1
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
2
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
3
|
Short CA, Cao AT, Wingfield MA, Doers ME, Jobe EM, Wang N, Levandoski MM. Subunit interfaces contribute differently to activation and allosteric modulation of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2015; 91:157-68. [PMID: 25486620 PMCID: PMC4332533 DOI: 10.1016/j.neuropharm.2014.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/21/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in the nervous system and are implicated in many normal and pathological processes. The structural determinants of allostery in nAChRs are not well understood. One class of nAChR allosteric modulators, including the small molecule morantel (Mor), acts from a site that is structurally homologous to the canonical agonist site but exists in the β(+)/α(-) subunit interface. We hypothesized that all nAChR subunits move with respect to each other during channel activation and allosteric modulation. We therefore studied five pairs of residues predicted to span the interfaces of α3β2 receptors, one at the agonist interface and four at the modulator interface. Substituting cysteines in these positions, we used disulfide trapping to perturb receptor function. The pair α3Y168-β2D190, involving the C loop region of the β2 subunit, mediates modulation and agonist activation, because evoked currents were reduced up to 50% following oxidation (H2O2) treatment. The pair α3S125-β2Q39, below the canonical site, is also involved in channel activation, in accord with previous studies of the muscle-type receptor; however, the pair is differentially sensitive to ACh activation and Mor modulation (currents decreased 60% and 80%, respectively). The pairs α3Q37-β2A127 and α3E173-β2R46, both in the non-canonical interface, showed increased currents following oxidation, suggesting that subunit movements are not symmetrical. Together, our results from disulfide trapping and further mutation analysis indicate that subunit interface movement is important for allosteric modulation of nAChRs, but that the two types of interfaces contribute unequally to receptor activation.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Angela T Cao
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Molly A Wingfield
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Matthew E Doers
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Emily M Jobe
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Nan Wang
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA
| | - Mark M Levandoski
- Department of Chemistry and Programs in Biological Chemistry and Neuroscience, Grinnell College, Grinnell, IA 50112, USA.
| |
Collapse
|
4
|
Abstract
Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function.
Collapse
|
5
|
Intra-subunit flexibility underlies activation and allosteric modulation of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2013; 79:420-31. [PMID: 24373904 DOI: 10.1016/j.neuropharm.2013.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023]
Abstract
Allosteric modulation is a general feature of nicotinic acetylcholine receptors, yet the structural components and movements important for conversions among functional states are not well understood. In this study, we examine the communication between the binding sites for agonist and the modulator morantel (Mor) of neuronal α3β2 receptors, measuring evoked currents of receptors expressed in Xenopus oocytes with the two-electrode voltage-clamp method. We hypothesized that movement along an interface of β sheets connecting the agonist and modulator sites is necessary for allosteric modulation. To address this, we created pairs of substituted cysteines that span the cleft formed where the outer β sheet meets the β sheet constituting the (-)-face of the α3 subunit; the three pairs were L158C-A179C, L158C-G181C and L158C-K183C. Employing a disulfide trapping approach in which bonds are formed between neighboring cysteines under oxidation conditions, we found that oxidation treatments decreased the amplitude of currents evoked by either the agonist (ACh) or co-applied agonist and modulator (ACh + Mor), by as much as 51%, consistent with the introduced bond decreasing channel efficacy. Reduction treatment increased evoked currents up to 89%. The magnitude of the oxidation effects depended on whether agonists were present during oxidation and on the cysteine pair. Additionally, the cysteine mutations themselves decreased Mor potentiation, implicating these residues in modulation. Our findings suggest that these β sheets in the α3 subunit move with respect to each other during activation and modulation, and the residues studied highlight the contribution of this intramolecular allosteric pathway to receptor function.
