1
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
2
|
Shu G, Lei X, Li G, Zhang T, Wang C, Song A, Yu H, Wang X, Deng X. Ergothioneine suppresses hepatic stellate cell activation via promoting Foxa3-dependent potentiation of the Hint1/Smad7 cascade and improves CCl 4-induced liver fibrosis in mice. Food Funct 2023; 14:10591-10604. [PMID: 37955610 DOI: 10.1039/d3fo03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ergothioneine (EGT) is a bioactive compound derived from certain edible mushrooms. The activation of hepatic stellate cells (HSCs) is critically involved in the etiology of liver fibrosis (LF). Here, we report that in LX-2 HSCs, EGT upregulates the expression of Hint1 and Smad7 and suppresses their activation provoked by TGFβ1. The EGT-triggered inhibition of HSC activation is abolished by knocking down the expression of Hint1. Overexpression of Hint1 increases Smad7 and represses TGFβ1-provoked activation of LX-2 HSCs. In silico predictions unveiled that in the promoter region of the human Hint1 gene, there are two conserved cis-acting elements that have the potential to interact with the transcription factor Foxa3 termed hFBS1 and hFBS2, respectively. The knockdown of Foxa3 obviously declined Hint1 expression at both mRNA and protein levels. Transfection of Foxa3 or EGT treatment increased the activity of the luciferase reporter driven by the Hint1 promoter in an hFBS2-dependent manner. The knockdown of Foxa3 eliminated EGT-mediated upregulation of Hint1 promoter activity. Additionally, EGT triggered the nuclear translocation of Foxa3 without obviously affecting its expression level. Molecular docking analysis showed that EGT has the potential to directly interact with the Foxa3 protein. Moreover, Foxa3 played a critical role in EGT-mediated hepatoprotection. EGT modulated the Foxa3/Hint1/Smad7 signaling in mouse primary HSCs and inhibited their activation. The gavage of EGT considerably relieved CCl4-induced LF in mice. Our data provide new insights into the anti-LF activity of EGT. Mechanistically, EGT triggers the nuclear translocation of Foxa3 in HSCs, which promotes Hint1 transcription and subsequently elevates Smad7.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Murray M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 2023; 62:1365-1392. [PMID: 37731164 DOI: 10.1007/s40262-023-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug-drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Collapse
Affiliation(s)
- Michael Murray
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
4
|
Yamazaki K, Terao C, Takahashi A, Kamatani Y, Matsuda K, Asai S, Takahashi Y. Genome-wide Association Studies Categorized by Class of Antihypertensive Drugs Reveal Complex Pathogenesis of Hypertension with Drug Resistance. Clin Pharmacol Ther 2023; 114:393-403. [PMID: 37151119 DOI: 10.1002/cpt.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Resistant hypertension is defined as uncontrolled blood pressure (BP) despite the use of three or more antihypertensive drugs of different classes. Although genetic factors may greatly contribute to hypertension with resistance to multiple drug classes, more than for general hypertension, its pathogenesis remains unknown. To reveal the genetic background of resistant hypertension, we categorized 32,239 patients whose data were obtained from the BioBank Japan Project, by prescription of 7 classes of antihypertensive drugs and performed genome-wide association studies (GWAS). Our GWAS identified four loci with significant association (P < 5 × 10-8 ): rs6445583 in CACNA1D and rs12308051 in the intergenic region on chromosome 12 for angiotensin II receptor blockers, rs35497065 in FOXA3 for calcium channel blockers, and rs11066280 in HECTD4 for αβ-blockers. Because these loci are known to be susceptibility loci for hypertension and/or BP, our results indicate that resistant hypertension is caused by a combination of excessive BP and drug resistance to each antihypertensive pharmacological class. Furthermore, to investigate the genetic difference between BP traits and the treatment effectiveness of antihypertensive drugs, we performed gene-set analysis and calculated the genetic correlation continuously. Most of the genetic factors were in common between BP traits and antihypertensive effectiveness, but it seems that the genetic architecture of the drug response to antihypertensive treatment is more complicated than BP traits. This corresponds to the well-known mosaic theory of hypertension. Our findings reveal the complex pathogenesis of hypertension with resistance to multiple classes of antihypertensive drugs.
Collapse
Affiliation(s)
- Keiko Yamazaki
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Asai
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
- Division of Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Kondo T, Suzuki I, Chiba T, Tousen Y. Safety assessment of herbal supplement components targeting hepatotoxicity and CYP3A4 induction in cell-based assay using HepG2 cells. J Food Sci 2023; 88:563-573. [PMID: 36524620 DOI: 10.1111/1750-3841.16410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Herbal supplements can cause hepatotoxicity and drug interactions via hepatic cytochrome P-450 (CYP) in some cases. However, there is no simple and stable cell-based assay to conduct a screening for hepatotoxicity and CYP induction. In the present study, we selected 14 components of the herbal supplement based on our previous reports and investigated the safety of the herbal supplement components focusing on toxicity and CYP3A4 induction in a cell-based assay using HepG2. The toxicity of the components was examined by lactate dehydrogenase (LDH) and cell proliferation assays. Then, the CYP3A4 induction of the components were examined by a reporter assay using reporter vectors of CYP3A4. The vector includes the CYP3A4 proximal promoter (CYP3A4PP) and the xenobiotic-responsive enhancer module (XREM) regions. Luteolin (LU) significantly increased LDH activity and decreased cell proliferation activity that suggests LU may cause toxicity in HepG2 cells. Quercetin (QU) increased the transcriptional activity of CYP3A4 (1.5-fold of control) in the reporter assay. However, the induction of QU was slightly in comparison to the validation of the transcriptional activity of CYP3A4 treated with CYP3A4 inducers. The CYP3A4 induction of QU may not involve CYP3A4PP but involves the XREM response. Throughout our results, the method in the present study may be useful for a safety assessment of herbal supplements, primarily focusing on hepatotoxicity and CYP3A4 induction. PRACTICAL APPLICATION: Even though there are problems with herbal supplements, studies related to toxicity are not actively carried out. The present methods may apply to the safety assessment for herbal supplements and be useful for the prevention and verification of health hazards caused by herbal supplements (the summary is shown in Figure S2).
