1
|
Hunyady L, Gáborik Z, Vauquelin G, Catt KJ. Review: Structural requirements for signalling and regulation of AT1-receptors. J Renin Angiotensin Aldosterone Syst 2016; 2:S16-S23. [DOI: 10.1177/14703203010020010301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary,
| | - Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology,
Institute of Molecular Biology and Biotechnology, Free University of Brussels
(VUB), Sint-Genesius Rode, Belgium
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, USA
| |
Collapse
|
2
|
Saavedra JM. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:259-79. [PMID: 26993513 DOI: 10.1007/s10571-015-0327-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 4000 Reservoir Road, NW, Bldg. D, Room 287, Washington, DC, 20057, USA.
| |
Collapse
|
3
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
4
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
5
|
Naik P, Murumkar P, Giridhar R, Yadav MR. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists—A perspective. Bioorg Med Chem 2010; 18:8418-56. [DOI: 10.1016/j.bmc.2010.10.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
|
6
|
Oliveira L, Costa-Neto CM, Nakaie CR, Schreier S, Shimuta SI, Paiva ACM. The Angiotensin II AT1 Receptor Structure-Activity Correlations in the Light of Rhodopsin Structure. Physiol Rev 2007; 87:565-92. [PMID: 17429042 DOI: 10.1152/physrev.00040.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor. The models thus built and mutagenesis data indicate that physiological (agonist binding) or constitutive (mutated receptor) activation may involve different degrees of expansion of the receptor's central cavity. Residues in ANG II structure seem to control these conformational changes and to dictate the type of cytosolic event elicited during the activation. 1) Agonist aromatic residues (Phe8 and Tyr4) favor the coupling to G protein, and 2) absence of these residues can favor a mechanism leading directly to receptor internalization via phosphorylation by specific kinases of the receptor's COOH-terminal Ser and Thr residues, arrestin binding, and clathrin-dependent coated-pit vesicles. On the other hand, the NH2-terminal residues of the agonists ANG II and [Sar1]-ANG II were found to bind by two distinct modes to the AT1 receptor extracellular site flanked by the COOH-terminal segments of the EC-3 loop and the NH2-terminal domain. Since the [Sar1]-ligand is the most potent molecule to trigger tachyphylaxis in AT1 receptors, it was suggested that its corresponding binding mode might be associated with this special condition of receptors.
Collapse
Affiliation(s)
- Laerte Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
7
|
Reis RI, Santos EL, Pesquero JB, Oliveira L, Schanstra JP, Bascands JL, Pecher C, Paiva ACM, Costa-Neto CM. Participation of transmembrane proline 82 in angiotensin II AT1 receptor signal transduction. ACTA ACUST UNITED AC 2007; 140:32-6. [PMID: 17239455 DOI: 10.1016/j.regpep.2006.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/07/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Most of the classical physiological effects of the octapeptide angiotensin II (AngII) are produced by activating the AT1 receptor which belongs to the G-protein coupled receptor family (GPCR). Peptidic GPCRs may be functionally divided in three regions: (i) extracellular domains involved in ligand binding; (ii) intracellular domains implicated in agonist-induced coupling to G protein and (iii) seven transmembrane domains (TM) involved in signal transduction. The TM regions of such receptors have peculiar characteristics such as the presence of proline residues. In this project we aimed to investigate the participation of two highly conserved proline residues (Pro82 and Pro162), located in TM II and TM IV, respectively, in AT1 receptor signal transduction. Both mutations did not cause major alterations in AngII affinity. Functional assays indicated that the P162A mutant did not influence the signal transduction. On the other hand, a potent deleterious effect of P82A mutation on signal transduction was observed. We believe that the Pro82 residue is crucial to signal transduction, although it is not possible to say yet if this is due to a direct participation or if due to a structural rearrangement of TM II. In this last hypothesis, the removal of proline residue might be correlated to a removal of a kink, which in turn can be involved in the correct positioning of residues involved in signal transduction.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- Binding, Competitive
- COS Cells
- Chlorocebus aethiops
- Computer Simulation
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed/methods
- Mutation
- Proline/chemistry
- Proline/genetics
- Protein Binding
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Rosana I Reis
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nikiforovich GV, Zhang M, Yang Q, Jagadeesh G, Chen HC, Hunyady L, Marshall GR, Catt KJ. Interactions between Conserved Residues in Transmembrane Helices 2 and 7 during Angiotensin AT1Receptor Activation. Chem Biol Drug Des 2006; 68:239-49. [PMID: 17177883 DOI: 10.1111/j.1747-0285.2006.00444.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis studies and independent molecular modeling studies were combined to investigate the network of inter-residue interactions within the transmembrane region of the angiotensin AT(1a) receptor. Site-directed mutagenesis was focused on residues Tyr292, Asn294, Asn295, and Asn298 in transmembrane helix 7, and the conserved Asp74 in helix 2 and other polar residues. Functional interactions between pairs of residues were evaluated by determining the effects of single and double-reciprocal mutations on agonist-induced AT(1a) receptor activation. Replacement of Tyr292 by aspartate in helix 7 abolished radioligand binding to both Y292D and D74Y/Y292D mutant receptors. Reciprocal mutations of Asp74/Asn294, Ser115/Asn294, Ser252/Asn294, and Asn298/Sen115 caused additive impairment of function, suggesting that these pairs of residues make independent contributions to AT(1a) receptor activation. In contrast, mutations of the Asp74/Tyr298 pair revealed that the D74N/N298D reciprocal mutation substantially increased the impaired inositol phosphate responses of the D74N and N298D receptors. Extensive molecular modeling yielded 3D models of the TM region of the AT(1) receptor and the mutants as well as of their complexes with angiotensin II, which were used to rationalize the possible reasons of impairing of function of some mutants. These data indicate that Asp74 and Asn298 are not optimally positioned for direct strong interaction in the resting conformation of the AT(1a) receptor. Balance of interactions between residues in helix 2 (as D74) and helix 7 (as N294, N295 and N298) in the AT(1) receptors, however, has a crucial role both in determining their functional activity and levels of their expression.
