1
|
Fragola NR, Brems BM, Mukherjee M, Cui M, Booth RG. Conformationally Selective 2-Aminotetralin Ligands Targeting the alpha2A- and alpha2C-Adrenergic Receptors. ACS Chem Neurosci 2023; 14:1884-1895. [PMID: 37104867 PMCID: PMC10628895 DOI: 10.1021/acschemneuro.3c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Many important physiological processes are mediated by alpha2A- and alpha2C-adrenergic receptors (α2Rs), a subtype of class A G protein-coupled receptors (GPCRs). However, α2R signaling is poorly understood, and there are few approved medications targeting these receptors. Drug discovery aimed at α2Rs is complicated by the high degree of binding pocket homology between α2AR and α2CR, which confounds ligand-mediated selective activation or inactivation of signaling associated with a particular subtype. Meanwhile, α2R signaling is complex and it is reported that activating α2AR is beneficial in many clinical contexts, while activating α2CR signaling may be detrimental to these positive effects. Here, we report on a novel 5-substituted-2-aminotetralin (5-SAT) chemotype that, depending on substitution, has diverse pharmacological activities at α2Rs. Certain lead 5-SAT analogues act as partial agonists at α2ARs, while functioning as inverse agonists at α2CRs, a novel pharmacological profile. Leads demonstrate high potency (e.g., EC50 < 2 nM) at the α2AR and α2CRs regarding Gαi-mediated inhibition of adenylyl cyclase and production of cyclic adenosine monophosphate (cAMP). To help understand the molecular basis of 5-SAT α2R multifaceted functional activity, α2AR and α2CR molecular models were built from the crystal structures and 1 μs molecular dynamics (MD) simulations and molecular docking experiments were performed for a lead 5-SAT with α2AR agonist and α2CR inverse agonist activity, i.e., (2S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), in comparison to the FDA-approved (for opioid withdrawal symptoms) α2AR/α2CR agonist lofexidine. Results reveal several interactions between FPT and α2AR and α2CR amino acids that may impact the functional activity. The computational data in conjunction with experimental in vitro affinity and function results provide information to understand ligand stabilization of functionally distinct GPCR conformations regarding α2AR and α2CRs.
Collapse
Affiliation(s)
- Nicholas R. Fragola
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Brittany M. Brems
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Munmun Mukherjee
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Meng Cui
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Raymond G. Booth
- Center
for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry
& Chemical Biology, Northeastern University, 208, Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Proudman RGW, Akinaga J, Baker JG. The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect 2022; 10:e01003. [PMID: 36101495 PMCID: PMC9471048 DOI: 10.1002/prp2.1003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022] Open
Abstract
α2-adrenoceptors, (α2A, α2B and α2C-subtypes), are Gi-coupled receptors. Central activation of brain α2A and α2C-adrenoceptors is the main site for α2-agonist mediated clinical responses in hypertension, ADHD, muscle spasm and ITU management of sedation, reduction in opiate requirements, nausea and delirium. However, despite having the same Gi-potency in functional assays, some α2-agonists also stimulate Gs-responses whilst others do not. This was investigated. Agonist responses to 49 different α-agonists were studied (CRE-gene transcription, cAMP, ERK1/2-phosphorylation and binding affinity) in CHO cells stably expressing the human α2A, α2B or α2C-adrenoceptor, enabling ligand intrinsic efficacy to be determined (binding KD /Gi-IC50 ). Ligands with high intrinsic efficacy (e.g., brimonidine and moxonidine at α2A) stimulated biphasic (Gi-Gs) concentration responses, however for ligands with low intrinsic efficacy (e.g., naphazoline), responses were monophasic (Gi-only). ERK1/2-phosphorylation responses appeared to be Gi-mediated. For Gs-mediated responses to be observed, both a system with high receptor reserve and high agonist intrinsic efficacy were required. From the Gi-mediated efficacy ratio, the degree of Gs-coupling could be predicted. The clinical relevance and precise receptor conformational changes that occur, given the structural diversity of compounds with high intrinsic efficacy, remains to be determined. Comparison with α1 and β1/β2-adrenoceptors demonstrated subclass affinity selectivity for some compounds (e.g., α2:dexmedetomidine, α1:A61603) whilst e.g., oxymetazoline had high affinity for both α2A and α1A-subtypes, compared to all others. Some compounds had subclass selectivity due to selective intrinsic efficacy (e.g., α2:brimonidine, α1:methoxamine/etilefrine). A detailed knowledge of these agonist characteristics is vital for improving computer-based deep-learning and drug design.
Collapse
Affiliation(s)
- Richard G. W. Proudman
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Juliana Akinaga
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Jillian G. Baker
- Cell Signalling Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, C Floor Medical School, Queen's Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
3
|
Michel MC, Michel-Reher MB, Hein P. A Systematic Review of Inverse Agonism at Adrenoceptor Subtypes. Cells 2020; 9:E1923. [PMID: 32825009 PMCID: PMC7564766 DOI: 10.3390/cells9091923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
As many, if not most, ligands at G protein-coupled receptor antagonists are inverse agonists, we systematically reviewed inverse agonism at the nine adrenoceptor subtypes. Except for β3-adrenoceptors, inverse agonism has been reported for each of the adrenoceptor subtypes, most often for β2-adrenoceptors, including endogenously expressed receptors in human tissues. As with other receptors, the detection and degree of inverse agonism depend on the cells and tissues under investigation, i.e., they are greatest when the model has a high intrinsic tone/constitutive activity for the response being studied. Accordingly, they may differ between parts of a tissue, for instance, atria vs. ventricles of the heart, and within a cell type, between cellular responses. The basal tone of endogenously expressed receptors is often low, leading to less consistent detection and a lesser extent of observed inverse agonism. Extent inverse agonism depends on specific molecular properties of a compound, but inverse agonism appears to be more common in certain chemical classes. While inverse agonism is a fascinating facet in attempts to mechanistically understand observed drug effects, we are skeptical whether an a priori definition of the extent of inverse agonism in the target product profile of a developmental candidate is a meaningful option in drug discovery and development.
Collapse
Affiliation(s)
- Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | | | | |
Collapse
|
4
|
Li Z, Li J, Liu L, Deng W, Liu Q, Liu R, Zhang W, He Z, Fan L, Yang Y, Duan Y, Hou H, Wang X, Yang Z, Wang X, Chen S, Wang Y, Huang N, Chen J. Structural Insight into the Mechanism of 4-Aminoquinolines Selectivity for the alpha2A-Adrenoceptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2585-2594. [PMID: 32694911 PMCID: PMC7340475 DOI: 10.2147/dddt.s214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022]
Abstract
Background α2A-adrenoceptor (AR) is a potential target for the treatment of degenerative diseases of the central nervous system, and α2A-AR agonists are effective drugs for this condition. However, the lack of high selectivity for α2A-AR subtype of traditional drugs greatly limits their clinic usage. Methods A series of homobivalent 4-aminoquinolines conjugated by two 4-aminoquinoline moieties via varying alkane linker length (C2-C12) were characterized for their affinities for each α2-AR subtype. Subsequently, docking, molecular dynamics and mutagenesis were applied to uncover the molecular mechanism. Results Most 4-aminoquinolines (4-aminoquinoline monomer, C2-C6, C8-C10) were selective for α2A-AR over α2B- and α2C-ARs. Besides, the affinities are of similar linker length-dependence for each α2-AR subtype. Among all the compounds tested, C10 has the highest affinity for α2A-AR (pKi=−7.45±0.62), which is 12-fold and 60-fold selective over α2B-AR and α2C-AR, respectively. Docking and molecular dynamics suggest that C10 simultaneously interacts with orthosteric and “allosteric” sites of the α2A-AR. The mutation of F205 decreases the affinity by 2-fold. The potential allosteric residues include S90, N93, E94 and W99. Conclusion The specificity of C10 for the α2A-AR and the potential orthosteric and allosteric binding sites proposed in this study provide valuable guidance for the development of novel α2A-AR subtype selective compounds.