Collapse
Affiliation(s)
- Takashi Kondo
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Ippei Suzuki
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Tsuyoshi Chiba
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Yuko Tousen
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| |
Collapse
|
6
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
7
|
Mazzari ALDA, Lacerda MG, Milton FA, Mulin Montechiari Machado JA, Sinoti SBP, Toullec AS, Rodrigues PM, Neves FDAR, Simeoni LA, Silveira D, Prieto JM. In vitro effects of European and Latin-American medicinal plants in CYP3A4 gene expression, glutathione levels, and P-glycoprotein activity. Front Pharmacol 2022; 13:826395. [PMID: 36278236 PMCID: PMC9579425 DOI: 10.3389/fphar.2022.826395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 μg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris, M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (−48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study.
Collapse
Affiliation(s)
| | | | - Flora Aparecida Milton
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | - Francisco de Assis Rocha Neves
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | | | - Dâmaris Silveira
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | - Jose Maria Prieto
- School of Pharmacy, University College London, London, United Kingdom
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| |
Collapse
|
8
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
9
|
Yan J, Shu M, Li X, Yu H, Chen S, Xie S. Prognostic Score-based Clinical Factors and Metabolism-related Biomarkers for Predicting the Progression of Hepatocellular Carcinoma. Evol Bioinform Online 2020; 16:1176934320951571. [PMID: 33013158 PMCID: PMC7518001 DOI: 10.1177/1176934320951571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor representing more than 90% of primary liver cancer. This study aimed to identify metabolism-related biomarkers with prognostic value by developing the novel prognostic score (PS) model. Transcriptomic profiles derived from TCGA and EBIArray databases were analyzed to identify differentially expressed genes (DEGs) in HCC tumor samples compared with normal samples. The overlapped genes between DEGs and metabolism-related genes (crucial genes) were screened and functionally analyzed. A novel PS model was constructed to identify optimal signature genes. Cox regression analysis was performed to identify independent clinical factors related to prognosis. Nomogram model was constructed to estimate the predictability of clinical factors. Finally, protein expression of crucial genes was explored in different cancer tissues and cell types from the Human Protein Atlas (HPA). We screened a total of 305 overlapped genes (differentially expressed metabolism-related genes). These genes were mainly involved in "oxidation reduction," "steroid hormone biosynthesis," "fatty acid metabolic process," and "linoleic acid metabolism." Furthermore, we screened ten optimal DEGs (CYP2C9, CYP3A4, and TKT, among others) by using the PS model. Two clinical factors of pathologic stage (P < .001, HR: 1.512 [1.219-1.875]) and PS status (P <.001, HR: 2.259 [1.522-3.354]) were independent prognostic predictors by cox regression analysis. Nomogram model showed a high predicted probability of overall survival time, and the AUC value was 0.837. The expression status of 7 proteins was frequently altered in normal or differential tumor tissues, such as liver cancer and stomach cancer samples.We have identified several metabolism-related biomarkers for prognosis prediction of HCC based on the PS model. Two clinical factors were independent prognostic predictors of pathologic stage and PS status (high/low risk). The prognosis prediction model described in this study is a useful and stable method for novel biomarker identification.
Collapse
Affiliation(s)
- Jia Yan
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ming Shu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiang Li
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Hua Yu
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shuhuai Chen
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| | - Shujie Xie
- Department of Hepatobiliary Pancreatic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Ye W, Chen R, Chen X, Huang B, Lin R, Xie X, Chen J, Jiang J, Deng Y, Wen J. AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J 2019; 286:4215-4231. [PMID: 31199573 DOI: 10.1111/febs.14956] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is abundant in the kidney, liver, and intestine and is involved in the phase I metabolism of numerous endogenous and exogenous compounds. Therefore, exploring the regulatory mechanism of its basal expression in humans is particularly important to understand the bioactivation of several procarcinogens to their carcinogenic derivatives. Site-specific mutagenesis and deletion of the transcription factor binding site determined the core cis-acting elements in the human CYP1A1 proximal and distal promoter regions. The proximal promoter region [overlapping xenobiotic-responsive element (XRE) and GC box sequences] determined the basal expression of CYP1A1. In human hepatocellular carcinoma cells (HepG2) with aryl hydrocarbon receptor (AhR) or specificity protein 1 (Sp1) knockdown, we confirmed that AhR and Sp1 are involved in basal CYP1A1 expression. In HepG2 cells overexpressing either AhR or Sp1, AhR determined the proximal transactivation of basal CYP1A1 expression. Via DNA affinity precipitation assays and ChIP, we found that AhR bound to the promoter and recruited Sp1 to transactivate CYP1A1 expression. The coordinated interaction between Sp1 and AhR was identified to be DNA mediated. Our work revealed a basal regulatory mechanism of an interesting human gene by which AhR interacts with Sp1 through DNA and recruits Sp1 to regulate basal CYP1A1 expression.
Collapse
Affiliation(s)
- Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
11
|
Wang D, Lu R, Rempala G, Sadee W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol Pharmacol 2019; 96:430-440. [PMID: 31399483 PMCID: PMC6724575 DOI: 10.1124/mol.119.116897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 3A4 isoform (CYP3A4) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol's sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor α (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation of ESR1 in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. SIGNIFICANCE STATEMENT: This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol's sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Grzegorz Rempala
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Wolfgang Sadee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Possible involvement of the competition for the transcriptional coactivator glucocorticoid receptor-interacting protein 1 in the inflammatory signal-dependent suppression of PXR-mediated CYP3A induction in vitro. Drug Metab Pharmacokinet 2019; 34:272-279. [DOI: 10.1016/j.dmpk.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
|
14
|
Taneja G, Maity S, Jiang W, Moorthy B, Coarfa C, Ghose R. Transcriptomic profiling identifies novel mechanisms of transcriptional regulation of the cytochrome P450 (Cyp)3a11 gene. Sci Rep 2019; 9:6663. [PMID: 31040347 PMCID: PMC6491424 DOI: 10.1038/s41598-019-43248-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP)3A is the most abundant CYP enzyme in the human liver, and a functional impairment of this enzyme leads to unanticipated adverse reactions and therapeutic failures; these reactions result in the early termination of drug development or the withdrawal of drugs from the market. The transcriptional regulation mechanism of the Cyp3a gene is not fully understood and requires a thorough investigation. We mapped the transcriptome of the Cyp3a gene in a mouse model. The Cyp3a gene was induced using the mPXR activator pregnenolone-16alpha-carbonitrile (PCN) and was subsequently downregulated using lipopolysaccharide (LPS). Our objective was to identify the transcription factors (TFs), epigenetic modulators and molecular pathways that are enriched or repressed by PCN and LPS based on a gene set enrichment analysis. Our analysis shows that 113 genes were significantly upregulated (by at least 1.5-fold) with PCN treatment, and that 834 genes were significantly downregulated (by at least 1.5-fold) with LPS treatment. Additionally, the targets of the 536 transcription factors were enriched by a combined treatment of PCN and LPS, and among these, 285 were found to have binding sites on Cyp3a11. Moreover, the repressed targets of the epigenetic markers HDAC1, HDAC3 and EZH2 were further suppressed by LPS treatment and were enhanced by PCN treatment. By identifying and contrasting the transcriptional regulators that are altered by PCN and LPS, our study provides novel insights into the transcriptional regulation of CYP3A in the liver.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA
- DILIsym Services, A Simulations Plus Company, Research Triangle Park, North Carolina, 27709, USA
| | - Suman Maity
- Advanced Technology Cores, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA.