Collapse
|
6
|
Dellisanti CD, Ghosh B, Hanson SM, Raspanti JM, Grant VA, Diarra GM, Schuh AM, Satyshur K, Klug CS, Czajkowski C. Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol 2013; 11:e1001714. [PMID: 24260024 PMCID: PMC3833874 DOI: 10.1371/journal.pbio.1001714] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/08/2013] [Indexed: 11/21/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are neurotransmitter-activated receptors that mediate fast synaptic transmission. In pLGICs, binding of agonist to the extracellular domain triggers a structural rearrangement that leads to the opening of an ion-conducting pore in the transmembrane domain and, in the continued presence of neurotransmitter, the channels desensitize (close). The flexible loops in each subunit that connect the extracellular binding domain (loops 2, 7, and 9) to the transmembrane channel domain (M2–M3 loop) are essential for coupling ligand binding to channel gating. Comparing the crystal structures of two bacterial pLGIC homologues, ELIC and the proton-activated GLIC, suggests channel gating is associated with rearrangements in these loops, but whether these motions accurately predict the motions in functional lipid-embedded pLGICs is unknown. Here, using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and functional GLIC channels reconstituted into liposomes, we examined if, and how far, the loops at the ECD/TMD gating interface move during proton-dependent gating transitions from the resting to desensitized state. Loop 9 moves ∼9 Å inward toward the channel lumen in response to proton-induced desensitization. Loop 9 motions were not observed when GLIC was in detergent micelles, suggesting detergent solubilization traps the protein in a nonactivatable state and lipids are required for functional gating transitions. Proton-induced desensitization immobilizes loop 2 with little change in position. Proton-induced motion of the M2–M3 loop was not observed, suggesting its conformation is nearly identical in closed and desensitized states. Our experimentally derived distance measurements of spin-labeled GLIC suggest ELIC is not a good model for the functional resting state of GLIC, and that the crystal structure of GLIC does not correspond to a desensitized state. These findings advance our understanding of the molecular mechanisms underlying pLGIC gating. Ligand-gated ion channels reside in the membranes of nerve and muscle cells. These proteins form channels that span the membrane, where they transduce chemical signals into changes in electrical excitability. Neurotransmitters bind to the extracellular surface of these proteins to trigger global structural rearrangements that open the channel, allowing ions to flow across the cell membrane. In the continued presence of neurotransmitters, the channels desensitize and close. Channel opening and closing regulate muscle contraction and signaling in the brain, and defects in these channels lead to a variety of diseases. While crystal structures have provided frozen snapshots of these proteins in presumed closed and open channel states, little is known about how the channels desensitize and move during actual signaling events. Here, we applied a technique to investigate the structure and local dynamics of proteins known as site-directed spin labeling to a prototypical ligand-gated channel, GLIC. We directly quantified ligand-induced motions in regions at the boundary between the binding domain (loops 2 and 9) and the channel domain (M2–M3 loop). We show that a large movement of loop 9 and an immobilization of loop 2, which rearranges the interface between the binding and channel domains, accompanies GLIC channel gating transitions into a desensitized state. These data provide new insights into the protein movements that underlie electrochemical transmission of signals between cells.
Collapse
Affiliation(s)
- Cosma D. Dellisanti
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Borna Ghosh
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan M. Hanson
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - James M. Raspanti
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Valerie A. Grant
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gaoussou M. Diarra
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Abby M. Schuh
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kenneth Satyshur
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cynthia Czajkowski
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zimmermann I, Marabelli A, Bertozzi C, Sivilotti LG, Dutzler R. Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations. PLoS Biol 2012. [PMID: 23185134 PMCID: PMC3502511 DOI: 10.1371/journal.pbio.1001429] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of pentameric ligand-gated ion channels (pLGICs) by divalent cations is believed to play an important role in their regulation in a physiological context. Ions such as calcium or zinc influence the activity of pLGIC neurotransmitter receptors by binding to their extracellular domain and either potentiate or inhibit channel activation. Here we have investigated by electrophysiology and X-ray crystallography the effect of divalent ions on ELIC, a close prokaryotic pLGIC homologue of known structure. We found that divalent cations inhibit the activation of ELIC by the agonist cysteamine, reducing both its potency and, at higher concentrations, its maximum response. Crystal structures of the channel in complex with barium reveal the presence of several distinct binding sites. By mutagenesis we confirmed that the site responsible for divalent inhibition is located at the outer rim of the extracellular domain, at the interface between adjacent subunits but at some distance from the agonist binding region. Here, divalent cations interact with the protein via carboxylate side-chains, and the site is similar in structure to calcium binding sites described in other proteins. There is evidence that other pLGICs may be regulated by divalent ions binding to a similar region, even though the interacting residues are not conserved within the family. Our study provides structural and functional insight into the allosteric regulation of ELIC and is of potential relevance for the entire family.