Collapse
Affiliation(s)
- Gregory V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tuccinardi T, Calderone V, Rapposelli S, Martinelli A. Proposal of a New Binding Orientation for Non-Peptide AT1 Antagonists: Homology Modeling, Docking and Three-Dimensional Quantitative Structure−Activity Relationship Analysis. J Med Chem 2006; 49:4305-16. [PMID: 16821790 DOI: 10.1021/jm060338p] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-dimensional model of the AT1 receptor was constructed by means of a homology modeling procedure, using the X-ray structure of bovine rhodopsin as the initial template and taking into account the available site-directed mutagenesis data. The docking of losartan and its active metabolite EXP3174, followed by 1 ns of molecular dynamics (MD) simulation inserted into the phospholipid bilayer, suggested a different binding orientation for these antagonists from those previously proposed. Furthermore, the docking of several non-peptide antagonists was used as an alignment tool for the development of a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, and the good results confirmed our binding hypothesis and the reliability of the model.
Collapse
Affiliation(s)
- Tiziano Tuccinardi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
10
|
Nikiforovich GV, Mihalik B, Catt KJ, Marshall GR. Molecular mechanisms of constitutive activity: mutations at position 111 of the angiotensin AT1 receptor. ACTA ACUST UNITED AC 2005; 66:236-48. [PMID: 16218991 DOI: 10.1111/j.1399-3011.2005.00293.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A possible molecular mechanism for the constitutive activity of mutants of the angiotensin type 1 receptor (AT1) at position 111 was suggested by molecular modeling. This involves a cascade of conformational changes in spatial positions of side chains along transmembrane helix (TM3) from L112 to Y113 to F117, which in turn, results in conformational changes in TM4 (residues I152 and M155) leading to the movement of TM4 as a whole. The mechanism is consistent with the available data of site-directed mutagenesis, as well as with correct predictions of constitutive activity of mutants L112F and L112C. It was also predicted that the double mutant N111G/L112A might possess basal constitutive activity comparable with that of the N111G mutant, whereas the double mutants N111G/Y113A, N111G/F117A, and N111G/I152A would have lower levels of basal activity. Experimental studies of the above double mutants showed significant constitutive activity of N111G/L112A and N111G/F117A. The basal activity of N111G/I152A was higher than expected, and that of N111G/Y113A was not determined due to poor expression of the mutant. The proposed mechanism of constitutive activity of the AT(1) receptor reveals a novel nonsimplistic view on the general problem of constitutive activity, and clearly demonstrates the inherent complexity of the process of G protein-coupled receptor (GPCR) activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- CHO Cells
- Cricetinae
- Intracellular Membranes/metabolism
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed/methods
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Transfection
Collapse
Affiliation(s)
- G V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
11
|
Clément M, Martin SS, Beaulieu ME, Chamberland C, Lavigne P, Leduc R, Guillemette G, Escher E. Determining the Environment of the Ligand Binding Pocket of the Human Angiotensin II Type I (hAT1) Receptor Using the Methionine Proximity Assay. J Biol Chem 2005; 280:27121-9. [PMID: 15890659 DOI: 10.1074/jbc.m413653200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide hormone angiotensin II (AngII) binds to the AT0 (angiotensin type 1) receptor within the transmembrane domains in an extended conformation, and its C-terminal residue interacts with transmembrane domain VII at Phe-293/Asn-294. The molecular environment of this binding pocket remains to be elucidated. The preferential binding of benzophenone photolabels to methionine residues in the target structure has enabled us to design an experimental approach called the methionine proximity assay, which is based on systematic mutagenesis and photolabeling to determine the molecular environment of this binding pocket. A series of 44 transmembrane domain III, VI, and VII X --> Met mutants photolabeled either with 125I-[Sar1,p'-benzoyl-L-Phe8]AngII or with 125I-[Sar1,p''-methoxy-p'-benzoyl-L-Phe8]AngII were purified and digested with cyanogen bromide. Several mutants produced digestion patterns different from that observed with wild type human AT1, indicating that they had a new receptor contact with position 8 of AngII. The following residues form this binding pocket: L112M and Y113M in transmembrane domain (TMD) III; F249M, W253M, H256M, and T260M in TMD VI; and F293M, N294M, N295M, C296M, and L297M in TMD VII. Homology modeling and incorporation of these contacts allowed us to develop an evidence-based molecular model of interactions with human AT1 that is very similar to the rhodopsin-retinal interaction.
Collapse
Affiliation(s)
- Martin Clément
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Feng YH, Zhou L, Qiu R, Zeng R. Single Mutations at Asn295and Leu305in the Cytoplasmic Half of Transmembrane α-Helix Domain 7 of the AT1Receptor Induce Promiscuous Agonist Specificity for Angiotensin II Fragments: A Pseudo-Constitutive Activity. Mol Pharmacol 2005; 68:347-55. [PMID: 15901848 DOI: 10.1124/mol.105.011601] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most striking feature of a G protein-coupled receptor (GPCR) is its highly exclusive agonist specificity. This feature guarantees that a GPCR recognizes only its specific native agonist(s). In this study, we showed that two point mutations of N295S and L305Q enabled the AT(1) receptors to recognize multiple Ang II fragments. Similar to the well established constitutively active AT(1) mutant receptor N111G, the mutations of N295S and L305Q induced an increased production of basal inositol 1,4,5-phosphates in the absence of exogenous Ang II when expressed in HEK293 cells. Distinct from the N111G, however, is the fact that the increased basal activity disappeared in COS-7 cells because of the lack of endogenous Ang II fragments produced by the cells-a pseudo-constitutive activity. It is surprising that the Ang II analog [Sar(1),Ile(4),Ile(8)]Ang II and the native angiotensin II fragments Ang 1-7, Ang IV, and Ang 5-8, which are inactive in activating the wild-type receptor, activated N295S and L305Q. Results generated by lowering the Na(+) concentration suggest that the mutant N295S and L305Q may be trapped in neutral conformational states (R(N)). These data allow us to identify for the first time a novel pattern of GPCR mutations with a broad spectrum of agonist specificity, suggesting possible existence of functional GPCRs in nature that are activated through conformational "selection" rather than "induction" mechanisms.