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Center for Precision Environmental Health, Molecular and Cellular Biology Department, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA.
| |
Collapse
|
15
|
Chen R, Jiang J, Hu Z, Ye W, Yuan Q, Li M, Wen J, Deng Y. Coordinated Transcriptional Regulation of Cytochrome P450 3As by Nuclear Transcription Factor Y and Specificity Protein 1. Mol Pharmacol 2019; 95:507-518. [PMID: 30782853 DOI: 10.1124/mol.118.114439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/03/2019] [Indexed: 01/17/2023] Open
Abstract
The cytochrome P450 3A subfamily plays vital roles in the metabolism of endogenous chemicals and xenobiotics. Understanding the basal expression of CYP3A in humans and pigs is crucial for drug evaluation. In this study, we demonstrated that the basal transcriptional regulation of CYP3A genes in hepatocytes is evolutionarily conserved between humans and pigs. The basal expression of CYP3A genes is transactivated by two cis-acting elements, the CCAAT and GC boxes, located a constant distance apart in the proximal promoter region of six CYP3A genes. Mutation analysis of these two cis-acting elements suggested that they play important roles in mediating basal expression, but to different extents because of the nucleotide variations in the elements. Two transcription factors, nuclear transcription factor Y (NF-Y) and specificity protein 1 (Sp1), directly bind to these cis-acting elements in CYP3A proximal promoters in HepG2 cells and porcine hepatocytes. Furthermore, changing the distance between the NF-Y and Sp1 binding sites resulted in decreases in the promoter activity of CYP3A genes. Conclusively, our results show that human and porcine CYP3A genes are regulated by NF-Y and Sp1 in a coordinated manner, and that the distance between these two cis-acting elements is crucial for constitutive CYP3A expression.
Collapse
Affiliation(s)
- Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Zhangsheng Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Mengyuan Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Identification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. THE PHARMACOGENOMICS JOURNAL 2018; 19:375-389. [PMID: 30442921 PMCID: PMC6522337 DOI: 10.1038/s41397-018-0063-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
An extreme phenotype sampling (EPS) model with targeted next-generation sequencing (NGS) identified genetic variants associated with tacrolimus (Tac) metabolism in subjects from the Deterioration of Kidney Allograft Function (DeKAF) Genomics cohort which included 1,442 European Americans (EA) and 345 African Americans (AA). This study included 48 subjects separated into 4 groups of 12 (AA high, AA low, EA high, EA low). Groups were selected by the extreme phenotype of dose-normalized Tac trough concentrations after adjusting for common genetic variants and clinical factors. NGS spanned >3 Mb of 28 genes and identified 18,661 genetic variants (3,961 previously unknown). A group of 125 deleterious variants, by SIFT analysis, were associated with Tac troughs in EAs (burden test, p=0.008), CYB5R2 was associated with Tac troughs in AAs (SKAT, p=0.00079). In CYB5R2, rs61733057 (increased allele frequency in AAs) was predicted to disrupt protein function by SIFT and PolyPhen2 analysis. The variants merit further validation.
Collapse
|
17
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
18
|
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology 2018; 154:1258-1272. [PMID: 29428334 PMCID: PMC6237283 DOI: 10.1053/j.gastro.2018.01.066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; The Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas, Madrid, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Jonsson-Schmunk K, Schafer SC, Croyle MA. Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0376-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Yokobori K, Kobayashi K, Azuma I, Akita H, Chiba K. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method. Drug Metab Pharmacokinet 2017; 32:265-272. [DOI: 10.1016/j.dmpk.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
|
21
|
Sharma D, Turkistani AA, Chang W, Hu C, Xu Z, Chang TKH. Negative Regulation of Human Pregnane X Receptor by MicroRNA-18a-5p: Evidence for Suppression of MicroRNA-18a-5p Expression by Rifampin and Rilpivirine. Mol Pharmacol 2017; 92:48-56. [DOI: 10.1124/mol.116.107003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
22
|
Contrasting exome constancy and regulatory region variation in the gene encoding CYP3A4: an examination of the extent and potential implications. Pharmacogenet Genomics 2017; 26:255-70. [PMID: 27139836 DOI: 10.1097/fpc.0000000000000207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. METHODS We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. RESULTS AND CONCLUSION Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.
Collapse
|
23
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
24
|
Chen HY, Ma SL, Huang W, Ji L, Leung VHK, Jiang H, Yao X, Tang NLS. The mechanism of transactivation regulation due to polymorphic short tandem repeats (STRs) using IGF1 promoter as a model. Sci Rep 2016; 6:38225. [PMID: 27910883 PMCID: PMC5133613 DOI: 10.1038/srep38225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Functional short tandem repeats (STR) are polymorphic in the population, and the number of repeats regulates the expression of nearby genes (known as expression STR, eSTR). STR in IGF1 promoter has been extensively studied for its association with IGF1 concentration in blood and various clinical traits and represents an important eSTR. We previously used an in-vitro luciferase reporter model to examine the interaction between STRs and SNPs in IGF1 promoter. Here, we further explored the mechanism how the number of repeats of the STR regulates gene transcription. An inverse correlation between the number of repeats and the extent of transactivation was found in a haplotype consisting of three promoter SNPs (C-STR-T-T). We showed that these adjacent SNPs located outside the STR were required for the STR to function as eSTR. The C allele of rs35767 provides a binding site for CCAAT/enhancer-binding-protein δ (C/EBPD), which is essential for the gradational transactivation property of eSTR and FOXA3 may also be involved. Therefore, we propose a mechanism in which the gradational transactivation by the eSTR is caused by the interaction of one or more transcriptional complexes located outside the STR, rather than by direct binding to a repeat motif of the STR.