Collapse
Affiliation(s)
- Iwan Zimmermann
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carlo Bertozzi
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Lucia G. Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Raimund Dutzler
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Rojsanga P, Boonyarat C, Utsintong M, Nemecz Á, Yamauchi JG, Talley TT, Olson AJ, Matsumoto K, Vajragupta O. The effect of crebanine on memory and cognition impairment via the alpha-7 nicotinic acetylcholine receptor. Life Sci 2012; 91:107-14. [PMID: 22749860 DOI: 10.1016/j.lfs.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022]
Abstract
AIMS The aims of the present study were to investigate the effect of crebanine on memory and cognition impairment in mice and to elucidate the underlying molecular mechanisms. MAIN METHODS The memory-enhancing effects of crebanine were assessed with a water maze test using scopolamine-induced amnesic mice. The molecular mechanism was explored in silico by docking crebanine against acetylcholine binding proteins (AChBPs) and in vitro with a radioligand competition assay using (±)-[(3)H]-epibatidine. The pharmacological behavior was assessed by observing changes to the functional activity of α7-nAChRs expressed in Xenopus oocytes and by fluorescent assays on recombinant ligand gated ion channel (LGIC) receptors expressed in mammalian cells. KEY FINDINGS The administration of crebanine significantly improved the cognitive deficits induced by scopolamine, as measured by the water maze test. The docking results demonstrated that crebanine bound to the active binding site of the AChBP template with a good docking energy. Crebanine significantly inhibited the binding of (±)-[(3)H]-epibatidine to AChBPs with K(i) values of 179 nM and 538 nM for Ls and Ac, respectively. Further functional assays performed using two separate protocols indicated that crebanine is an antagonist of the α7-nAChR with an IC(50) of 19.1μM. SIGNIFICANCE The observed actions of crebanine against amnesia and its effect on α7-nAChRs will be beneficial for target-based drug design; crebanine or its scaffold can be used as the starting point to develop a drug for Alzheimer's disease. The cognition-enhancing effects of crebanine and the underlying mechanism based on α7-nAChRs are consistent with its traditional use. These findings demonstrate the potential utility of crebanine in the development of neurodegenerative therapy.
Collapse
Affiliation(s)
- Piyanuch Rojsanga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Carpenter TS, Lau EY, Lightstone FC. A role for loop F in modulating GABA binding affinity in the GABA(A) receptor. J Mol Biol 2012; 422:310-23. [PMID: 22659322 DOI: 10.1016/j.jmb.2012.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/08/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The brain's major inhibitory neuroreceptor is the ligand-gated ion channel γ-aminobutyric acid (GABA) type A receptor (GABAR). GABARs exist in a variety of different subunit combinations that act to modulate the physiological behavior of GABAR by altering its pharmacological profile, as well as its affinity for GABA. While the α(1)β(2)γ(2) subtype is one of the most prevalent GABARs, the less populous α(6)β(3)δ subtype has much higher GABA sensitivity. Previous studies identified residues crucial for GABA binding; however, the specific molecular differences responsible for this diverse sensitivity are not known. Furthermore, the role of loop F is a divisive subject, with conflicting evidence for ligand binding function. Using homology modeling, ligand docking, and molecular dynamics simulations, we investigated the GABA binding sites of the two receptor subtypes. Simulations identified seven residues that consistently interacted with GABA in both subtypes: αF65, αR132, βL99, βE155, βR/K196, βY205, and βR207. Residue substitution at position β196 (arginine in α(6)β(3)δ, lysine in α(1)β(2)γ(2)) resulted in a shift in GABA binding. However, the major difference between the two binding sites was the magnitude of loop F involvement, with a greater contribution in the α(6)β(3)δ receptor. Free energy calculations confirm that the α(6)β(3)δ binding pocket has an increased affinity for GABA. Thus, the possible role for loop F across the GABAR family is to modulate GABA affinity.
Collapse
Affiliation(s)
- Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | |
Collapse
|
10
|
Abstract
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.
Collapse
Affiliation(s)
- Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
11
|
Yamaguchi M, Sawa Y, Matsuda K, Ozoe F, Ozoe Y. Amino acid residues of both the extracellular and transmembrane domains influence binding of the antiparasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. Biochem Biophys Res Commun 2012; 419:562-6. [PMID: 22369940 DOI: 10.1016/j.bbrc.2012.02.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 02/08/2023]
Abstract
Glutamate-gated chloride (GluCl) channels are pentameric receptors for the inhibitory neurotransmitter glutamate in invertebrates and are a major target for macrolide anthelmintics. Three amino acids in GluCl channels are reported to render macrolide resistance in nematodes and insects. To examine whether these three amino acids are involved in binding of the antiparasitic agent milbemycin (MLM) to the GluCl channels of the nematode parasite Haemonchus contortus, the equivalent amino acids (L256, P316, and G329) of the Hco-AVR-14B subunit were substituted with various amino acids. cDNAs encoding the wild type and mutants of this subunit were transfected into COS-1 cells for transient expression and analysis of GluCl channels. The abilities of these mutant channels to bind [(3)H]MLM A(4) were remarkably decreased when compared with the wild-type channel. In patch clamp analysis, L256F and P316S mutant channels were 37- and 100-fold less sensitive to MLM A(4) when compared with the wild-type channel, respectively. These findings indicate that amino acid changes in the β10 strand, the M2-M3 linker, and the M3 region influence MLM A(4) binding to the channel. Homology modeling and ligand docking studies suggest the presence of two potential binding sites for MLM A(4).