Collapse
Affiliation(s)
- Ying-Hong Feng
- Department of Pharmacology, C2021, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
13
|
Pulakat L, Mandavia CH, Gavini N. Role of Phe308 in the seventh transmembrane domain of the AT2 receptor in ligand binding and signaling. Biochem Biophys Res Commun 2004; 319:1138-43. [PMID: 15194486 DOI: 10.1016/j.bbrc.2004.05.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Indexed: 11/28/2022]
Abstract
Studies on Angiotensin II (Ang II) receptor type AT1 have suggested that interaction between the two highly conserved residues, Tyr292 in the 7th transmembrane domain (TMD) and the Asp74 in the 2nd TMD, is critical for linking the Ang II binding and AT1 receptor-Gq protein coupling. In the Ang II receptor type AT2, the Asp is conserved (Asp90 in 2nd TMD), however, there is no Tyr residue in the 7th TMD and Phe308 occupies the analogous position to Tyr292 of the AT1. Replacing this Phe308 with Ala reduced receptor affinity to peptidic ligands (125)I-Ang II (K(d) = 0.37 nM) and (125)I-CGP42112A (K(d) = 0.56 nM), but retained the ability of the AT2 to reduce cGMP levels in Xenopus oocytes. Thus, the Phe308 of the AT2 does not mimic the role of Tyr292 of the AT1 in the receptor activation upon Ang II binding. We have also shown that the M8 mutant of the AT2 with the 7th TMD similar to that of wild type AT2 can couple to PLC like the AT1 and bind the AT2-specific ligands with high affinity. Since the Ang II is shown to bind to both the AT1 and the AT2 in an identical manner, we propose that the absence of Tyr in the 7th TMD of the AT2 does not prevent the receptor from coupling to Gq-protein, rather may contribute to the freedom of the AT2 to couple to trimeric G-proteins in both G- betagamma dependent and independent manners upon Ang II binding.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|
14
|
Reinhart GJ, Xie Q, Liu XJ, Zhu YF, Fan J, Chen C, Struthers RS. Species selectivity of nonpeptide antagonists of the gonadotropin-releasing hormone receptor is determined by residues in extracellular loops II and III and the amino terminus. J Biol Chem 2004; 279:34115-22. [PMID: 15155770 DOI: 10.1074/jbc.m404474200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop orally available gonadotropin-releasing hormone (GnRH) receptor antagonists have led to the discovery of several classes of potent nonpeptide antagonists. Here we investigated molecular interactions of three classes of nonpeptide antagonists with human, rat, and macaque GnRH receptors. Although all are high affinity ligands of the human receptor (K(i) <5 nm), these compounds show reduced affinity for the macaque receptor and bind only weakly (K(i) >1 microm) to the rat receptor. To identify residues responsible for this selectivity, a series of chimeric receptors and mutant receptors was constructed and evaluated for nonpeptide binding. Surprisingly, 4 key residues located in the amino terminus (Met-24) and extracellular loops II (Ser-203, Gln-208) and III (Leu-300) of the GnRH receptor appear to be primarily responsible for species-selective binding. Comparisons of reciprocal mutations suggest that these may not be direct contacts but rather may be involved in organizing extracellular portions of the receptor. These data are novel because most previous reports of residues involved in binding of nonpeptide ligands to peptide-activated G protein-coupled receptors, including the GnRH receptor as well as mono-amine receptors, have identified binding sites in the transmembrane regions.
Collapse
Affiliation(s)
- Greg J Reinhart
- Department of Endocrinology, Neurocrine Biosciences Inc., 10555 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Zoumpoulakis P, Daliani I, Zervou M, Kyrikou I, Siapi E, Lamprinidis G, Mikros E, Mavromoustakos T. Losartan's molecular basis of interaction with membranes and AT1 receptor. Chem Phys Lipids 2004; 125:13-25. [PMID: 14625072 DOI: 10.1016/s0009-3084(03)00053-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Physicochemical methods were used to study the thermal and dynamic changes caused by losartan in the membrane bilayers. In addition, molecular modeling was implemented to explore its topography both in membranes and AT(1) receptor. Its incorporation resulted in the modification of thermal profile of dipalmitoyl phosphatidylcholine (DPPC) bilayers in a concentration dependent way up to 20mol% as it is depicted from the combination of differential scanning calorimetry (DSC) and MAS data. In particular, the presence of losartan caused lowering of the phase transition temperature and abolishment of the pretransition. T(1) experiments revealed the location of the drug into the membrane bilayers. The use of a combination of biophysical methods along with docking experiments brought out a possible two-step mechanism which involves incorporation of losartan at the interface of membrane bilayers and diffusion in the upper parts of AT(1) receptor helices IV-VII.