Collapse
Affiliation(s)
- Holly Y Chen
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Ling Ma
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lindan Ji
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Vincent H K Leung
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Laboratory of Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Functional Genomics and Biostatistical Computing laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
25
|
T-2 toxin induces the expression of porcine CYP3A22 via the upregulation of the transcription factor, NF-Y. Biochim Biophys Acta Gen Subj 2016; 1860:2191-201. [DOI: 10.1016/j.bbagen.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
|
26
|
Developmental regulation of CYP3A4 and CYP3A7 in Chinese Han population. Drug Metab Pharmacokinet 2016; 31:433-444. [PMID: 27727071 DOI: 10.1016/j.dmpk.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/12/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023]
Abstract
CYP3A4 and CYP3A7 are generally served as the major adult and fetal liver forms, respectively, and exhibited a developmental switch during liver maturation. The objective of this study was to explore the potential mechanisms associated with the developmental switch of CYP3A4 and CYP3A7 in the Chinese Han population. We analyzed CYP3A4/7, nuclear receptors, and epigenetic modifications in human liver samples. We found that the expression levels of CYP3A4 mRNA in adults were significantly higher than the levels in fetus. In contrast, CYP3A7 mRNA expression reached a maximal level at an estimated gestational age of 25 weeks and then substantially decreased during the first year after birth. We also found that the expression level of hepatocyte nuclear factor 4 alpha (HNF4A) was most associated with CYP3A4 expression in adult liver; whereas the expression level of glucocorticoid receptor (GR) was intensively correlated with CYP3A7 expression in fetal liver. Furthermore, we illustrated the dynamic changes of H3K4me2 and H3K27me3 in the developmental switch of CYP3A7 and CYP3A4. In summary, our data suggested that HNF4A and GR, and epigenetic changes of H3K4me2 and H3K27me3 are associated with the ontogenic expressions of CYP3A4/3A7 in the livers of the Chinese Han population.
Collapse
|
27
|
Tolosa L, Gómez-Lechón MJ, López S, Guzmán C, Castell JV, Donato MT, Jover R. Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing. Toxicol Sci 2016; 152:214-29. [PMID: 27208088 DOI: 10.1093/toxsci/kfw078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of human hepatic cell-based models to predict hepatotoxicity depends on the functional performance of cells. The major limitations of human hepatocytes include the scarce availability and rapid loss of the hepatic phenotype. Hepatoma cells are readily available and easy to handle, but are metabolically poor compared with hepatocytes. Recently developed human upcyte hepatocytes offer the advantage of combining many features of primary hepatocytes with the unlimited availability of hepatoma cells. We analyzed the phenotype of upcyte hepatocytes comparatively with HepG2 cells and adult primary human hepatocytes to characterize their functional features as a differentiated hepatic cell model. The transcriptomic analysis of liver characteristic genes confirmed that the upcyte hepatocytes expression profile comes closer to human hepatocytes than HepG2 cells. CYP activities were measurable and showed a similar response to prototypical CYP inducers than primary human hepatocytes. Upcyte hepatocytes also retained conjugating activities and key hepatic functions, e.g. albumin, urea, lipid and glycogen synthesis, at levels close to hepatocytes. We also investigated the suitability of this cell model for preclinical hepatotoxicity risk assessments using multiparametric high-content screening, as well as transcriptomics and targeted metabolomic analysis. Compounds with well-documented in vivo hepatotoxicity were screened after acute and repeated doses up to 1 week. The evaluation of complex mechanisms of cell toxicity, drug-induced steatosis and oxidative stress biomarkers demonstrated that, by combining the phenotype of primary human hepatocytes and the ease of handling of HepG2 cells, upcyte hepatocytes offer suitable properties to be potentially used for toxicological assessments during drug development.
Collapse
Affiliation(s)
- Laia Tolosa
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - M José Gómez-Lechón
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain
| | - Silvia López
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - Carla Guzmán
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain
| | - José V Castell
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| | - M Teresa Donato
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain CIBEREHD, Madrid, Spain
| | - Ramiro Jover
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), Unidad de Hepatología Experimental, Avda. Fernando Abril Martorell, N° 106- Torre A, Valencia, 46026, Spain CIBEREHD, Madrid, Spain Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
28
|
Garmhausen M, Hofmann F, Senderov V, Thomas M, Kandel BA, Habermann BH. Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways. BMC Genomics 2015; 16:790. [PMID: 26467653 PMCID: PMC4606501 DOI: 10.1186/s12864-015-2017-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
Background Interpreting large-scale studies from microarrays or next-generation sequencing for further experimental testing remains one of the major challenges in quantitative biology. Combining expression with physical or genetic interaction data has already been successfully applied to enhance knowledge from all types of high-throughput studies. Yet, toolboxes for navigating and understanding even small gene or protein networks are poorly developed. Results We introduce two Cytoscape plug-ins, which support the generation and interpretation of experiment-based interaction networks. The virtual pathway explorer viPEr creates so-called focus networks by joining a list of experimentally determined genes with the interactome of a specific organism. viPEr calculates all paths between two or more user-selected nodes, or explores the neighborhood of a single selected node. Numerical values from expression studies assigned to the nodes serve to score identified paths. The pathway enrichment analysis tool PEANuT annotates networks with pathway information from various sources and calculates enriched pathways between a focus and a background network. Using time series expression data of atorvastatin treated primary hepatocytes from six patients, we demonstrate the handling and applicability of viPEr and PEANuT. Based on our investigations using viPEr and PEANuT, we suggest a role of the FoxA1/A2/A3 transcriptional network in the cellular response to atorvastatin treatment. Moreover, we find an enrichment of metabolic and cancer pathways in the Fox transcriptional network and demonstrate a patient-specific reaction to the drug. Conclusions The Cytoscape plug-in viPEr integrates –omics data with interactome data. It supports the interpretation and navigation of large-scale datasets by creating focus networks, facilitating mechanistic predictions from –omics studies. PEANuT provides an up-front method to identify underlying biological principles by calculating enriched pathways in focus networks. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2017-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marius Garmhausen
- CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| | - Falko Hofmann
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Acacdemy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Viktor Senderov
- Research Group Computational Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Present address: Pensoft Publisher, 1700, Sofia, Bulgaria.