Collapse
Affiliation(s)
- Zaibing Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China.,Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liyan Liu
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenyi Deng
- West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingrong Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruofan Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wen Zhang
- West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zaiqing He
- Department of Pathology, Nuclear of Industry 416 Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Lei Fan
- Department of Occupational Medicine, Nuclear of Industry 416 Hospital, Chengdu, Sichuan 610051, People's Republic of China
| | - Yingzhuo Yang
- Department of Nuclear Medicine, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Yun Duan
- Department of Nuclear Medicine, Sichuan Cancer Hospital, Chengdu 610041, People's Republic of China
| | - Huifang Hou
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyuan Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhimei Yang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
5
|
Hamajima K, Hamamura K, Chen A, Yokota H, Mori H, Yo S, Kondo H, Tanaka K, Ishizuka K, Kodama D, Hirai T, Miyazawa K, Goto S, Togari A. Suppression of osteoclastogenesis via α2-adrenergic receptors. Biomed Rep 2018; 8:407-416. [PMID: 29725523 PMCID: PMC5920467 DOI: 10.3892/br.2018.1075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
The sympathetic nervous system is known to regulate osteoclast development. However, the involvement of α2-adrenergic receptors (α2-ARs) in osteoclastogenesis is not well understood. In the present study, their potential role in osteoclastogenesis was investigated. Guanabenz, clonidine and xylazine were used as agonists of α2-ARs, while yohimbine and idazoxan were employed as antagonists. Using RAW264.7 pre-osteoclast and primary bone marrow cells, the mRNA expression of the osteoclast-related genes nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K was evaluated following induction with receptor activator of nuclear factor κB ligand (RANKL). TRAP staining was also conducted to assess effects on osteoclastogenesis in mouse bone marrow cells in vitro. Administration of 5–20 µM guanabenz (P<0.01, for RANKL-only treatment), 20 µM clonidine (P<0.05, for RANKL-only treatment) and 20 µM xylazine (P<0.05, for RANKL-only treatment) attenuated RANKL-induced upregulation of NFATc1, TRAP and cathepsin K mRNA. Furthermore, the reductions in these mRNAs by 10 µM guanabenz and 20 µM clonidine in the presence of RANKL were attenuated by 20 µM yohimbine or idazoxan (P<0.05). The administration of 5–20 µM guanabenz (P<0.01, for RANKL-only treatment) and 10–20 µM clonidine (P<0.05, for RANKL-only treatment) also decreased the number of TRAP-positive multi-nucleated osteoclasts. Collectively, the present study demonstrates that α2-ARs may be involved in the regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- Kosuke Hamajima
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hironori Mori
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Shoyoku Yo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan.,Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Kyoko Ishizuka
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Daisuke Kodama
- Laboratory of Neuropharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Takao Hirai
- Laboratory of Medical Resources, School of Pharmacy, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
6
|
Mahmoud MM, Olszewska T, Liu H, Shore DM, Hurst DP, Reggio PH, Lu D, Kendall DA. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs. Mol Pharmacol 2014; 87:197-206. [PMID: 25411367 DOI: 10.1124/mol.114.095471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Teresa Olszewska
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Hui Liu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Derek M Shore
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Dow P Hurst
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Patricia H Reggio
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Dai Lu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| | - Debra A Kendall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut (M.M.M.); Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (T.O., H. L., D.L.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (D.M.S., D.P.H., P.H.R.); and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (D.A.K.)
| |
Collapse
|
7
|
Antihistaminergics and inverse agonism: potential therapeutic applications. Eur J Pharmacol 2013; 715:26-32. [PMID: 23831018 DOI: 10.1016/j.ejphar.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022]
Abstract
The accurate characterization of the molecular mechanisms involved in the action of receptor ligands is important for their appropriate therapeutic use and safety. It is well established that ligands acting at the histamine system currently used in the clinic exert their actions by specifically antagonizing G-protein coupled H1 and H2 receptors. However, most of these ligands, assumed to be neutral antagonists, behave as inverse agonists displaying negative efficacy in experimental systems. This suggests that their therapeutic actions may involve not only receptor blockade, but also the decrease of spontaneous receptor activity. The mechanisms whereby inverse agonists achieve negative efficacy are diverse. Theoretical models predict at least three possible mechanisms, all of which are supported by experimental observations. Depending on the mechanism of action engaged, the inverse agonist could interfere specifically with signaling events triggered by unrelated receptors. This possibility opens up new venues to explain the therapeutic actions of inverse agonists of the histamine receptor and perhaps new therapeutic applications.
Collapse
|
8
|
Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins 2013; 81:1304-17. [PMID: 23408552 DOI: 10.1002/prot.24264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/21/2013] [Accepted: 01/21/2013] [Indexed: 11/09/2022]
Abstract
The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt-bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt-bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt-bridge resulted in substantial increase in G-protein coupling activity and reduced thermal stability relative to the wild-type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt-bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt-bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | |
Collapse
|
9
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB1/2 receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma—a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug–receptor interaction and has immense untapped therapeutic potential.
Collapse
|
10
|
Sanders JD, Happe HK, Bylund DB, Murrin LC. Changes in postnatal norepinephrine alter alpha-2 adrenergic receptor development. Neuroscience 2011; 192:761-72. [PMID: 21742019 PMCID: PMC3166411 DOI: 10.1016/j.neuroscience.2011.06.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Alpha-2 adrenergic receptors (A2AR) regulate multiple brain functions and are enriched in developing brain. Studies demonstrate norepinephrine (NE) plays a role in regulating brain maturation, suggesting it is important in A2AR development. To investigate this we employed models of NE absence and excess during brain development. For decreases in NE we used N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4), a specific noradrenergic neurotoxin. Increased noradrenergic terminal density was produced by methylazoxymethanol acetate (MAM) treatment. A2AR density was assayed with [(3)H]RX821002 autoradiography. DSP4 lesions on postnatal day (PND) 3 produce A2AR decreases in many regions by PND 5. A2AR recover to control levels by PND 15 and 25 and there is no further change in total receptor density. We also assayed A2AR in brains lesioned with DSP4 on PND 13, 23, 33 and 43 and harvested 22 days post-lesion. A2AR levels remain similar to control at each of these time points. We examined A2AR functionality and high affinity state with epinephrine-stimulated [(35)S]GTPγS and [(125)I]p-iodoclonidine autoradiography, respectively. On PND 25, control animals and animals lesioned with DSP4 on PND 3 have similar levels of [(35)S]GTPγS incorporation and no change in high affinity state. This is in contrast to increases in A2AR high affinity state produced by DSP4 lesions of mature brain. We next investigated A2AR response to increases in norepinephrine levels produced by MAM. In contrast to DSP4 lesions, increasing NE results in a large increase in A2AR. Animals treated with MAM on gestational day 14 had cortical [(3)H]RX821002 binding 100-200% greater than controls on PND 25, 35, 45, 55 and 65. These data indicate that NE regulation of A2AR differs in developing and mature brain and support the idea that NE regulates A2AR development and this has long term effects on A2AR function.