Collapse
Affiliation(s)
- P Zoumpoulakis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hunyady L, Gáborik Z, Shah BH, Jagadeesh G, Clark AJL, Catt KJ. Structural determinants of agonist-induced signaling and regulation of the angiotensin AT1 receptor. Mol Cell Endocrinol 2004; 217:89-100. [PMID: 15134806 DOI: 10.1016/j.mce.2003.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiotensin II (Ang II) regulates aldosterone secretion by stimulating inositol phosphate production and Ca(2+) signaling in adrenal glomerulosa cells via the G(q)-coupled AT(1) receptor, which is rapidly internalized upon agonist binding. Ang II also binds to the heptahelical AT(2) receptor, which neither activates inositol phosphate signaling nor undergoes receptor internalization. The differential behaviors of the AT(1) and AT(2) receptors were analyzed in chimeric angiotensin receptors created by swapping the second (IL2), the third (IL3) intracellular loops and/or the cytoplasmic tail (CT) between these receptors. When transiently expressed in COS-7 cells, the chimeric receptors showed only minor alterations in their ligand binding properties. Measurements of the internalization kinetics and inositol phosphate responses of chimeric AT(1A) receptors indicated that the CT is required for normal receptor internalization, and IL2 is a determinant of G protein activation. In addition, the amino-terminal portion of IL3 is required for both receptor functions. However, only substitution of IL2 impaired Ang II-induced ERK activation, suggesting that alternative mechanisms are responsible for ERK activation in signaling-deficient mutant AT(1) receptors. Substitution of IL2, IL3, or CT of the AT(1A) receptor into the AT(2) receptor sequence did not endow the latter with the ability to internalize or to mediate inositol phosphate signaling responses. These data suggest that the lack of receptor internalization and inositol phosphate signal generation by the AT(2) receptor is a consequence of its different activation mechanism, rather than the inability of its cytoplasmic domains to couple to intracellular effectors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Calcium Signaling/genetics
- Cricetinae
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Inositol Phosphates/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1088 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
17
|
Bondensgaard K, Ankersen M, Thøgersen H, Hansen BS, Wulff BS, Bywater RP. Recognition of Privileged Structures by G-Protein Coupled Receptors. J Med Chem 2004; 47:888-99. [PMID: 14761190 DOI: 10.1021/jm0309452] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Privileged structures are ligand substructures that are widely used to generate high-affinity ligands for more than one type of receptor. To explain this, we surmised that there must be some common feature in the target proteins. For a set of class A GPCRs, we found a good correlation between conservation patterns of residues in the ligand binding pocket and the privileged structure fragments in class A GPCR ligands. A major part of interior surface of the common ligand binding pocket of class A receptors, identified in many GPCRs, is lined with variable residues that are responsible for selectivity in ligand recognition, while other regions, typically located deeper into the binding pocket, are more conserved and retain a predominantly hydrophobic and aromatic character. The latter is reflected in the chemical nature of most GPCR privileged structures and is proposed to be the common feature that is recognized by the privileged structures. Further, we find that this subpocket is conserved even in distant orthologs within the class A family. Three pairs of ligands recognizing widely different receptor types were docked into receptor models of their target receptors utilizing available structure- activity relationships and mutagenesis data. For each pair of ligands, the ligand-receptor complexes reveal that the nature of the privileged structure binding pocket is conserved between the two complexes, in support of our hypothesis. Only part of the privileged structures can be accommodated within the conserved subpocket. Some contacts are established between the privileged structure and the nonconserved parts of the binding pocket. This implies that any one particular privileged structure can target only a subset of receptors, those complementary to the full privileged structure. Our hypothesis leads to a valuable novelty in that ligand libraries can be designed without any foreknowledge of the structure of the endogenous ligand, which in turn means that even orphan receptors can in principle now be addressed as potential drug targets.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Biphenyl Compounds/chemical synthesis
- Biphenyl Compounds/chemistry
- Biphenyl Compounds/metabolism
- Cell Line
- Conserved Sequence
- Cricetinae
- Indans/chemical synthesis
- Indans/chemistry
- Indans/metabolism
- Indoles/chemical synthesis
- Indoles/chemistry
- Indoles/metabolism
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Piperidines/chemical synthesis
- Piperidines/chemistry
- Piperidines/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/metabolism
- Sequence Alignment
- Spiro Compounds/chemical synthesis
- Spiro Compounds/chemistry
- Spiro Compounds/metabolism
- Tetrazoles/chemical synthesis
- Tetrazoles/chemistry
- Tetrazoles/metabolism
Collapse
Affiliation(s)
- Kent Bondensgaard
- Protein Engineering, Medicinal Chemistry, and Discovery Biology, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Boucard AA, Roy M, Beaulieu ME, Lavigne P, Escher E, Guillemette G, Leduc R. Constitutive activation of the angiotensin II type 1 receptor alters the spatial proximity of transmembrane 7 to the ligand-binding pocket. J Biol Chem 2003; 278:36628-36. [PMID: 12842881 DOI: 10.1074/jbc.m305952200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of G protein-coupled receptors by agonists involves significant movement of transmembrane domains (TM) following binding of agonist. The underlying structural mechanism by which receptor activation takes place is largely unknown but can be inferred by detecting variability within the environment of the ligand-binding pocket, which constitutes a water-accessible crevice surrounded by the seven TM helices. Using the substituted cysteine accessibility method, we initially identified those residues within the seventh transmembrane domain (TM7) of wild type angiotensin II type 1 (AT1) receptor that contribute to forming the binding site pocket. We have substituted successively TM7 residues ranging from Ile276 to Tyr302 to cysteine. Treatment of A277C, V280C, T282C, A283C, I286C, A291C, and F301C mutant receptors with the charged sulfhydryl-specific alkylating agent MTSEA significantly inhibited ligand binding, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was greatly reduced for TM7 reporter cysteines engineered in a constitutively active mutant of the AT1 receptor. Our data suggest that upon activation, TM7 of the AT1 receptor goes through a pattern of helical movements that results in its distancing from the binding pocket per se. These studies support accumulating evidence whereby elements of TM7 of class A GPCRs promote activation of the receptor through structural rearrangements.
