. Some of them are in clinical use for the management of different neuropsychiatric conditions. The majority of these compounds have been found to selectively interact with the orthosteric site of NTTs. Recently, diverse allosteric sites have been described in a number of NTTs, modulating their function. A more complex NTT pharmacology may be useful in the development of novel therapeutics. Here, we summarize current knowledge on such modulatory allosteric sites, with specific focus on their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Marco Niello
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ralph Gradisch
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics. Department of Neuroscience. University of Copenhagen, Copenhagen, Denmark
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; AddRess, Centre for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
How to rescue misfolded SERT, DAT and NET: targeting conformational intermediates with atypical inhibitors and partial releasers. Biochem Soc Trans 2019; 47:861-874. [PMID: 31064865 PMCID: PMC6599159 DOI: 10.1042/bst20180512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022]
Abstract
Point mutations in the coding sequence for solute carrier 6 (SLC6) family members result in clinically relevant disorders, which are often accounted for by a loss-of-function phenotype. In many instances, the mutated transporter is not delivered to the cell surface because it is retained in the endoplasmic reticulum (ER). The underlying defect is improper folding of the transporter and is the case for many of the known dopamine transporter mutants. The monoamine transporters, i.e. the transporters for norepinephrine (NET/SLC6A2), dopamine (DAT/SLC6A3) and serotonin (SERT/SLC6A4), have a rich pharmacology; hence, their folding-deficient mutants lend themselves to explore the concept of pharmacological chaperoning. Pharmacochaperones are small molecules, which bind to folding intermediates with exquisite specificity and scaffold them to a folded state, which is exported from the ER and delivered to the cell surface. Pharmacochaperoning of mutant monoamine transporters, however, is not straightforward: ionic conditions within the ER are not conducive to binding of most typical monoamine transporter ligands. A collection of compounds exists, which are classified as atypical ligands because they trap monoamine transporters in unique conformational states. The atypical binding mode of some DAT inhibitors has been linked to their anti-addictive action. Here, we propose that atypical ligands and also compounds recently classified as partial releasers can serve as pharmacochaperones.
Collapse
|
22
|
Niello M, Cintulova D, Hellsberg E, Jäntsch K, Holy M, Ayatollahi LH, Cozzi NV, Freissmuth M, Sandtner W, Ecker GF, Mihovilovic MD, Sitte HH. para-Trifluoromethyl-methcathinone is an allosteric modulator of the serotonin transporter. Neuropharmacology 2019; 161:107615. [PMID: 31028773 DOI: 10.1016/j.neuropharm.2019.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/15/2022]
Abstract
The transporters for dopamine (DAT) and serotonin (SERT) are important targets in the treatment of psychiatric disorders including major depression, anxiety and attention-deficit hyperactivity disorder. Drugs acting at these transporters can act as inhibitors or as releasers. In addition, it has been recently appreciated that some compounds are less efficacious releasers than amphetamine. Thus, they are classified as partial releasers. Compounds can act on both SERT and DAT or display exquisite selectivity for either SERT or DAT, but the structural basis for selectivity is poorly understood. The trifluoromethyl-substitution of methcathinone in the para-position has been shown to dramatically shift the selectivity of methcathinone (MCAT) towards SERT. Here, we examined MCAT, para-trifluoromethyl-methcathinone (pCF3MCAT) and other analogues to understand (i) the determinants of selectivity and (ii) the effects of the para-CF3-substitution of MCAT on the transport cycle. We systematically tested different para-substituted MCATs by biochemical, computational and electrophysiological approaches: addition of the pCF3group, but not of other substituents with larger van der Waal's volume, lipophilicity or polarity, converted the DAT-selective MCAT into a SERT-selective partial releaser. Electrophysiological and superfusion experiments, together with kinetic modelling, showed that pCF3MCAT, but not MCAT, trapped a fraction of SERTs in an inactive state by occupying the S2-site. These findings define a new mechanism of action for partial releasers, which is distinct from the other two known binding modes underlying partial release. Our observations highlight the fact that the substrate permeation pathway of monoamine transporters supports multiple binding modes, which can be exploited for drug design. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Marco Niello
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | | - Eva Hellsberg
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Kathrin Jäntsch
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Medical University, Vienna, Austria
| | | | - Nicholas V Cozzi
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | - Walter Sandtner
- Institute of Pharmacology, Medical University, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Harald H Sitte
- Institute of Pharmacology, Medical University, Vienna, Austria.
| |
Collapse
|