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376, Stuttgart, Germany.
| | - Benjamin A Kandel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376, Stuttgart, Germany. .,Present address: Hain Lifescience GmbH, Hardwiesenstr. 1, 72147, Nehren, Germany.
| | - Bianca Hermine Habermann
- Research Group Computational Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
29
|
Shi Y, Liu Y, Wei Z, Zhang Y, Zhang L, Jiang S, Xiong Y, Shen L, He L, Xing Q, Qin S. Hsa-miR-27a is involved in the regulation of CYP3A4 expression in human livers from Chinese Han population. Pharmacogenomics 2015; 16:1379-86. [DOI: 10.2217/pgs.15.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The huge interindividual difference of CYP3A4 expression may contribute to the variability of drug response. Post-transcriptional regulation of CYP3A4 remains elusive although transcriptional regulation has been studied much more clearly. microRNAs (miRNAs) were reported to be one of factors to regulate the expression of CYP3A4 previously. Materials & methods: Based on the in silico prediction of 3′-UTR-bindind site of microRNA-27a (miR-27a), the transcriptional and post-transcriptional regulation of miR-27a were investigated through luciferase reporter assay, real-time PCR and immunoblot. Results: The significantly decrease of CYP3A4 3′-UTR-luciferase activity in human embryonic kidney 293 and Hep3B cells was detected after transfected with plasmid that expressed miRNA-27a in luciferase reporter assay. Correlation study was conducted in human livers (n = 26) and significant correlation has been discovered between miRNA-27a and CYP3A4 mRNA and protein level. Conclusion: Together, these findings suggest that miR-27a might be involved in the regulation of CYP3A4 gene expression.
Collapse
Affiliation(s)
- Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yiting Zhang
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lirong Zhang
- Department of Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou 450052, PR China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yuyu Xiong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, PR China
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Qinghe Xing
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Shengying Qin
- Shanghai Genome Pilot Institutes for Genomics & Human Health, Shanghai 200030, PR China
| |
Collapse
|
30
|
Dong L, Chen Q, Liu X, Wen J, Jiang J, Deng Y. Role of Specificity Protein 1, Hepatocyte Nuclear Factor 1α, and Pregnane X Receptor in the Basal and Rifampicin-Induced Transcriptional Regulation of Porcine Cytochrome P450 3A46. Drug Metab Dispos 2015; 43:1458-67. [DOI: 10.1124/dmd.115.065565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/16/2015] [Indexed: 12/22/2022] Open
|
31
|
Choi JM, Oh SJ, Lee JY, Jeon JS, Ryu CS, Kim YM, Lee K, Kim SK. Prediction of Drug-Induced Liver Injury in HepG2 Cells Cultured with Human Liver Microsomes. Chem Res Toxicol 2015; 28:872-85. [PMID: 25860621 DOI: 10.1021/tx500504n] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) via metabolic activation by drug-metabolizing enzymes, especially cytochrome P450 (CYP), is a major cause of drug failure and drug withdrawal. In this study, an in vitro model using HepG2 cells in combination with human liver microsomes was developed for the prediction of DILI. The cytotoxicity of cyclophosphamide, a model drug for bioactivation, was augmented in HepG2 cells cultured with microsomes in a manner dependent on exposure time, microsomal protein concentration, and NADPH. Experiments using pan- or isoform-selective CYP inhibitors showed that CYP2B6 and CYP3A4 are responsible for the bioactivation of cyclophosphamide. In a metabolite identification study employing LC-ESI-QTrap and LC-ESI-QTOF, cyclophosphamide metabolites including phosphoramide mustard, a toxic metabolite, were detected in HepG2 cells cultured with microsomes, but not without microsomes. The cytotoxic effects of acetaminophen and diclofenac were also potentiated by microsomes. The potentiation of acetaminophen cytotoxicity was dependent on CYP-dependent metabolism, and the augmentation of diclofenac cytotoxicity was not mediated by either CYP- or UDP-glucuronosyltransferase-dependent metabolism. The cytotoxic effects of leflunomide, nefazodone, and bakuchiol were attenuated by microsomes. The detoxication of leflunomide by microsomes was attributed to mainly CYP3A4-dependent metabolism. The protective effect of microsomes against nefazodone cytotoxicity was dependent on both CYP-mediated metabolism and nonspecific protein binding. Nonspecific protein binding but not CYP-dependent metabolism played a critical role in the attenuation of bakuchiol cytotoxicity. The present study suggests that HepG2 cells cultured with human liver microsomes can be a reliable model in which to predict DILI via bioactivation by drug metabolizing enzymes.
Collapse
Affiliation(s)
- Jong Min Choi
- †College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Soo Jin Oh
- ‡Bio-Evaluation Center, KRIBB, Ochang, Chungbuk 363-883, Republic of Korea
| | - Ji-Yoon Lee
- †College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Su Jeon
- †College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Chang Seon Ryu
- †College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Young-Mi Kim
- §College of Pharmacy, Hanyang University, Ansan, Gyeonggido 426-791, Republic of Korea
| | - Kiho Lee
- ∥College of Pharmacy, Korea University, Sejong 339-700, Republic of Korea
| | - Sang Kyum Kim
- †College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
32
|
Abstract
CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed.