Collapse
Affiliation(s)
- Antony A Boucard
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Le MT, Vanderheyden PML, Szaszák M, Hunyady L, Kersemans V, Vauquelin G. Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. Biochem Pharmacol 2003; 65:1329-38. [PMID: 12694873 DOI: 10.1016/s0006-2952(03)00072-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wild type human AT(1) receptors (WT-AT(1)) and mutant receptors, in which Asn(111) was replaced by glycine (N111G), alanine (N111A) and serine (N111S), or in which Asp(281) was replaced by alanine (D281A) or in which N111G and D281A replacements were combined, were transiently expressed in CHO-K1 cells. While the biphenyltetrazole compound candesartan dissociated slowly and behaved as an insurmountable antagonist for WT-AT(1), it dissociated swiftly and only produced a rightward shift of the angiotensin Ang II- and -IV dose-response curves for inositol phosphate (IP) accumulation in cells expressing N111G. [3H]candesartan competition binding yielded the same potency order of the related biphenyltetrazoles for WT-AT(1) and mutated receptors, i.e. candesartan>EXP3174>irbesartan>losartan. Affinities were equal for WT-AT(1) and D281A and 40- to 400-fold lower for all Asn(111) mutants. Mutations did not affect the affinity of the peptide antagonist [Sar(1)Ile(8)]Ang II (SARILE). Basal IP accumulation in cells with WT-AT(1) was not affected by any biphenyltetrazole antagonists and was increased by SARILE to 19% of the maximal Ang II stimulation. Basal IP accumulation was higher for cells expressing the Asn(111)-mutated receptors. For N111G, this accumulation was partially inhibited by all the biphenyltetrazoles upon long-term (18hr) exposure. In these cells SARILE produced the same maximal stimulation as Ang II. Asn(111)-mutated AT(1) receptors are thought to mimic the pre-activated state of the wild type receptor and comparing the efficacy and affinity of ligands for such mutated receptors facilitate the distinction of partial (SARILE) and inverse (biphenyltetrazoles) agonists from true antagonists.
Collapse
Affiliation(s)
- Minh Tam Le
- Department of Molecular and Biochemical Pharmacology, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Inada Y, Nakane T, Chiba S. Relationship between ligand binding and YIPP motif in the C-terminal region of human AT1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:33-41. [PMID: 12676352 DOI: 10.1016/s0167-4889(02)00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The YIPP (tyrosine-isoleucine-proline-proline, amino acids 319-322) motif within the C-terminal part of the human AT(1) receptor is associated with angiotensin II (AII)-induced activation of the Jak-STAT pathway and phospholipase Cgamma1 phosphorylation. We report here that mutations of the YIPP motif strongly affect ligand-binding to the receptor. We analysed AT(1) receptors of the wild type (WT) and 11 mutants with a FLAG-epitope-tag within their C-terminal portion. Mutations of the "P-P" amino acid sequence of this motif decreased both AII binding and the AII-induced intracellular Ca(2+) transients. Mutant and WT receptors were expressed equally in the cell membrane and were localized within the plasma membrane. These results suggest that the "P-P" amino acid sequence within the YIPP motif is important for AII binding to the AT(1) receptor.
Collapse
Affiliation(s)
- Yoichi Inada
- Department of Pharmacology, Shinshu University School of Medicine, 3-1-1 Asahi, 390-8621, Matsumoto, Japan
| | | | | |
Collapse
|
21
|
Raiden S, Nahmod K, Nahmod V, Semeniuk G, Pereira Y, Alvarez C, Giordano M, Geffner JR. Nonpeptide antagonists of AT1 receptor for angiotensin II delay the onset of acute respiratory distress syndrome. J Pharmacol Exp Ther 2002; 303:45-51. [PMID: 12235231 DOI: 10.1124/jpet.102.037382] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that losartan, a selective antagonist of AT1 receptors for angiotensin II (AII), strongly suppresses the activation of neutrophils by N-formylmethionyl-leucyl-phenylalanine (fMLP) through a mechanism that does not involve inhibition of AT1 receptors. Herein, we analyze whether losartan would prevent the development of the acute respiratory distress syndrome (ARDS) triggered by lung bacterial infection. We found that losartan (0.2-200 microg/kg/min) delays the onset of ARDS in Wistar rats challenged by i.t. instillation of Bordetella bronchiseptica. Although this effect was associated with a significant inhibition of lung-neutrophil recruitment, lung bacterial clearance was not impaired but rather, it was significantly improved. We also found that another nonpeptide AT1 receptor blocker, irbesartan, exerted similar effects to losartan, i.e., it was also able to inhibit neutrophil activation by fMLP and to delay the onset of ARDS in B. bronchiseptica-challenged rats. Neither the inhibitor of angiotensin-converting enzyme captopril, nor the nonselective peptide inhibitor of AII receptors saralasin reproduced these effects. Our data are consistent with the possibility that nonpeptide AT1 receptor blockers delay the onset of ARDS triggered by bacterial infection through a mechanism dependent, at least in part, on their ability to prevent neutrophil activation by N-formyl-peptides.
Collapse
Affiliation(s)
- Silvina Raiden
- Laboratory of Immunology, Institute of Hematologic Research, National Academy of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Le MT, Vanderheyden PML, Szaszák M, Hunyady L, Vauquelin G. Angiotensin IV is a potent agonist for constitutive active human AT1 receptors. Distinct roles of the N-and C-terminal residues of angiotensin II during AT1 receptor activation. J Biol Chem 2002; 277:23107-10. [PMID: 12006574 DOI: 10.1074/jbc.c200201200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.