Collapse
Affiliation(s)
- Jeff D. Sanders
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - H. Kevin Happe
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131
| | - David B. Bylund
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
| | - L. Charles Murrin
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800
- Department of Neurological Sciences, 982045 Nebraska Medical Center, Omaha, NE 68198-2045
| |
Collapse
|
11
|
Abstract
Increasing numbers of compounds, previously classified as antagonists, were shown to inhibit this spontaneous or constitutive receptor activity, instead of leave it unaffected as expected for a formal antagonist. In addition, some other antagonists did not have any effect by themselves, but prevented the inhibition of constitutive activity induced by thought-to-be antagonists. These thought-to-be antagonists with negative efficacy are now known as "inverse agonists." Inverse agonism at βAR has been evidenced for both subtypes in wild-type GPCRs systems and in engineered systems with high constitutive activity. It is important to mention that native systems are of particular importance for analyzing the in vivo relevance of constitutive activity because these systems have physiological expression levels of target receptors. Studies of inverse agonism of β blockers in physiological setting have also evidenced that pathophysiological conditions can affect pharmacodynamic properties of these ligands. To date, hundreds of clinically well-known drugs have been tested and classified for this property. Prominent examples include the beta-blockers propranolol, alprenolol, pindolol, and timolol used for treating hypertension, angina pectoris, and arrhythmia that act on the β₂ARs, metoprolol, and bisoprolol used for treating hypertension, coronary heart disease, and arrhythmias by acting on β₁ARs. Inverse agonists seem to be useful in the treatment of chronic disease characterized by harmful effects resulting from β₁AR and β₂AR overactivation, such as heart failure and asthma, respectively.
Collapse
Affiliation(s)
- Carlos A Taira
- Cátedra de Farmacología, Instituto de Fisiopatología y Bioquímica Clínica, Universidad de Buenos Aires, CONICET, Junín 956, Buenos Aires, Argentina
| | | | | |
Collapse
|
12
|
Bruzzone A, Piñero CP, Castillo LF, Sarappa MG, Rojas P, Lanari C, Lüthy IA. Alpha2-adrenoceptor action on cell proliferation and mammary tumour growth in mice. Br J Pharmacol 2008; 155:494-504. [PMID: 18604234 DOI: 10.1038/bjp.2008.278] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer, the most common cancer in women in most countries, is a highly stressful disease. Catecholamines released during stress bind to adrenoceptors and we have recently described alpha(2)-adrenoceptors in human breast cell lines, linked to enhanced cell proliferation. The purpose was to assess the in vivo effects of compounds acting on alpha(2)-adrenoceptors in a reliable model of breast cancer. EXPERIMENTAL APPROACH The expression of alpha(2)-adrenoceptors was confirmed by immunocytochemistry, immunofluorescence and reverse transcription-PCR in the mouse mammary tumour cell line MC4-L5. Proliferation was assessed by [(3)H]thymidine incorporation and tumours were measured daily. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling. KEY RESULTS Incubation for 2 days with alpha(2)-adrenoceptor agonists (clonidine and dexmedetomidine) significantly enhanced proliferation of the mouse mammary tumour cell line MC4-L5. These agonists also significantly stimulated tumour growth of the progestin-dependent tumour C4-HD even in the presence of medroxyprogesterone acetate (MPA). In every tumour tested (C4-HD, CC4-2-HD and CC4-3-HI), regardless of MPA sensitivity, clonidine significantly enhanced tumour growth in the absence of MPA. The alpha(2)-adrenoceptor antagonists, yohimbine and rauwolscine, completely reversed the effects of clonidine. However, the group receiving yohimbine alone showed a nonsignificant but constant increase in tumour growth, whereas rauwolscine alone diminished tumour growth significantly, behaving as a reverse agonist. In CC4-3-HI tumours, rauwolscine treatment enhanced apoptosis and diminished the mitotic index, whereas clonidine had the inverse effect. CONCLUSIONS AND IMPLICATIONS Alpha(2)-adrenoceptor agonists enhanced tumour growth and rauwolscine behaved in vivo as a reverse agonist, suggesting that it may be tested for adjuvant treatment.
Collapse
Affiliation(s)
- A Bruzzone
- Hormones and Cancer Laboratory, Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Sansuk K, Balog CIA, van der Does AM, Booth R, de Grip WJ, Deelder AM, Bakker RA, Leurs R, Hensbergen PJ. GPCR proteomics: mass spectrometric and functional analysis of histamine H1 receptor after baculovirus-driven and in vitro cell free expression. J Proteome Res 2008; 7:621-9. [PMID: 18177001 DOI: 10.1021/pr7005654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human histamine H1 Receptor (hH1R) belongs to the family of G-protein coupled receptors (GPCRs), an attractive and proven class of drug targets in a wide range of therapeutic areas. However, due to the low amount of available purified protein and the hydrophobic nature of GPCRs, limited structural information is available on ligand-receptor interaction especially for the transmembrane (TM) domain regions where the majority of ligand-receptor interactions occur. During the last decades, proteomic techniques have increasingly become an important tool to reveal detailed information on the individual GPCR class, including post-translational modifications and characterizations of GPCRs binding pocket. Herein, we report the successful functional production and mass spectrometric characterization of the hH1R, after baculovirus-driven and in vitro cell-free expression. Using only MALDI-ToF, sequence coverage of more than 80%, including five hydrophobic TM domains was achieved. Moreover, we have identified an asparagine residue in the hH1R protein that is subject to N-linked glycosylation. This information would be valuable for drug discovery efforts by allowing us to further study H1R-ligand interactions using histaminergic ligands that covalently bind the hH1R, and eventually revealing binding sites of hH1R and other GPCRs.
Collapse
Affiliation(s)
- Kamonchanok Sansuk
- Leiden/Amsterdam Center for Drug Research (LACDR), Vrije Universiteit Amsterdam, Department of Medicinal Chemistry, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br J Pharmacol 2008; 153:1353-63. [PMID: 18223670 DOI: 10.1038/sj.bjp.0707672] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Measurements of affinity and efficacy are fundamental for work on agonists both in drug discovery and in basic studies on receptors. In this review I wish to consider methods for measuring affinity and efficacy at G protein coupled receptors (GPCRs). Agonist affinity may be estimated in terms of the dissociation constant for agonist binding to a receptor using ligand binding or functional assays. It has, however, been suggested that measurements of affinity are always contaminated by efficacy so that it is impossible to separate the two parameters. Here I show that for many GPCRs, if receptor/G protein coupling is suppressed, experimental measurements of agonist affinity using ligand binding (K(obs)) provide quite accurate measures of the agonist microscopic dissociation constant (KA). Also in pharmacological functional studies, good estimates of agonist dissociation constants are possible. Efficacy can be quantitated in several ways based on functional data (maximal effect of the agonist (E(max)), ratio of agonist dissociation constant to concentration of agonist giving half maximal effect in functional assay (K(obs)/EC50), a combined parameter E(max)K(obs)/EC50). Here I show that E(max)K(obs)/EC50 provides the best assessment of efficacy for a range of agonists across the full range of efficacy for full to partial agonists. Considerable evidence now suggests that ligand efficacy may be dependent on the pathway used to assess it. The efficacy of a ligand may, therefore, be multidimensional. It is still, however, necessary to have accurate measures of efficacy in different pathways.
Collapse
|
15
|
Kapur A, Samaniego P, Thakur GA, Makriyannis A, Abood ME. Mapping the structural requirements in the CB1 cannabinoid receptor transmembrane helix II for signal transduction. J Pharmacol Exp Ther 2008; 325:341-8. [PMID: 18174385 DOI: 10.1124/jpet.107.133256] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amino acid residues in the transmembrane domains of the CB(1) receptor are important for ligand recognition and signal transduction. We used site-directed mutagenesis to identify the role of two novel and adjacent residues in the transmembrane helix II domain, Ile2.62 and Asp2.63. We investigated the role of the conserved, negatively charged aspartate at position 2.63 in cannabinoid receptor (CB(1)) function by substituting it with asparagine (D2.63N) and glutamate (D2.63E). In addition, the effect of the mutant I2.62T alone and in combination with D2.63N (double mutant) on the affinity and potency of structurally diverse ligands was investigated. Recombinant human CB(1) receptors, stably expressed in human embryonic kidney 293 cells, were assayed for ligand affinity and agonist-stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding. The charge-conserved mutant D2.63E behaved similar to wild type. The charge-neutralization mutation D2.63N attenuated the potency of (-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl] cyclohexan-1-ol (CP,55940), (R)-(-)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN55212-2), (-)-11beta-hydroxy-3-(1',1'-dimethylheptyl) hexahydrocannabinol (AM4056), and (-)-11-hydroxyldimethylheptyl-Delta(8)-tetrahydrocannabinol (HU210) for the stimulation of GTPgammaS binding, without affecting their binding affinities. Likewise, the I2.62T mutant selectively altered agonist potency without altering agonist affinity. It was surprising to note that the double mutant (I2.62T-D2.63N) displayed a drastic and synergistic increase (by approximately 50-fold) in the EC(50) for agonist-mediated activation. The profound loss of function in the I2.62T-D2.63N double mutant suggests that, although these residues are not obligatory for agonist recognition, they play a synergistic and crucial role in modulating signal transduction.