Collapse
Affiliation(s)
- Danxin Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-7336; Fax: +1-614-292-7232
| | | |
Collapse
|
33
|
Chen J, Zhao KN, Chen C. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:7. [PMID: 25332983 DOI: 10.3978/j.issn.2305-5839.2013.03.02] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
Abstract
CYP3A4 is a major cytochrome P450. It catalyses a broad range of substrates including xenobiotics such as clinically used drugs and endogenous compounds bile acids. Its function to detoxify bile acids could be used for treating cholestasis, which is a condition characterised by accumulation of bile acids. Although bile acids have important physiological functions, they are very toxic when their concentrations are excessively high. The accumulated bile acids in cholestasis can cause liver and other tissue injuries. Thus, control of the concentrations of bile acids is critical for treatment of cholestasis. CYP3A4 is responsively upregulated in cholestasis mediated by the nuclear receptors farnesol X receptor (FXR) and pregnane X receptor (PXR) as a defence mechanism. However, the regulation of CYP3A4 is complicated by estrogen, which is increased in cholestasis and down regulates CYP3A4 expression. The activity of CYP3A4 is also inhibited by accumulated bile acids due to their property of detergent effect. In some cholestasis cases, genetic polymorphisms of the CYP3A4 and PXR genes may interfere with the adaptive response. Further stimulation of CYP3A4 activity in cholestasis could be an effective approach for treatment of the disease. In this review, we summarise recent progress about the roles of CYP3A4 in the metabolism of bile acids, its regulation and possible implication in the treatment of cholestasis.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Kong-Nan Zhao
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Chen Chen
- 1 School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia ; 2 Centre for Kidney Disease-Venomics Research, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
34
|
Singh R, Sharma MC, Sarkar C, Singh M, Chauhan SS. Transcription factor C/EBP-β mediates downregulation of dipeptidyl-peptidase III expression by interleukin-6 in human glioblastoma cells. FEBS J 2014; 281:1629-41. [PMID: 24472318 DOI: 10.1111/febs.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/28/2013] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Dipeptidyl-peptidase III (DPP III) is a cytosolic metallo-aminopeptidase implicated in various physiological and pathological processes. A previous study from our laboratory indicated an elevated expression of DPP III in glioblastoma (U87MG) cells. In the present study we investigated the role of interleukin-6 (IL-6), a pleiotropic cytokine produced by glial tumors, in the regulation of DPP III expression. Immunohistochemistry, western blotting and quantitative RT-PCR were used for quantitation of DPP III and IL-6 in human glioblastoma cells and tumors. Cell transfections and DPP III promoter reporter assays were performed to study the transcriptional regulation of DPP III by IL-6. Promoter deletion analysis, site directed mutagenesis, chromatin immunoprecipitation assays and small interfering RNA (siRNA) technology was employed to elucidate the molecular mechanism of IL-6 mediated regulation of DPP III expression in glioblastoma cells. Our results for the first time demonstrate a negative correlation (r = 0.632, P = 0.01) between DPP III and IL-6 in both human tumors and cultured glioblastoma cells. Treatment of U87MG cells with IL-6 significantly decreased DPP III expression with a concomitant increase in the levels of transcription factor CCAAT/enhancer binding protein beta (C/EBP-β). Deletion/mutagenesis of C/EBP-β binding motif of DPP III promoter significantly increased its activity and abolished its responsiveness to IL-6. This effect could also be mimicked by C/EBP-β siRNA. In conclusion our study for the first time demonstrates C/EBP-β mediated transcriptional downregulation of DPP III by IL-6. Our results demonstrating a negative correlation between IL-6 and DPP III taken together with the previously reported prognostic significance of this cytokine in glioblastoma suggests that DPP III may prove useful as a prognostic marker.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
35
|
Yang Q, Tang S, Dong L, Chen Q, Liu X, Jiang J, Deng Y. Transcriptional regulation of chicken cytochrome P450 2D49 basal expression by CCAAT/enhancer-binding protein α and hepatocyte nuclear factor 4α. FEBS J 2014; 281:1379-1392. [PMID: 24418194 DOI: 10.1111/febs.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/03/2013] [Accepted: 01/04/2014] [Indexed: 01/06/2023]
Abstract
Chicken cytochrome P450 (CYP)2D49 is structurally and functionally related to human CYP2D6, which is an important drug-metabolizing enzyme. To date, little is known about the transcriptional regulation of this cytochrome. Through deletion analysis of the CYP2D49 promoter, we identified two putative degenerate CCAAT/enhancer-binding protein (C/EBP)-binding sites and an imperfect DR1 element (the site contains direct repeats of the hexamer AGGTCA separated by a one-nucleotide spacer motif) within regions -296/-274, -274/-226, and -226/-183, respectively, which may play critical roles in the transcriptional activation of the CYP2D49 gene. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the putative C/EBP boxes and DR1 element in the CYP2D49 promoter are functional motifs that bind to C/EBPα and hepatocyte nuclear factor 4α (HNF4α), respectively. Furthermore, we studied the functional importance and relationships of these transcription factor-binding sites by examining the effects of mutation and deletion of these regions on promoter activity. These studies revealed that the two C/EBP-binding sites show a compensatory relationship and work cooperatively with the DR1 element to modulate the transcription of CYP2D49. The results of overexpressing C/EBPα and HNF4α in culture cells further confirmed that both C/EBPα and HNF4α contribute significantly to sustaining a high level of CYP2D49 transcription. In conclusion, the data indicate that the constitutive hepatic expression of CYP2D49 is governed by both C/EBPα and HNF4α. Further studies will be required to fully characterize the molecular mechanisms that modulate CYP2D49 expression.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Dumais G, Iovu M, du Souich P. Inflammatory reactions and drug response: importance of cytochrome P450 and membrane transporters. Expert Rev Clin Pharmacol 2014; 1:627-47. [DOI: 10.1586/17512433.1.5.627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Qiu X, Sun W, McDonnell CM, Li-Byarlay H, Steele LD, Wu J, Xie J, Muir WM, Pittendrigh BR. Genome-wide analysis of genes associated with moderate and high DDT resistance in Drosophila melanogaster. PEST MANAGEMENT SCIENCE 2013; 69:930-937. [PMID: 23371854 DOI: 10.1002/ps.3454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/03/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Moderate to high DDT resistance in generally associated with overexpression of multiple genes and therefore has been considered to be polygenic. However, very little information is available about the molecular mechanisms that insect populations employ when evolving increased levels of resistance. The presence of common regulatory motifs among resistance-associated genes may help to explain how and why certain suites of genes are preferentially represented in genomic-scale analyses. RESULTS A set of commonly differentially expressed genes associated with DDT resistance in the fruit fly was identified on the basis of genome-wide microarray analysis followed by qRT-PCR verification. More genes were observed to be overtranscribed in the highly resistant strain (91-R) than in the moderately resistant strain (Wisconsin) and susceptible strain (Canton-S). Furthermore, possible transcription factor binding sites that occurred in coexpressed resistance-associated genes were discovered by computational motif discovery methods. CONCLUSION A glucocorticoid receptor (GR)-like putative transcription factor binding motif (TFBM) was observed to be associated with genes commonly differentially transcribed in both the 91-R and Wisconsin lines of DDT-resistant Drosophila.
Collapse
Affiliation(s)
- Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martínez-Jiménez CP, Jover R, Gómez-Lechón MJ, Castell JV. Can hepatoma cell lines be redifferentiated to be used in drug metabolism studies? Altern Lab Anim 2013; 32 Suppl 1A:65-74. [PMID: 23577436 DOI: 10.1177/026119290403201s11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Knowledge of metabolism, enzymes so far involved, and potential enzyme-inhibiting or enzyme-inducing properties of new compounds is a key issue in drug development. Primary cultured hepatocytes, cytochrome P450 (CYP)-engineered cells and hepatoma cell lines are currently being used for this purpose, but only primary cultures can produce a metabolic profile of a drug similar to that found in vivo and can respond to inducers. Because of their limited accessibility, alternatives to replace human hepatocytes are currently being explored, including the immortalisation of hepatocytes by using different strategies (i.e. SV40 T-large antigen, conditionally immortalised hepatocytes, transfection with c-myc, cH-ras, N-ras oncogenes, transgenic animals over-expressing growth factors or oncogenes and cre-lox recombination/excision). However, none of the resulting cells has the desirable phenotypic characteristics to replace primary cultures in drug metabolisms studies. We investigated why these differentiated human hepatomas do not express CYP genes and found that the levels of certain key transcription factors clearly differ from those found in hepatocytes. It was then conceivable that re-expression of one (or more) of these transcription factors could lead to an efficient transcription of CYP genes. The feasibility of this hypothesis was demonstrated by genetic engineering of Hep G2 cells with liver-enriched transcription factors followed by the analysis of the expression of the most relevant human CYPs.