Collapse
Affiliation(s)
- Minh Tam Le
- Department of Molecular and Biochemical Pharmacology, Institute of Molecular Biology and Biotechnology, Vrije Universiteit Brussel, B-1640 Sint-Genesius Rode, Belgium
| | | | | | | | | |
Collapse
|
23
|
Marie J, Richard E, Pruneau D, Paquet JL, Siatka C, Larguier R, Poncé C, Vassault P, Groblewski T, Maigret B, Bonnafous JC. Control of conformational equilibria in the human B2 bradykinin receptor. Modeling of nonpeptidic ligand action and comparison to the rhodopsin structure. J Biol Chem 2001; 276:41100-11. [PMID: 11495910 DOI: 10.1074/jbc.m104875200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations. Molecular modeling and mutagenesis data showed that Trp(256) and Tyr(295) constitute, together with Gln(288), receptor contact points with original nonpeptidic ligands. It provided an explanation for the ligand inverse agonist behavior on the WT receptor, with underlying restricted motions of TMs III, VI, and VII, and its agonist behavior on the Ala(113) and Phe(256) constitutively activated mutants. These data on the B2 receptor emphasize that conformational equilibria are controlled in a coordinated fashion by key residues which are located at strategic positions for several G protein-coupled receptors. They are discussed in comparison with the recently determined rhodopsin crystallographic structure.
Collapse
Affiliation(s)
- J Marie
- INSERM U439, 70 rue de Navacelles 34090 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Olivares-Reyes JA, Smith RD, Hunyady L, Shah BH, Catt KJ. Agonist-induced signaling, desensitization, and internalization of a phosphorylation-deficient AT1A angiotensin receptor. J Biol Chem 2001; 276:37761-8. [PMID: 11495923 DOI: 10.1074/jbc.m106368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.
Collapse
Affiliation(s)
- J A Olivares-Reyes
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Nikiforovich GV, Marshall GR. 3D model for TM region of the AT-1 receptor in complex with angiotensin II independently validated by site-directed mutagenesis data. Biochem Biophys Res Commun 2001; 286:1204-11. [PMID: 11527428 DOI: 10.1006/bbrc.2001.5526] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A three-dimensional model of the complex of angiotensin II (AII) with the transmembrane (TM) region of the angiotensin II receptor of type 1 (the AT-1 receptor) was obtained by molecular modeling procedures employing structural homology to the X-ray structure of rhodopsin. Since the modeling procedure considered only steric and energy considerations without prior knowledge of the experimental results of site-directed mutagenesis, the results with receptor mutants could be used for independent validation of the model. Indeed, the model brings in contact the residues of AII responsible for agonistic activity, Tyr(4), His(6), and Phe(8), with many residues of AT-1 involved in signal transduction according to site-directed mutagenesis. The model also predicts the existence of several possible conformational pathways for transferring the binding signal through the TM region of AT-1 to the intracellular loops interacting with the G-protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Crystallography, X-Ray
- Histidine/chemistry
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phenylalanine/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/chemistry
- Receptors, Angiotensin/genetics
- Rhodopsin/chemistry
- Signal Transduction
- Tyrosine/chemistry
Collapse
Affiliation(s)
- G V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
26
|
Guo DF, Sun YL, Hamet P, Inagami T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 2001; 11:165-80. [PMID: 11642401 DOI: 10.1038/sj.cr.7290083] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms of regulation, activation and signal transduction of the angiotensin II (Ang II) type 1 (AT1) receptor have been studied extensively in the decade after its cloning. The AT1 receptor is a major component of the renin-angiotensin system (RAS). It mediates the classical biological actions of Ang II. Among the structures required for regulation and activation of the receptor, its carboxyl-terminal region plays crucial roles in receptor internalization, desensitization and phosphorylation. The mechanisms involved in heterotrimeric G-protein coupling to the receptor, activation of the downstream signaling pathway by G proteins and the Ang II signal transduction pathways leading to specific cellular responses are discussed. In addition, recent work on the identification and characterization of novel proteins associated with carboxyl-terminus of the AT1 receptor is presented. These novel proteins will advance our understanding of how the receptor is internalized and recycled as they provide molecular mechanisms for the activation and regulation of G-protein-coupled receptors.
Collapse
Affiliation(s)
- D F Guo
- Research Centre, Hotel-Dieu of CHUM and Department of Medicine, University of Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
27
|
Polevaya L, Mavromoustakos T, Zoumboulakis P, Golic Grdadolnik S, Roumelioti P, Giatas N, Mutule I, Keivish T, Vlahakos DV, Iliodromitis EK, Kremastinos DT, Matsoukas J. Synthesis and study of a cyclic angiotensin II antagonist analogue reveals the role of pi*--pi* interactions in the C-terminal aromatic residue for agonist activity and its structure resemblance with AT(1) non-peptide antagonists. Bioorg Med Chem 2001; 9:1639-47. [PMID: 11408184 DOI: 10.1016/s0968-0896(01)00059-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The novel amide linked Angiotensin II (ANG II) cyclic analogue cyclo(3, 5) -[Sar(1)-Lys(3)-Glu(5)-Ile(8)] ANG II (18) has been designed, synthesized and bioassayed in anesthetized rabbits. The constrained cyclic analogue with a lactam amide bridge linking a Lys-Glu pair at positions 3 and 5 and possessing Ile at position 8, was synthesized by solution procedure using the maximum protection strategy. This analogue was found to be inhibitor of Angiotensin II. NMR spectroscopy coupled with computational analysis showed clustering between the side chains of the key aminoacids Tyr(4)-His(6)-Ile(8) similar to that observed with ANG II. The obtained data show that only pi*--pi* interactions observed in ANG II or its superagonist Sar(1) [ANG II] are missing. Therefore, it can be concluded that these interactions are essential for agonist activity. Conformational analysis comparisons between AT(1) antagonists losartan, eprosartan and irbesartan with C-terminal segment of cyclic compound 18 revealed structural similarities.