Collapse
Affiliation(s)
- Mao Yamaguchi
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | | | |
Collapse
|
12
|
Jha A, Gupta S, Zucker SN, Auerbach A. The energetic consequences of loop 9 gating motions in acetylcholine receptor-channels. J Physiol 2011; 590:119-29. [PMID: 22025664 DOI: 10.1113/jphysiol.2011.213892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acetylcholine receptor-channels (AChRs) mediate fast synaptic transmission between nerve and muscle. In order to better-understand the mechanism by which this protein assembles and isomerizes between closed- and open-channel conformations we measured changes in the diliganded gating equilibrium constant (E(2)) consequent to mutations of residues at the C-terminus of loop 9 (L9) in the α and ε subunits of mouse neuromuscular AChRs. These amino acids are close to two interesting interfaces, between the extracellular and transmembrane domain within a subunit (E–T interface) and between primary and complementary subunits (P–C interface). Most α subunit mutations modestly decreased E(2) (mainly by slowing the channel-opening rate constant) and sometimes produced AChRs that had heterogeneous gating kinetic properties. Mutations in the ε subunit had a larger effect and could either increase or decrease E(2), but did not induce kinetic heterogeneity. There are broad-but-weak energetic interactions between αL9 residues and others at the αE–T interface, as well as between the εL9 residue and others at the P–C interface (in particular, the M2–M3 linker). These interactions serve, in part, to maintain the structural integrity of the AChR assembly at the E–T interface. Overall, the energy changes of L9 residues are significant but smaller than in other regions of the protein.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
13
|
Bouzat C. New insights into the structural bases of activation of Cys-loop receptors. ACTA ACUST UNITED AC 2011; 106:23-33. [PMID: 21995938 DOI: 10.1016/j.jphysparis.2011.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/07/2011] [Accepted: 09/26/2011] [Indexed: 11/27/2022]
Abstract
Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Utsintong M, Rojsanga P, Ho KY, Talley TT, Olson AJ, Matsumoto K, Vajragupta O. Virtual screening against acetylcholine binding protein. ACTA ACUST UNITED AC 2011; 17:204-15. [PMID: 21956172 DOI: 10.1177/1087057111421667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are a member of the ligand-gated ion channel family and play a key role in the transfer of information across neurological networks. The X-ray crystal structure of agonist-bound α(7) acetylcholine binding protein (AChBP) has been recognized as the most appropriate template to model the ligand-binding domain of nAChR for studying the molecular mechanism of the receptor-ligand interactions. Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against AChBPs revealed 51 potential candidates. In vitro radioligand competition assays using [(3)H] epibatidine against the AChBPs from the freshwater snails, Lymnaea stagnalis, and from the marine species, Aplysia californica and the mutant (AcY55W), revealed seven compounds from the list of candidates that had micromolar to nanomolar affinities for the AChBPs. Further investigation on α(7)nAChR expressing in Xenopus oocytes and on the recombinant receptors with fluorescence resonance energy transfer (FRET)-based calcium sensor expressing in HEK cells showed that seven compounds were antagonists of α(7)nAChR, only one compound (NSC34352) demonstrated partial agonistic effect at low dose (10 µM), and two compounds (NSC36369 and NSC34352) were selective antagonists on α(7)nAchR with moderate potency. These hits serve as novel templates/scaffolds for development of more potent and specific in the AChR systems.