Collapse
|
39
|
Blazquez M, Carretero A, Ellis JK, Athersuch TJ, Cavill R, Ebbels TMD, Keun HC, Castell JV, Lahoz A, Bort R. A combination of transcriptomics and metabolomics uncovers enhanced bile acid biosynthesis in HepG2 cells expressing CCAAT/enhancer-binding protein β (C/EBPβ), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor (CAR). J Proteome Res 2013; 12:2732-41. [PMID: 23641669 DOI: 10.1021/pr400085n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of hepatoma-based in vitro models to study hepatocyte physiology is an invaluable tool for both industry and academia. Here, we develop an in vitro model based on the HepG2 cell line that produces chenodeoxycholic acid, the main bile acid in humans, in amounts comparable to human hepatocytes. A combination of adenoviral transfections for CCAAT/enhancer-binding protein β (C/EBPβ), hepatocyte nuclear factor 4α (HNF4α), and constitutive androstane receptor (CAR) decreased intracellular glutamate, succinate, leucine, and valine levels in HepG2 cells, suggestive of a switch to catabolism to increase lipogenic acetyl CoA and increased anaplerosis to replenish the tricarboxylic acid cycle. Transcripts of key genes involved in bile acid synthesis were significantly induced by approximately 160-fold. Consistently, chenodeoxycholic acid production rate was increased by more than 20-fold. Comparison between mRNA and bile acid levels suggest that 12-alpha hydroxylation of 7-alpha-hydroxy-4-cholesten-3-one is the limiting step in cholic acid synthesis in HepG2 cells. These data reveal that introduction of three hepatocyte-related transcription factors enhance anabolic reactions in HepG2 cells and provide a suitable model to study bile acid biosynthesis under pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Blazquez
- Unidad de Hepatología Experimental, CIBERehd, Instituto de Investigación Sanitaria La Fe, Valencia 46009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2554] [Impact Index Per Article: 232.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|
41
|
Guzmán C, Benet M, Pisonero-Vaquero S, Moya M, García-Mediavilla MV, Martínez-Chantar ML, González-Gallego J, Castell JV, Sánchez-Campos S, Jover R. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:803-18. [PMID: 23318274 DOI: 10.1016/j.bbalip.2012.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/22/2012] [Accepted: 12/27/2012] [Indexed: 01/24/2023]
Abstract
Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression.
Collapse
Affiliation(s)
- Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sasaki T, Takahashi S, Numata Y, Narita M, Tanaka Y, Kumagai T, Kondo Y, Matsunaga T, Ohmori S, Nagata K. Hepatocyte Nuclear Factor 6 Activates the Transcription of CYP3A4 in Hepatocyte-like Cells Differentiated from Human Induced Pluripotent Stem Cells. Drug Metab Pharmacokinet 2013; 28:250-9. [DOI: 10.2133/dmpk.dmpk-12-rg-132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Sivertsson L, Edebert I, Palmertz MP, Ingelman-Sundberg M, Neve EPA. Induced CYP3A4 expression in confluent Huh7 hepatoma cells as a result of decreased cell proliferation and subsequent pregnane X receptor activation. Mol Pharmacol 2012; 83:659-70. [PMID: 23264496 DOI: 10.1124/mol.112.082305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that confluent growth of the human hepatoma cell line Huh7 substantially induces the CYP3A4 mRNA, protein, and activity levels. Here, the mechanisms behind were investigated, and a transcriptome analysis revealed significant up-regulation of liver-specific functions, whereas pathways related to proliferation and cell cycle were down-regulated in the confluent cells. Reporter analysis revealed that the CYP3A4 gene was transcriptionally activated during confluence in a process involving pregnane X receptor (PXR). PXR expression was increased, and PXR protein accumulated in the nuclei during confluent growth. The PXR ligand rifampicin further increased the expression of CYP3A4, and siRNA-mediated knock-down of PXR in confluent cells resulted in decreased CYP3A4 expression. Cyclin-dependent kinase 2 (CDK2), a known modulator of the cell cycle and a negative regulator of PXR, was more highly expressed in proliferating control cells. Trypsinization of the confluent cells and replating them subconfluent resulted in a decrease in CYP3A4 and PXR expression back to levels observed in subconfluent control cells, whereas the CDK2 levels increased. Knock-down of CDK2 in proliferating control cells increased the CYP3A4 and PXR protein levels. Moreover, the CDK inhibitor roscovitine stimulated the expression of CYP3A4. A phosphorylation-deficient mutation (S350A) in the PXR protein significantly induced the CYP3A4 transcription. In conclusion, the data strongly suggest that the increased CYP3A4 expression in confluent Huh7 cells is caused by the endogenous induction of PXR as a result of cell-cell contact inhibited proliferation and subsequent decreased CDK2 activities, indicating an endogenous, non-ligand-dependent regulation of PXR and CYP3A4, possibly of physiologic and pharmacological significance.
Collapse
Affiliation(s)
- Louise Sivertsson
- Karolinska Institutet, Department of Physiology and Pharmacology, Nanna Svartz v. 2, SE-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Date AA, Shibata A, Goede M, Sanford B, La Bruzzo K, Belshan M, Destache CJ. Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res 2012; 96:430-6. [PMID: 23041201 PMCID: PMC3513487 DOI: 10.1016/j.antiviral.2012.09.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
Abstract
The objective of this investigation was to develop a thermosensitive vaginal gel containing raltegravir+efavirenz loaded PLGA nanoparticles (RAL+EFV-NPs) for pre-exposure prophylaxis of HIV. RAL+EFV-NPs were fabricated using a modified emulsion-solvent evaporation method and characterized for size and zeta potential. The average size and surface charge of RAL+EFV-NP were 81.8±6.4 nm and -23.18±7.18 mV respectively. The average encapsulation efficiency of raltegravir and efavirenz was 55.5% and 98.2% respectively. Thermosensitive vaginal gel containing RAL+EFV-NPs was successfully prepared using a combination of Pluronic F127 (20% w/v) and Pluronic F68 (1% w/v). Incorporation RAL+EFV-NPs in the gel did not result in nanoparticle aggregation and RAL+EFV-NPs containing gel showed thermogelation at 32.5°C. The RAL+EFV-NPs were evaluated for inhibition of HIV-1(NL4-3) using TZM-bl indicator cells. The EC(90) of RAL+EFV-NPs was lower than raltegravir+efavirenz (RAL+EFV) solution but did not reach significance. Compared to control HeLa cells without any treatment, RAL+EFV-NPs or blank gel were not cytotoxic for 14 days in vitro. The intracellular levels of efavirenz in RAL+EFV-NPs treated HeLa cells were above the EC(90) for 14 days whereas raltegravir intracellular concentrations were eliminated within 6 days. Transwell experiments of NPs-in-gel demonstrated rapid transfer of fluorescent nanoparticles from the gel and uptake in HeLa cells within 30 min. These data demonstrate the potential of antiretroviral NP-embedded vagina gels for long-term vaginal pre-exposure prophylaxis of heterosexual HIV-1 transmission.