Collapse
Affiliation(s)
- Ankur Kapur
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
16
|
Reith MEA, Zhen J, Chen N. The importance of company: Na+ and Cl- influence substrate interaction with SLC6 transporters and other proteins. Handb Exp Pharmacol 2007:75-93. [PMID: 16722231 DOI: 10.1007/3-540-29784-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
SLC6 transporters, which include transporters for gamma-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl- for their function, and this review covers the interaction between transporters of this family with Na+ and Cl- from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl- with substrate (SLClA2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl-, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl- movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.
Collapse
Affiliation(s)
- M E A Reith
- Department of Biological Sciences, Illinois State University, Normal, IL 61656, USA.
| | | | | |
Collapse
|
17
|
Nelson CP, Challiss RAJ. “Phenotypic” pharmacology: The influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol 2007; 73:737-51. [PMID: 17046719 DOI: 10.1016/j.bcp.2006.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/31/2006] [Accepted: 09/06/2006] [Indexed: 11/25/2022]
Abstract
A central dogma of G protein-coupled receptor (GPCR) pharmacology has been the concept that unlike agonists, antagonist ligands display equivalent affinities for a given receptor, regardless of the cellular environment in which the affinity is assayed. Indeed, the widespread use of antagonist pharmacology in the classification of receptor expression profiles in vivo has relied upon this 'antagonist assumption'. However, emerging evidence suggests that the same gene-product may exhibit different antagonist pharmacological profiles, depending upon the cellular context in which it is expressed-so-called 'phenotypic' profiles. In this commentary, we review the evidence relating to some specific examples, focusing on adrenergic and muscarinic acetylcholine receptor systems, where GPCR antagonist/inverse agonist pharmacology has been demonstrated to be cell- or tissue-dependent, before going on to examine some of the ways in which the cellular environment might modulate receptor pharmacology. In the majority of cases, the cellular factors responsible for generating phenotypic profiles are unknown, but there is substantial evidence that factors, including post-transcriptional modifications, receptor oligomerization and constitutive receptor activity, can influence GPCR pharmacology and these concepts are discussed in relation to antagonist phenotypic profiles. A better molecular understanding of the impact of cell background on GPCR antagonist pharmacology is likely to provide previously unrealized opportunities to achieve greater specificity in new drug discovery candidates.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cell Physiology & Pharmacology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|
18
|
Chen M, Celik A, Georgeson KE, Harmon CM, Yang Y. Molecular basis of melanocortin-4 receptor for AGRP inverse agonism. ACTA ACUST UNITED AC 2006; 136:40-9. [PMID: 16820227 DOI: 10.1016/j.regpep.2006.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 04/16/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We have investigated receptor structural components of the melanocortin-4 receptor (MC4R) responsible for ligand-dependent inverse agonism. We utilized agouti-related protein (AGRP), an inverse agonist which reduces MC4R basal cAMP production, as a tool to determine the molecular mechanism. We tested a series of chimeric receptors and utilized MC4R and MC1R as templates, in which AGRP is an inverse agonist for MC4R but not for MC1R. Our results indicate that replacements of the extracellular loops 1, 2 and 3 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity. However, replacement of the N terminus of MC4R with the same region of MC1R decreases AGRP inverse agonism. Replacement of transmembrane domains 3, 4, 5 and 6 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity but mutation of D90A in transmembrane 2 (TM2) and D298A in TM7 abolished AGRP inverse activity. Deletion of the distal MC4R C terminus fails to maintain AGRP mediated reduction in basal cAMP production although it maintains NDP-MSH mediated cAMP production. In conclusion, our results indicate that the N terminus and the distal C terminus of MC4R do appear to play important roles in AGRP inverse agonism but not NDP-MSH mediated receptor activation. Our results also indicate that the residues D90 in TM2 and D298 in TM7 of hMC4R are involved in not only NDP-MSH mediated receptor activation but also AGRP mediated inverse agonism.
Collapse
Affiliation(s)
- Min Chen
- Department of Surgery, University of Alabama at Birmingham, 35205, USA
| | | | | | | | | |
Collapse
|
19
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
20
|
Dowling MR, Willets JM, Budd DC, Charlton SJ, Nahorski SR, Challiss RAJ. A Single Point Mutation (N514Y) in the Human M3Muscarinic Acetylcholine Receptor Reveals Differences in the Properties of Antagonists: Evidence for Differential Inverse Agonism. J Pharmacol Exp Ther 2006; 317:1134-42. [PMID: 16489127 DOI: 10.1124/jpet.106.101246] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A single asparagine-to-tyrosine point mutation in the human M muscarinic acetylcholine (mACh) receptor at residue 514 (N514Y) resulted in a marked increase (approximately 300%) in agonist-independent [3H]inositol phosphate ([3H]IPx) accumulation compared with the response observed for the wild-type (WT) receptor. All the antagonists tested were able to inhibit both the WT-M3 and (N514Y)M3 mACh receptor-mediated basal [3H]IPx accumulation in a concentration-dependent manner. However, significant differences in both potency and binding affinity were only seen for those antagonists that possess greater receptor affinity. Despite being transfected with equivalent amounts of cDNA, cells expressed the (N514Y)M3 mACh receptor at levels that were only 25 to 30% of those seen for the WT receptor. Differences in the ability of chronic antagonist exposure to up-regulate (N514Y)M3 mACh receptor expression levels were also seen, with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) producing only 50% of the receptor up-regulation produced by atropine or pirenzepine. Basal phosphorylation of the (N514Y)M3 mACh receptor was approximately 100% greater than that seen for the WT-M3 receptor. The ability of antagonists to decrease basal (N514Y)M3 mACh receptor phosphorylation revealed differences in inverse-agonist efficacy. Atropine, 4-DAMP, and pirenzepine all reduced basal phosphorylation to similar levels, whereas methoctramine, a full inverse agonist with respect to reducing agonist-independent [3H]IPx accumulation, produced no significant attenuation of basal receptor phosphorylation. This study shows that mACh receptor inverse agonists can exhibit differential signaling profiles, which are dependent on the specific pathway investigated, and therefore provides evidence that the molecular mechanism of inverse agonism is likely to be more complex than the stabilization of a single inactive receptor conformation.