Collapse
Affiliation(s)
- L Polevaya
- Laboratory of Peptide Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sixty years after its initial discovery, the octapeptide hormone angiotensin II (AngII) has proved to play numerous physiological roles that reach far beyond its initial description as a hypertensive factor. In spite of the host of target tissues that have been identified, only two major receptor subtypes, AT1 and AT2, are currently fully identified. The specificity of the effects of AngII relies upon numerous and complex intracellular signaling pathways that often mobilize calcium ions from intracellular stores or from the extracellular medium. Various types of calcium channels (store- or voltage-operated channels) endowed with distinct functional properties play a crucial role in these processes. The activity of these channels can be modulated by AngII in a positive and/or negative fashion, depending on the cell type under observation. This chapter reviews the main characteristics of AngII receptor subtypes and of the various calcium channels as well as the involvement of the multiple signal transduction mechanisms triggered by the hormone in the cell-specific modulation of the activity of these channels.
Collapse
Affiliation(s)
- M F Rossier
- Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | | |
Collapse
|
29
|
Sandberg K, Ji H. Comparative analysis of amphibian and mammalian angiotensin receptors. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:53-75. [PMID: 11137439 DOI: 10.1016/s1095-6433(00)00297-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amphibian angiotensin receptors (xAT receptors) share many similarities with mammalian type 1 angiotensin receptors (AT(1) receptors). Both xAT and AT(1) receptors belong to the super family of seven transmembrane spanning G protein-coupled receptors and share approximately 60% amino acid homology. Highly stable secondary structure in the 5' leader sequences and the presence of the mRNA destabilizing sequence (AUUUA) in the 3' untranslated region (3'UTR) of the xAT and AT(1) receptor mRNAs suggest similar mechanisms exist for regulating gene expression. Amphibian and mammalian AT receptors bind angiotensin with equivalent affinities but show marked differences in their affinities towards mammalian AT(1) receptor subtype selective non-peptide ligands. Both xAT and AT(1) receptors couple to G proteins and to the phospholipase C (PLC) signal transduction pathway. Mammalian AT(1) receptors play a key role in maintaining blood pressure and fluid homeostasis and there is considerable evidence that xAT receptors play a similarly important role in amphibians. This review focuses on the comparison of amphibian xAT receptors with mammalian AT(1) receptors in terms of their structure, pharmacology, signaling, and function.
Collapse
Affiliation(s)
- K Sandberg
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | |
Collapse
|
30
|
De Witt BJ, Garrison EA, Champion HC, Kadowitz PJ. L-163,491 is a partial angiotensin AT(1) receptor agonist in the hindquarters vascular bed of the cat. Eur J Pharmacol 2000; 404:213-9. [PMID: 10980281 DOI: 10.1016/s0014-2999(00)00612-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Responses to the nonpeptide angiotensin II agonist 5, 7-Dimethyl-2-ethyl-3-[[2'-([butyloxycarbonyl) aminosulfonyl]-5'-(3-methyoxybenzyl)-[1, 1'-biphenyl]-4-yl]methyl]-3H-imidazo[4,5-b]pyridine (L-163,491) were investigated and compared with responses to angiotensin II, angiotensin IV and norepinephrine in the hindquarters vascular bed of the cat under constant-flow conditions. Injections of L-163,491 into the hindquarter perfusion circuit caused dose-related increases in hindquarters perfusion pressure. In relative terms, angiotensin II was more potent than norepinephrine, which was more potent than angiotensin IV and L-163,491 in increasing hindlimb vascular resistance. The slope of the dose-response curve for L-163,491 was flat, while the apparent affinity of the compound for angiotensin AT(1) receptors was slightly greater than angiotensin IV. Responses to L-163,491 were inhibited by the angiotensin AT(1) receptor antagonist DuP 532 (2-propyl-4-pentafluoroethyl-1-[2'-(1H-tetrazol-5-yl)bipheny l-4-yl)me thyl]imidazole-5-carboxylic acid) and were not altered by the angiotensin AT(2) receptor antagonist PD123,319 (S(+)-1-[[4-(Dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl+ ++) -4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditribluoroacetate). However, the increase in hindlimb perfusion pressure in response to angiotensin II and angiotensin IV was significantly decreased following injection of L-163,491. These data suggest that the nonpeptide angiotensin analog L-163,491 has partial agonist activity, which is dependent on the stimulation of angiotensin AT(1) receptors in the hindquarters vascular bed of the cat.
Collapse
Affiliation(s)
- B J De Witt
- Department of Pharmacology SL83, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
31
|
Gosselin MJ, Leclerc PC, Auger-Messier M, Guillemette G, Escher E, Leduc R. Molecular cloning of a ferret angiotensin II AT(1) receptor reveals the importance of position 163 for Losartan binding. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:94-102. [PMID: 10838163 DOI: 10.1016/s0167-4889(00)00046-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A complementary DNA for the angiotensin II (AngII) type 1 (AT(1)) receptor from Mustela putorius furo (ferret) was isolated from a ferret atria cDNA library. The cDNA encodes a protein (fAT(1)) of 359 amino acids having high homologies (93-99%) to other mammalian AT(1) receptor counterparts. When fAT(1) was expressed in COS-7 cells and photoaffinity labeled with the photoactive analogue (125)I-¿Sar(1), Bpa(8)AngII, a protein of 100 kDa was detected by autoradiography. The formation of this complex was specific since it was abolished in the presence of the AT(1) non-peptidic antagonist L-158,809. Functional analysis indicated that the fAT(1) receptor efficiently coupled to phospholipase C as demonstrated by an increase in inositol phosphate production following stimulation with AngII. Binding studies revealed that the fAT(1) receptor had a high affinity for the peptide antagonist ¿Sar(1), Ile(8)AngII (K(d) of 5. 8+/-1.4 nM) but a low affinity for the AT(1) selective non-peptidic antagonist DuP 753 (K(d) of 91+/-15.6 nM). Interestingly, when we substituted Thr(163) with an Ala residue, which occupies this position in many mammalian AT(1) receptors, we restored the high affinity of this receptor for Dup 753 (11.7+/-5.13 nM). These results suggest that position 163 of the AT(1) receptor does not contribute to the overall binding of peptidic ligands but that certain non-peptidic antagonists such as Dup 753 are clearly dependent on this position for efficient binding.