Collapse
Affiliation(s)
- Abhijit A. Date
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | | | - Michael Goede
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Bridget Sanford
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Krista La Bruzzo
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Michel Belshan
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | | |
Collapse
|
46
|
Verma VK, Taneja V, Jaiswal A, Sharma S, Behera D, Sreenivas V, Chauhan SS, Prasad HK. Prevalence, distribution and functional significance of the -237C to T polymorphism in the IL-12Rβ2 promoter in Indian tuberculosis patients. PLoS One 2012; 7:e34355. [PMID: 22509293 PMCID: PMC3317943 DOI: 10.1371/journal.pone.0034355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/27/2012] [Indexed: 01/03/2023] Open
Abstract
Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the −237 polymorphic site in the 5′ promoter region of the IL-12Rβ2 (SNP ID: rs11810249) gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-α) of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rβ2 mRNA in these patients elevated IFN-α expression could modulate their immune responses to Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vikas Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Vibha Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anand Jaiswal
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Sangeeta Sharma
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Digamber Behera
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Vishnubhatla Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | |
Collapse
|
47
|
Laurent T, Murase D, Tsukioka S, Matsuura T, Nagamori S, Oda H. A novel human hepatoma cell line, FLC-4, exhibits highly enhanced liver differentiation functions through the three-dimensional cell shape. J Cell Physiol 2012; 227:2898-906. [DOI: 10.1002/jcp.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Down regulation of a matrix degrading cysteine protease cathepsin L, by acetaldehyde: role of C/EBPα. PLoS One 2011; 6:e20768. [PMID: 21687683 PMCID: PMC3110794 DOI: 10.1371/journal.pone.0020768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/08/2011] [Indexed: 12/21/2022] Open
Abstract
Background The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. Methodology and Results We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. Conclusion Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis.
Collapse
|
49
|
Preservation of hepatocellular functionality in cultures of primary rat hepatocytes upon exposure to 4-Me2N-BAVAH, a hydroxamate-based HDAC-inhibitor. Toxicol In Vitro 2010; 25:100-9. [PMID: 20932894 DOI: 10.1016/j.tiv.2010.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 01/27/2023]
Abstract
Great efforts are being put in the development/optimization of reliable and highly predictive models for high-throughput screening of efficacy and toxicity of promising drug candidates. The use of primary hepatocyte cultures, however, is still limited by the occurrence of phenotypic alterations, including loss of xenobiotic biotransformation capacity. In the present study, the differentiation-stabilizing effect of a new histone deacetylase inhibitor 5-(4-dimethylaminobenzoyl)-aminovaleric acid hydroxamide (4-Me(2)N-BAVAH), a structural Trichostatin A (TSA)-analogue with a more favourable pharmaco-toxicological profile, was studied at a genome-wide scale by means of microarray analysis. Several genes coding for xenobiotic biotransformation enzymes were found to be positively regulated upon exposure to 4-Me(2)N-BAVAH. For CYP1A1/2B1/3A2, these observations were confirmed by qRT-PCR and immunoblot analysis. In addition, significantly higher 7-ethoxyresorufin-O-deethylase and 7-pentoxyresorufin-O-dealkylase activity levels were measured. These effects were accompanied by an increased expression of CCAAT/enhancer binding protein alpha and hepatic nuclear factor (HNF)4α, but not of HNF1α. Finally, 4-Me(2)N-BAVAH was found to induce histone H3 acetylation at the proximal promoter of the albumin, CYP1A1 and CYP2B1 genes, suggesting that chromatin remodelling is directly involved in the transcriptional regulation of these genes. In conclusion, histone deacetylase inhibitors prove to be efficient agents for better maintaining a differentiated hepatic phenotype in rat hepatocyte cultures.
Collapse
|
50
|
Li H, Ferguson SS, Wang H. Synergistically enhanced CYP2B6 inducibility between a polymorphic mutation in CYP2B6 promoter and pregnane X receptor activation. Mol Pharmacol 2010; 78:704-13. [PMID: 20624854 DOI: 10.1124/mol.110.065185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
CYP2B6 is a highly inducible and polymorphic enzyme involved in the metabolism of an increasing number of clinically important drugs. Significant interindividual variability in CYP2B6 expression has been attributed to either genetic polymorphisms or chemical-mediated induction through the activation of constitutive androstane receptor and/or pregnane X receptor (PXR). It was reported that the -82T→C substitution within the CYP2B6*22 allele creates a functional CCAAT/enhancer-binding protein (C/EBP) binding site and enhances the basal expression of the CYP2B6 gene. Here, we explored whether this polymorphic mutation could affect drug-mediated induction of CYP2B6. Cell-based promoter reporter assays demonstrated that CYP2B6 luciferase activity was synergistically enhanced in the presence of both -82T→C mutation and rifampicin (RIF)-activated PXR. On the other hand, this synergism was attenuated by disrupting the C/EBP binding site or knocking down C/EBPα expression. Mechanistic studies revealed that C/EBPα plays an important role in such synergism by directly interacting with PXR; enhancing RIF-mediated recruitment of PXR to the -82T→C harboring CYP2B6 promoter; and looping the PXR-bound distal phenobarbital-responsive enhancer module toward the proximal C/EBP binding site. Furthermore, the genotype-phenotype association was evaluated in cultured human primary hepatocytes from 44 donors. Interestingly, RIF-mediated induction of CYP2B6 in four -82T/C carriers was higher compared with that in the reference -82T/T homozygotes. Together, our results demonstrate, for the first time, a synergistic interplay between a CYP2B6 polymorphism and PXR-mediated induction, which may contribute to the large individual variations and inducibility of CYP2B6 in humans.
Collapse
Affiliation(s)
- Haishan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|