Collapse
Affiliation(s)
- Mark R Dowling
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
21
|
Nelson CP, Nahorski SR, Challiss RAJ. Constitutive activity and inverse agonism at the M2 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 2005; 316:279-88. [PMID: 16188951 DOI: 10.1124/jpet.105.094383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction of a single-point mutation (Asn to Tyr) at position 410 at the junction between transmembrane domain 6 and the third extracellular loop of the human M(2) muscarinic acetylcholine (mACh) receptor generated a mutant receptor (N410Y) that possesses many of the hallmark features of a constitutively active mutant receptor. These included enhanced agonist binding affinity and potency, in addition to agonist-independent accumulation of [(3)H]inositol phosphates in cells coexpressing the chimeric Galpha(qi5) protein and the N410Y mutant M(2) mACh receptor. Constitutive activity was sensitive to inhibition by a range of muscarinic ligands, including those used clinically in the management of overactive bladder (oxybutynin, tolterodine, and darifenacin), indicating that these ligands behave as inverse agonists at the M(2) mACh receptor. Long-term (24-h) treatment of Chinese hamster ovary cells expressing the N410Y mutant M(2) mACh receptor with certain mACh receptor inverse agonists (atropine, darifenacin, and pirenzepine) elicited a concentration-dependent up-regulation of cell surface receptor expression. However, not all ligands possessing negative efficacy in the [(3)H]inositol phosphate accumulation assays were capable of significantly up-regulating receptor expression, perhaps indicating a spectrum of negative efficacies among ligands traditionally defined as mACh receptor antagonists. Finally, structurally distinct agonists exhibited differences in their relative potencies for the activation of Galpha(i/o) versus Galpha(s), consistent with agonist-directed trafficking of signaling at the N410Y mutant, but not at the wild-type M(2) mACh receptor. This indicates that the N410Y mutation of the M(2) mACh receptor alters receptor-G-protein coupling in an agonist-dependent manner, in addition to generating a constitutively active receptor phenotype.
Collapse
Affiliation(s)
- Carl P Nelson
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
22
|
Matsumoto K, Yoshida M, Andersson KE, Hedlund P. Effects in vitro and in vivo by apomorphine in the rat corpus cavernosum. Br J Pharmacol 2005; 146:259-67. [PMID: 16025145 PMCID: PMC1576267 DOI: 10.1038/sj.bjp.0706317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/03/2005] [Accepted: 05/24/2005] [Indexed: 11/10/2022] Open
Abstract
The study was performed to clarify if apomorphine at the level of the rat corpus cavernosum can produce erectile responses or interfere with nerve-induced penile erection. Apomorphine (10(-9)-10(-4) M) exhibited a 10-fold higher potency to relax phenylephrine (Phe)- than endothelin-1 (ET-1)-induced contractions. Relaxant effects of apomorphine in Phe-activated corpus cavernosum did not change tissue levels of cyclic nucleotides, and were unaffected by inhibition of the synthesis of nitric oxide, or by inhibition of the soluble guanylate cyclase. Relaxations by apomorphine of ET-1-contracted rat corpus cavernosum were not influenced by alpha2-adrenoceptor blockade (yohimbine, 10(-7) M), or by the dopamine D1-like receptor antagonist SCH 23390 (10(-6) M). Clozapine (10(-6) M), a proposed dopamine D2-like receptor antagonist, partly reduced apomorphine-induced relaxations, and significantly altered the -log IC50 value for apomorphine. Nerve-induced contractions of the rat corpus cavernosum were attenuated by apomorphine in a concentration-dependent and biphasic manner. Yohimbine (10(-7) M) abolished the biphasic concentration-response pattern. SCH 23390 (10(-6) M) attenuated the inhibitory effects of apomorphine on contractions, and significantly altered the -log IC50 value for the compound. In anesthetized rats (50 mg kg(-1) pentobarbital sodium, 10 mg kg(-1) ketamine), intracavernous apomorphine (100, 300, or 1000 nmol) did not have effects on basal cavernous pressure under resting conditions, and did not affect filling or emptying rates, or peak pressures of the rat corpus cavernosum during submaximal activation of the cavernous nerve. In awake rats, apomorphine produced a maximal number of erections at 300 nmol kg(-1). In the rat isolated corpus cavernosum, pre- and postjunctional effects of apomorphine appear to involve dopamine D1- and D2-like receptors, as well as alpha-adrenoceptors. At relevant systemic doses of apomorphine, peripheral effects of the compound are unlikely to contribute to its proerectile effects in rats.
Collapse
Affiliation(s)
- Kenshi Matsumoto
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
- Department of Urology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masaki Yoshida
- Department of Urology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Karl-Erik Andersson
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
| | - Petter Hedlund
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, Lund S-221 85, Sweden
| |
Collapse
|
23
|
Soudijn W, van Wijngaarden I, Ijzerman AP. Structure-activity relationships of inverse agonists for G-protein-coupled receptors. Med Res Rev 2005; 25:398-426. [PMID: 15816047 DOI: 10.1002/med.20031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been recently established that G-protein-coupled receptors (GPCRs) can be constitutively active, i.e., they can be active in the absence of an agonist. This activity can be inhibited by so-called inverse agonists. For a number of GPCRs, such inverse agonists have been developed and studied, now enabling for the first time a study into their structure-activity relationships.
Collapse
Affiliation(s)
- Willem Soudijn
- Leiden/Amsterdam Center for Drug Research, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | | |
Collapse
|
24
|
Roberts DJ, Strange PG. Mechanisms of inverse agonist action at D2 dopamine receptors. Br J Pharmacol 2005; 145:34-42. [PMID: 15735658 PMCID: PMC1576109 DOI: 10.1038/sj.bjp.0706073] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.
Collapse
Affiliation(s)
- David J Roberts
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ
| | - Philip G Strange
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ
- Author for correspondence:
| |
Collapse
|
25
|
Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ. Molecular basis of inverse agonism in a G protein–coupled receptor. Nat Chem Biol 2005; 1:25-8. [PMID: 16407989 DOI: 10.1038/nchembio705] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 04/14/2005] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) recognize a wide variety of extracellular ligands to control diverse physiological processes. Compounds that bind to such receptors can either stimulate, fully or partially (full or partial agonists), or reduce (inverse agonists) the receptors' basal activity and receptor-mediated signaling. Various studies have shown that the activation of receptors through binding of agonists proceeds by conformational changes as the receptor switches from a resting to an active state leading to G protein signaling. Yet the molecular basis for differences between agonists and inverse agonists is unclear. These different classes of compounds are assumed to switch the receptors' conformation in distinct ways. It is not known, however, whether such switching occurs along a linear 'on-off' scale or whether agonists and inverse agonists induce different switch mechanisms. Using a fluorescence-based approach to study the alpha2A-adrenergic receptor (alpha(2A)AR), we show that inverse agonists are differentiated from agonists in that they trigger a very distinct mode of a receptor's switch. This switch couples inverse agonist binding to the suppression of activity in the receptor.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.
| | | | | | | |
Collapse
|
26
|
Fitzsimons CP, Monczor F, Fernández N, Shayo C, Davio C. Mepyramine, a histamine H1 receptor inverse agonist, binds preferentially to a G protein-coupled form of the receptor and sequesters G protein. J Biol Chem 2004; 279:34431-9. [PMID: 15192105 DOI: 10.1074/jbc.m400738200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accurate characterization of the molecular mechanisms of the action of ligands is an extremely important issue for their appropriate research, pharmacological, and therapeutic uses. In view of this fact, the aim of the present work was to investigate the mechanisms involved in the actions of mepyramine at the guinea pig H(1) receptor stably expressed in Chinese hamster ovary cells. We found that mepyramine is able to decrease the basal constitutive activity of the guinea pig H(1) receptor, to bind with high affinity to a G(q/11) protein-coupled form of the receptor and to promote a G protein-coupled inactive state of the H(1) receptor that interferes with the G(q/11)-mediated signaling of the endogenously expressed ATP receptor, as predicted by the Cubic Ternary Complex Model of receptor occupancy. The effect of mepyramine on ATP-induced signaling was specifically neutralized by Galpha(11) overexpression, indicating that mepyramine is able to reduce G protein availability for other non-related receptors associated with the same signaling pathway. Finally, we found a loss of mepyramine efficacy in decreasing basal levels of intracellular calcium at high Galpha(11) expression levels, which can be theoretically explained in terms of high H(1) receptor constitutive activity. The whole of the present work sheds new light on H(1) receptor pharmacology and the mechanisms H(1) receptor inverse agonists could use to exert their observed negative efficacy.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | | | | | | | | |
Collapse
|
27
|
Roberts DJ, Lin H, Strange PG. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors. Biochem Pharmacol 2004; 67:1657-65. [PMID: 15081865 DOI: 10.1016/j.bcp.2003.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/17/2003] [Indexed: 11/17/2022]
Abstract
This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.