Collapse
MESH Headings
- 1-Sarcosine-8-Isoleucine Angiotensin II/analogs & derivatives
- 1-Sarcosine-8-Isoleucine Angiotensin II/metabolism
- Alanine/genetics
- Alanine/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Angiotensin II/analogs & derivatives
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive/drug effects
- COS Cells
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Recombinant/genetics
- DNA, Recombinant/metabolism
- Ferrets/genetics
- Imidazoles/pharmacology
- Iodine Radioisotopes
- Losartan/metabolism
- Losartan/pharmacology
- Molecular Sequence Data
- Plasmids
- Protein Binding
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Threonine/genetics
- Threonine/metabolism
Collapse
Affiliation(s)
- M J Gosselin
- Department of Pharmacology, Faculty of Medicine, Universit¿e de Sherbrooke, Quebec, J1H 5N4, Sherbrooke, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Zhang M, Zhao X, Chen HC, Catt KJ, Hunyady L. Activation of the AT1 angiotensin receptor is dependent on adjacent apolar residues in the carboxyl terminus of the third cytoplasmic loop. J Biol Chem 2000; 275:15782-8. [PMID: 10747880 DOI: 10.1074/jbc.m000198200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.
Collapse
Affiliation(s)
- M Zhang
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
33
|
Jayadev S, Smith RD, Jagadeesh G, Baukal AJ, Hunyady L, Catt KJ. N-linked glycosylation is required for optimal AT1a angiotensin receptor expression in COS-7 cells. Endocrinology 1999; 140:2010-7. [PMID: 10218949 DOI: 10.1210/endo.140.5.6689] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nature and role of glycosylation in AT1 angiotensin receptor (AT1-R) function were investigated by expressing glycosylation-deficient influenza hemagglutinin (HA) epitope-tagged rat AT1a-Rs (HA-AT1a-Rs) in COS-7 cells. All three asparagine residues (Asn4, Asn176, Asn188) contained within consensus sites for N-linked glycosylation could be glycosylated in Cos-7 cells and appeared to be glycosylated on the endogenous AT1-R in bovine adrenal glomerulosa cells. Heterogeneity of glycosylation at each site accounted for the broad migration pattern of the AT1-R in SDS-PAGE. Mutation at each glycosylation site, either alone or in combination, had little effect on ligand binding parameters (although the N4K mutant had higher affinity) or signaling activity. However, an increasing number of mutated glycosylation sites was associated with decreasing cell surface receptor expression, which was minimal for the unglycosylated N4K/N176Q/N188Q receptor. Decreased surface expression of mutant HA-AT1a-Rs was correlated with decreased total cell receptor content as revealed by immunoblotting with an anti-HA antibody. These findings suggest that glycosylation enhances receptor stability, possibly by protecting nascent receptors from proteolytic degradation.
Collapse
Affiliation(s)
- S Jayadev
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The type 1 angiotensin receptor (AT1) mediates the important biological actions of the peptide hormone, angiotensin II (AngII), by activating an array of intracellular signaling pathways. The unique temporal arrangement and duration of AngII-stimulated signals suggests a hierarchy of post-AT1 receptor binding events that permits activation of selective effector pathways. Moreover, it predicts that the coupling of AT1 receptors is tightly regulated, allowing cells to differentiate acute responses from those requiring longer periods of stimulation. Recent studies have concentrated on delineating the molecular processes involved in modulating AT1 receptor activity. In addition to AT1 receptor modification (phosphorylation), trafficking (internalization and degradation) and interaction with regulatory intracellular proteins, other processes may include receptor dimerization, cross-regulation by other receptor systems, and receptor isomerization between activated and non-activated forms. This review focuses on recent advances in this area of research, highlighting directions for future investigation.
Collapse
Affiliation(s)
- W G Thomas
- Molecular Endocrinology Laboratory, Baker Medical Research Institute, Melbourne, Australia.
| |
Collapse
|
35
|
Smith RD, Hunyady L, Olivares-Reyes JA, Mihalik B, Jayadev S, Catt KJ. Agonist-induced phosphorylation of the angiotensin AT1a receptor is localized to a serine/threonine-rich region of its cytoplasmic tail. Mol Pharmacol 1998; 54:935-41. [PMID: 9855619 DOI: 10.1124/mol.54.6.935] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The agonist-induced phosphorylation sites of the rat AT1a angiotensin receptor were analyzed using epitope-tagged mutant receptors expressed in Cos-7 cells. Angiotensin II-stimulated receptor phosphorylation was unaffected by truncation of the cytoplasmic tail of the receptor at Ser342 (Delta342) but was abolished by truncation at Ser325 (Delta325). Truncation at Ser335 (Delta335), or double-point mutations of Ser335 and Thr336 to alanine (ST-AA), reduced receptor phosphorylation by approximately 50%, indicating that in addition to Ser335 and/or Thr336, amino acids within the Ser326-Thr332 segment are also phosphorylated. Agonist-induced phosphorylation of the ST-AA and Delta335 receptors was partially inhibited by staurosporine, suggesting that the single protein kinase C consensus site in the Ser326-Thr332 segment (Ser331) is phosphorylated. The impairment of receptor phosphorylation was broadly correlated with the attenuation of agonist-induced internalization rates (Delta325 < Delta335 < ST-AA < Delta342 < wild-type) and with the increasing rank order of magnitude of inositol phosphate production normalized to an equal number of receptors (Delta325 > Delta335 > ST-AA = Delta342 > wild-type). These results demonstrate that agonist-induced phosphorylation of the AT1a receptor is confined to an 11-amino-acid serine/threonine-rich segment of its carboxyl-terminal cytoplasmic tail and implicate this region in the mechanisms of receptor internalization and desensitization.
Collapse
Affiliation(s)
- R D Smith
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|