Collapse
Affiliation(s)
- David J Roberts
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK
| | | | | |
Collapse
|
28
|
Chen N, Zhen J, Reith MEA. Mutation of Trp84 and Asp313 of the dopamine transporter reveals similar mode of binding interaction for GBR12909 and benztropine as opposed to cocaine. J Neurochem 2004; 89:853-64. [PMID: 15140185 DOI: 10.1111/j.1471-4159.2004.02386.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The different psychomotor-stimulant effects of cocaine, GBR12909, and benztropine may partially stem from their different molecular actions on the dopamine transporter (DAT). To explore this possibility, we examined binding of these inhibitors to mutated DATs with altered Na(+) dependence of DAT activities and with enhanced binding of a cocaine analog, [(3)H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (CFT). In [(3)H]CFT competition assays with intact cells, the mutation-induced change in the ability of Na(+) to enhance the apparent affinity of CFT, cocaine, GBR12909, and benztropine was inhibitor-independent. Thus, for the four inhibitors, the curve of [Na(+)] versus apparent ligand affinity was steeper at W84L compared with wild type, shallower at D313N, and flat at W84LD313N. At each mutant, the apparent affinity of CFT and cocaine was enhanced regardless of whether Na(+) was present. However, the apparent affinity of GBR12909 and benztropine for W84L was reduced in the absence of Na(+) but near normal in the presence of 130 mm Na(+), and that for D313N and W84LD313N was barely changed. At the single mutants, the alterations in Na(+) dependence and apparent affinity of the four inhibitors were comparable between [(3)H]CFT competition assays and [(3)H]dopamine uptake inhibition assays. These results demonstrate that DAT inhibitors producing different behavioral profiles can respond in an opposite way when residues of the DAT protein are mutated. For GBR12909 and benztropine, their cocaine-like changes in Na(+) dependence suggest that they prefer a DAT state similar to that for cocaine. However, their cocaine-unlike changes in apparent affinity argue that they, likely via their diphenylmethoxy moiety, share DAT binding epitopes that are different from those for cocaine.
Collapse
Affiliation(s)
- Nianhang Chen
- Department of Psychiatry, New York University School of Medicine, New York 10016, USA.
| | | | | |
Collapse
|
29
|
Brink CB, Harvey BH, Bodenstein J, Venter DP, Oliver DW. Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology. Br J Clin Pharmacol 2004; 57:373-87. [PMID: 15025734 PMCID: PMC1884481 DOI: 10.1111/j.1365-2125.2003.02046.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 11/03/2003] [Indexed: 12/23/2022] Open
Abstract
PROBLEM STATEMENT During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future. SCOPE AND CONTENTS OF REVIEW In this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor 'cross-talk' and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications. CONCLUSIONS It is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.
Collapse
Affiliation(s)
- C B Brink
- Division of Pharmacology, School of Pharmacy, Potchefstroom University for CHE, Potchefstroom, South Africa.
| | | | | | | | | |
Collapse
|
30
|
Kenakin T. Efficacy as a Vector: the Relative Prevalence and Paucity of Inverse Agonism. Mol Pharmacol 2004; 65:2-11. [PMID: 14722230 DOI: 10.1124/mol.65.1.2] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This article describes the expected phenotypic behavior of all types of ligands in constitutively active receptor systems and, in particular, the molecular mechanisms of inverse agonism. The possible physiological relevance of inverse agonism also is discussed. Competitive antagonists with the molecular property of negative efficacy demonstrate inverse agonism in constitutively active receptor systems. This is a phenotypic behavior that can only be observed in the appropriate assay; a lack of observed inverse agonism is evidence that the ligand does not possess negative efficacy only if it can be shown that constitutive receptor activity is present. In the absence of constitutive activity, inverse agonists behave as simple competitive antagonists. A survey of 105 articles on the activity of 380 antagonists on 73 biological G-protein-coupled receptor targets indicates that, in this sample dataset, 322 are inverse agonists and 58 (15%) are neutral antagonists. The predominance of inverse agonism agrees with theoretical predictions which indicate that neutral antagonists are the minority species in pharmacological space.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Assay Development and Compound Profiling, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
31
|
Brillet K, Kieffer BL, Massotte D. Enhanced spontaneous activity of the mu opioid receptor by cysteine mutations: characterization of a tool for inverse agonist screening. BMC Pharmacol 2003; 3:14. [PMID: 14641935 PMCID: PMC317294 DOI: 10.1186/1471-2210-3-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 12/01/2003] [Indexed: 11/10/2022] Open
Abstract
Background The concept of spontaneous- or constitutive-activity has become widely accepted and verified for numerous G protein-coupled receptors and this ligand-independent activity is also acknowledged to play a role in some pathologies. Constitutive activity has been reported for the mu opioid receptor. In some cases the increase in receptor basal activity was induced by chronic morphine administration suggesting that constitutive activity may contribute to the development of drug tolerance and dependence. Constitutively active mutants represent excellent tools for gathering information about the mechanisms of receptor activation and the possible physiological relevance of spontaneous receptor activity. The high basal level of activity of these mutants also allows for easier identification of inverse agonists, defined as ligands able to suppress spontaneous receptor activity, and leads to a better comprehension of their modulatory effects as well as possible in vivo use. Results Cysteines 348 and 353 of the human mu opioid receptor (hMOR) were mutated into alanines and Ala348,353 hMOR was stably expressed in HEK 293 cells. [35S] GTPγS binding experiments revealed that Ala348,353 hMOR basal activity was significantly higher when compared to hMOR, suggesting that the mutant receptor is constitutively active. [35S] GTPγS binding was decreased by cyprodime or CTOP indicating that both ligands have inverse agonist properties. All tested agonists exhibited binding affinities higher for Ala348,353 hMOR than for hMOR, with the exception of endogenous opioid peptides. Antagonist affinity remained virtually unchanged except for CTOP and cyprodime that bound the double mutant with higher affinities. The agonists DAMGO and morphine showed enhanced potency for the Ala348,353 hMOR receptor in [35S] GTPγS experiments. Finally, pretreatment with the antagonists naloxone, cyprodime or CTOP significantly increased Ala348,353 hMOR expression. Conclusion Taken together our data indicate that the double C348/353A mutation results in a constitutively active conformation of hMOR that is still activated by agonists. This is the first report of a stable CAM of hMOR with the potential to screen for inverse agonists.
Collapse
Affiliation(s)
- Karl Brillet
- Département des Récepteurs et Protéines Membranaires, UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, F-67400 Illkirch-Graffenstaden, France
| | - Brigitte L Kieffer
- Département des Récepteurs et Protéines Membranaires, UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, F-67400 Illkirch-Graffenstaden, France
- IGBMC, UMR 7104, F-67404 Illkirch-Graffenstaden cedex, France
| | - Dominique Massotte
- Département des Récepteurs et Protéines Membranaires, UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, F-67400 Illkirch-Graffenstaden, France
- IGBMC, UMR 7104, F-67404 Illkirch-Graffenstaden cedex, France
| |
Collapse
|
32
|
Takahashi K, Tokita S, Kotani H. Generation and characterization of highly constitutive active histamine H3 receptors. J Pharmacol Exp Ther 2003; 307:213-8. [PMID: 12954820 DOI: 10.1124/jpet.103.053249] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Constitutive activation of G-protein-coupled receptors is a well recognized phenomenon, and G-protein-coupled receptor antagonists have been found to possess inverse agonist activity. Constitutive activation of histamine H3 receptor is recently documented in in vivo as well as in recombinant receptor systems in vitro. Several H3 antagonists have been shown to act as inverse agonists and such profiles of H3 antagonists have been implicated in their pharmacological functions. Here we report the construction and characterization of a highly constitutive active H3 receptor (MT6), in which the 357 alanine residue was converted to lysine (A357K). We generated a series of mutated H3 receptors and their functions were examined in human embryonic kidney (HEK) 293 cells. Among them, induced mutation at the amino acid 357 position (A357K) showed a dramatically enhanced response to thioperamide-induced cAMP accumulation compared with the cells expressing wild-type (WT) H3 receptors, suggesting that the mutation rendered receptors to high constitutive activity. We further characterized by ligand binding assays using membrane fractions, and Ki values of imetit (agonist) and proxyfan (partial agonist) against the MT6 receptors were lower compared with those observed in WT H3 receptors. In contrast, H3 antagonists (thioperamide, ciproxifan, and GT2016) with inverse agonism displayed increased Ki values against the MT6 receptors (2.5- to 5.8-fold), demonstrating more a prominent effect of inverse agonists to the constitutive active receptor. Taken together, these data suggested that A357K mutation in the H3 receptor increased the population of active state receptors that preferably binds to agonists than inverse agonists, which could be termed as a constitutively active mutant of H3 receptor.
Collapse
Affiliation(s)
- Kazuhiko Takahashi
- Banyu Tsukuba Research Institute in Collaboration with Merck Research Laboratories, Ibaraki, Japan
| | | | | |
Collapse
|
33
|
Villazón M, Enguix MJ, Tristán H, Honrubia MA, Brea J, Maayani S, Cadavid MI, Loza MI. Different pharmacological properties of two equipotent antagonists (clozapine and rauwolscine) for 5-HT2B receptors in rat stomach fundus. Biochem Pharmacol 2003; 66:927-37. [PMID: 12963479 DOI: 10.1016/s0006-2952(03)00426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
On the basis of the previously demonstrated constitutive activity in natural systems and the possibility of specific ligand-induced conformations, the aims of this study were: (i) to characterize the effects of two competitive antagonists (rauwolscine, RAU and clozapine, CLO) with very similar potencies for 5-HT(2B) receptors in a natural system (rat stomach fundus), and (ii) to evaluate a new method for detecting ligand-specific generated conformations through the study of the effects of RAU and CLO in 5-HT efficacy and in the time course of the response to the agonists. RAU and CLO behaved as competitive antagonists and showed similar potencies (pA(2) 7.56+/-0.25 and 7.50+/-0.30, respectively). However, RAU displayed greater efficacy than CLO in relaxing basal tension (10 microM CLO represented 64+/-6% of 10 microM RAU-induced relaxation). CLO partially reverted RAU-induced relaxation and RAU promoted an additional relaxation of maximal CLO-induced relaxation. This may indicate different degrees of inverse agonism. RAU also was more effective in generating insurmountable antagonism after long-term incubation (>3 hr) and modified the time course of the 5-HT(2B) response to 5-HT; conversely, CLO did not affect the time course of this response. This suggests that classical competitive antagonists may generate different specific conformational states and differential effects on receptor system regulation.
Collapse
Affiliation(s)
- María Villazón
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, Campus Sur, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Ge H, Scheinin M, Kallio J. Constitutive precoupling to G(i) and increased agonist potency in the alpha(2B)-adrenoceptor. Biochem Biophys Res Commun 2003; 306:959-65. [PMID: 12821136 DOI: 10.1016/s0006-291x(03)01094-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human alpha(2B)-adrenoceptor (alpha(2B)-AR) was mutated by substituting the D(3.49) aspartate in position 109 with an alanine (alpha(2B)-D109A) in the conserved DRY sequence at the cytoplasmic face of TM3. We studied the effects of the mutation on agonist binding and on receptor activation in CHO cells, including possible inverse agonism monitored by measuring intracellular Ca(2+) concentrations ([Ca(2+)](i)). The mutated receptor had increased binding affinity for agonists, especially dexmedetomidine (3.8-fold). The increased affinity was abolished by pretreatment of the cells with pertussis toxin. The mutation produced constitutive receptor activity evidenced as increased basal [Ca(2+)](i) and increased potency and efficacy of agonists to elicit Ca(2+) responses. The imidazoline derivative RX821002 functioned as an inverse agonist only through the alpha(2B)-D109A, reducing [Ca(2+)](i). The results thus indicate that this mutation causes constitutive receptor-G(i)-protein precoupling, and that the D(3.49) aspartate residue of the DRY motif is involved in controlling coupled and uncoupled conformations of alpha(2B)-AR.
Collapse
Affiliation(s)
- Huifang Ge
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, Fin-20520, Turku, Finland
| | | | | |
Collapse
|
36
|
Pauwels PJ, Rauly I, Wurch T. Dissimilar pharmacological responses by a new series of imidazoline derivatives at precoupled and ligand-activated alpha 2A-adrenoceptor states: evidence for effector pathway-dependent differential antagonism. J Pharmacol Exp Ther 2003; 305:1015-23. [PMID: 12649300 DOI: 10.1124/jpet.102.048215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas agonist-directed differential signaling at a single receptor subtype has become an accepted pharmacological concept, distinct behaviors by ligands that are assumed to be antagonists is less documented. The intrinsic activity and capacity of antagonism for a new series of imidazoline-derived adrenergic ligands analogous to dexefaroxan were investigated by measuring two distinct signaling pathways at the recombinant human alpha 2A-adrenoceptor (alpha 2A AR): 1) pertussis toxin-resistant guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding responses mediated by either a recombinant G alpha oCys351Ile or G alpha i2Cys352Ile protein in CHO-K1 cells, and 2) inhibition of cAMP formation in a stably transfected C6-glial cell line. Ligands could be differentiated as inverse agonists [i.e., 2-(4-methoxy-2-ethyl-2,3-dihydrobenzofuran-2-yl)-4,5-dihydro-1H-imidazole; RX 851062], neutral antagonists [i.e., 2-(4-hydroxy-2-ethyl-2,3-dihydrobenzofuran-2-yl)-4,5-dihydro-1H-imidazole; RX 851057], partial [i.e., 2-(4-chloro-2,3-dihydrobenzofuran-2-yl)-4,5-dihydro-1H-imidazole; RX 821008], and high-efficacy [i.e., 2-(6,7-dichloro-2,3-dihydrobenzofuran-2-yl)-4,5-dihydro-1H-imidazole; RX 821010] agonists at a precoupled alpha 2A AR state in the copresence of a G alpha oCys351Ile protein but not G alpha i2Cys352Ile protein by monitoring [35S]GTP gamma S binding responses. Neither positive nor negative efficacy was observed for these compounds by monitoring the adenylate cyclase pathway at a presumably low-affinity alpha 2A AR state. The capacity of the dexefaroxan analogs to antagonize the (-)-epinephrine-mediated [35S]GTP gamma S binding response at a G alpha oCys351Ile protein was inversely correlated with their magnitude of intrinsic activity and unrelated to their ligand binding affinity for the alpha 2A AR. On the other hand, their capacity to antagonize either (-)-epinephrine or 5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline tartrate (UK 14304)-mediated inhibition of forskolin-stimulated cAMP formation was not related with the rank order of antagonist capacity for the (-)-epinephrine-mediated [35S]GTP gamma S binding response. In conclusion, these data demonstrate that certain alpha2 AR ligands that are assumed to be antagonists, may yield dissimilar pharmacological responses, dependent on the investigated agonist-stimulated effector pathway.
Collapse
Affiliation(s)
- Petrus J Pauwels
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, 81106 Castres Cédex, France.
| | | | | |
Collapse
|
37
|
Chung DA, Wade SM, Fowler CB, Woods DD, Abada PB, Mosberg HI, Neubig RR. Mutagenesis and peptide analysis of the DRY motif in the alpha2A adrenergic receptor: evidence for alternate mechanisms in G protein-coupled receptors. Biochem Biophys Res Commun 2002; 293:1233-41. [PMID: 12054508 DOI: 10.1016/s0006-291x(02)00357-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In G protein-coupled receptors (GPCRs), a conserved aspartic acid in the DRY motif at the cytoplasmic end of helix 3 regulates the transition to the active state, while the adjacent arginine is crucial for G protein activation. To examine the functions of these two residues, we made D130I and R131Q mutations in the alpha2A adrenergic receptor (AR). We demonstrate that, unlike other GPCRs, the alpha2A AR is not constitutively activated by the D130I mutation, although the mutation increases agonist affinity. While the R131Q mutation severely disrupts function, it decreases rather than increasing agonist affinity as seen in other GPCRs. We then investigated the molecular effects of the same mutations in a peptide model and showed that Arg131 is not required for peptide-mediated G protein activation. These results indicate that the alpha2A AR does not follow the conventional GPCR mechanistic paradigm with respect to the function of the DRY motif.
Collapse
Affiliation(s)
- Duane A Chung
- Biophysics Research Division, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Pauwels PJ, Rauly I, Wurch T, Colpaert FC. Evidence for protean agonism of RX 831003 at alpha 2A-adrenoceptors by co-expression with different G alpha protein subunits. Neuropharmacology 2002; 42:855-63. [PMID: 12015212 DOI: 10.1016/s0028-3908(01)00201-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intrinsic properties of alpha(2) AR ligands were investigated by measuring two distinct signalling pathways via the alpha(2A) AR protein in CHO-K1 cells: (i) a Ca(2+) response mediated by a promiscuous G(alpha 15) protein; and (ii) a pertussis toxin-resistant [(35)S]GTP gamma S binding response mediated by a G(alpha o)Cys(351)Ile protein. The dexefaroxan analogue RX 831003 was virtually without intrinsic activity at the wt alpha(2A) AR via a G(alpha 15) protein, but induced a partial positive Ca(2+) response [pEC(50): 7.79 (0.17), E(max): 38+/-1% vs (-)-adrenaline] at the mutant Thr(373L)ys alpha(2A) AR. RX 831003 displayed a similar potency (pIC(50): 7.68 (0.21) for both the wt (E(max): -18+/-4%) and Thr(373)Lys alpha(2A) AR (E(max): -19+/-4%) inhibition of basal [(35)S]GTP gamma S binding via a G(alpha o)Cys(351)Ile protein. These data indicate that the alpha(2) AR ligand RX 831003 behaves as a protean agonist at the alpha(2A) AR and that its activity is highly dependent on the co-expressed G(alpha) protein subunit.
Collapse
Affiliation(s)
- P J Pauwels
- Centre de Recherche Pierre Fabre, Department of Cellular and Molecular Biology, 17, avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | | | |
Collapse
|
39
|
Abstract
Many drugs with important therapeutic actions that had been assumed to be antagonists at G-protein-coupled receptors (GPCRs) have been shown to be inverse agonists. For both basic pharmacology and drug design it is important to understand the mechanisms whereby these drugs achieve their effects. It had been assumed that these drugs achieved their effects by stabilizing an inactive state of the receptor (R) at the expense of a partially activated state (R*). In this article, I consider this and other mechanisms that could explain inverse agonist actions, and conclude that more than one mechanism can apply to inverse agonism at GPCRs.
Collapse
Affiliation(s)
- Philip G Strange
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK.
| |
Collapse
|
40
|
Clarke RW, Harris J. RX 821002 as a tool for physiological investigation of alpha(2)-adrenoceptors. CNS DRUG REVIEWS 2002; 8:177-92. [PMID: 12177687 PMCID: PMC6741674 DOI: 10.1111/j.1527-3458.2002.tb00222.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RX 821002 is the 2-methoxy congener of idazoxan. In binding and tissue studies it behaves as a selective antagonist of alpha(2)-adrenoceptors, with at least 5 times greater affinity for these receptors than any other binding site. It does not select between the different types of alpha(2)-receptor. Although this drug probably has no future as a therapeutic agent, it remains a good probe for physiological activity at alpha(2)-adrenoceptors in animal experiments. A particularly useful feature of this compound is its lack of binding at I(1) and I(2) imidazoline receptors. However, it has relatively high affinity for 5-HT(1A) receptors (at which it acts as an antagonist) and a tendency to behave as an inverse agonist at alpha(2A)-adrenoceptors in some cell culture systems. These potential drawbacks may be overcome by careful design of experiments, and the greater selectivity of RX 821002 renders it much superior to yohimbine or idazoxan as a tool for probing physiological actions at alpha(2)-receptors. It can be compared favorably with other selective antagonists such as atipamezole. In physiological studies, RX 821002 augments norepinephrine release in the frontal cortex and increases drinking behavior in rat. In rabbit, intrathecal administration of this drug enhances somatic and autonomic motor outflows, showing that tonic adrenergic descending inhibition of withdrawal reflexes and sympathetic pre-ganglionic neurons is strong in this species. The potentiation of reflexes may be considered a pro-nociceptive action. In the same model, RX 821002 antagonizes the inhibitory effects of the mu opioid fentanyl, indicating that exogenous opioids synergize with endogenously released norepinephrine in the spinal cord. Thus, the careful use of RX 821002 has revealed several aspects of the physiological activity of alpha(2)-adrenoceptors in rabbit spinal cord and rat brain. We recommend that RX 821002 and/or compounds with similar selectivity for alpha(2)-adrenoceptors (atipamezole, MK-912, RS-79948) should be used in preference to yohimbine or idazoxan in all future studies of this type.
Collapse
Affiliation(s)
- R W Clarke
- Division of Animal Physiology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
41
|
Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re15. [PMID: 11604549 DOI: 10.1126/stke.2001.104.re15] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Beta-adrenergic receptor (AR) subtypes are archetypical members of the G protein-coupled receptor (GPCR) superfamily. Whereas both beta1AR and beta2AR stimulate the classic G(s)-adenylyl cyclase-3',5'-adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade, beta2AR couples to both G(s) and G(i) proteins, activating bifurcated signaling pathways. In the heart, dual coupling of the beta2AR to G(s) and G(i) results in compartmentalization of the G(s)-stimulated cAMP signal, thus selectively affecting plasma membrane effectors (such as L-type Ca(2+) channels) and bypassing cytoplasmic target proteins (such as phospholamban and myofilament contractile proteins). More important, the beta2AR-to-G(i) branch delivers a powerful cell survival signal that counters apoptosis induced by the concurrent G(s)-mediated signal or by a wide range of assaulting factors. This survival pathway sequentially involves G(i), G(beta)(gamma), phosphoinositide 3-kinase, and Akt. Furthermore, cardiac-specific transgenic overexpression of betaAR subtypes in mice results in distinctly different phenotypes in terms of the likelihood of cardiac hypertrophy and heart failure. These findings indicate that stimulation of the two betaAR subtypes activates overlapping, but different, sets of signal transduction mechanisms, and fulfills distinct or even opposing physiological and pathophysiological roles. Because of these differences, selective activation of cardiac beta2AR may provide catecholamine-dependent inotropic support without cardiotoxic consequences, which might have beneficial effects in the failing heart.
Collapse
Affiliation(s)
- R P Xiao
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Xiao RP. -Adrenergic Signaling in the Heart: Dual Coupling of the 2-Adrenergic Receptor to Gs and Gi Proteins. Sci Signal 2001. [DOI: 10.1126/scisignal.1042001re15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|