Collapse
Affiliation(s)
- Maleeruk Utsintong
- School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | | | | | | | | | | |
Collapse
|
15
|
McCormack TJ, Melis C, Colón J, Gay EA, Mike A, Karoly R, Lamb PW, Molteni C, Yakel JL. Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer β-sheet. J Physiol 2010; 588:4415-29. [PMID: 20837638 PMCID: PMC3008848 DOI: 10.1113/jphysiol.2010.195495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/09/2010] [Indexed: 11/08/2022] Open
Abstract
The rat α7 nicotinic acetylcholine receptor (nAChR) has a proline residue near the middle of the β9 strand. The replacement of this proline residue at position 180 (P180) by either threonine (α7-P180T) or serine (α7-P180S) slowed the onset of desensitization dramatically, with half-times of ~930 and 700 ms, respectively, compared to 90 ms for the wild-type receptor. To investigate the importance of the hydroxyl group on the position 180 side-chains, the mutant receptors α7-P180Y and α7-P180F were studied and showed half-times of desensitization of 650 and 160 ms, respectively. While a position 180 side-chain OH group may contribute to the slow desensitization rates, α7-P180S and α7-P180V resulted in receptors with similar desensitization rates, suggesting that increased backbone to backbone H bonding expected in the absence of proline at position 180 would likely exert a great effect on desensitization. Single channel recordings indicated that for the α7-P180T receptor there was a significantly reduced closed time without any change in single channel conductance (as compared to wild-type). Kinetic simulations indicated that all changes observed for the mutant channel behaviour were reproduced by decreasing the rate of desensitization, and increasing the microscopic affinity to resting receptors. Molecular dynamics (MD) simulations on a homology model were used to provide insight into likely H bond interactions within the outer β-sheet that occur when the P180 residue is mutated. All mutations analysed increased about twofold the predicted number of H bonds between the residue at position 180 and the backbone of the β10 strand. Moreover, the α7-P180T and α7-P180S mutations also formed some intrastrand H bonds along the β9 strand, although H bonding of the OH groups of the threonine or serine side-chains was predicted to be infrequent. Our results indicate that rapid desensitization of the wild-type rat α7 nAChR is facilitated by the presence of the proline residue within the β9 strand.
Collapse
Affiliation(s)
- Thomas J McCormack
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baur R, Lüscher BP, Richter L, Sigel E. A residue close to α1 loop F disrupts modulation of GABAA receptors by benzodiazepines while their binding is maintained. J Neurochem 2010; 115:1478-85. [DOI: 10.1111/j.1471-4159.2010.07052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abstract
Functional studies of the ligand gated ion channel family (nicotinic acetylcholine, serotonin Type 3, glycine and GABA receptors) along with the crystal structure of the acetylcholine binding protein (AChBP) and molecular dynamics simulations of the nAChR structure have resulted in a structural model in which the agonist-binding pocket comprises six loops (A-F) contributed by adjacent subunits. It is presumed that the binding of agonist results in a local structural rearrangement that is then transduced to the gate, causing the pore to open. Efforts are underway to better define the specific roles of the six binding loops. Several studies have suggested Loop F may play a direct role in linking the structural rearrangement within the binding pocket to the gate, although other investigations have indicated Loop F may be crucial for locking the agonist molecule into the binding site. This review will focus on the controversy surrounding the role of Loop F during GABA receptor activation.
Collapse
Affiliation(s)
- Alpa Khatri
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
18
|
Khatri A, Sedelnikova A, Weiss DS. Structural rearrangements in loop F of the GABA receptor signal ligand binding, not channel activation. Biophys J 2010; 96:45-55. [PMID: 19134470 DOI: 10.1016/j.bpj.2008.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/24/2008] [Indexed: 02/06/2023] Open
Abstract
Structure-function studies of the Cys loop family of ionotropic neurotransmitter receptors (GABA, nACh, 5-HT(3), and glycine receptors) have resulted in a six-loop (A-F) model of the agonist-binding site. Key amino acids have been identified in these loops that associate with, and stabilize, bound ligand. The next step is to identify the structural rearrangements that couple agonist binding to channel opening. Loop F has been proposed to move upon receptor activation, although it is not known whether this movement is along the conformational pathway for channel opening. We test this hypothesis in the GABA receptor using simultaneous electrophysiology and site-directed fluorescence spectroscopy. The latter method reveals structural rearrangements by reporting changes in hydrophobicity around an environmentally sensitive fluorophore attached to defined positions of loop F. Using a series of ligands that span the range from full activation to full antagonism, we show there is no correlation between the rearrangements in loop F and channel opening. Based on these data and agonist docking simulations into a structural model of the GABA binding site, we propose that loop F is not along the pathway for channel opening, but rather is a component of the structural machinery that locks ligand into the agonist-binding site.
Collapse
Affiliation(s)
- Alpa Khatri
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA. NS035291
| | | | | |
Collapse
|
19
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
20
|
Criado M, Castillo M, Mulet J, Sala F, Sala S. Role of loop 9 on the function of neuronal nicotinic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:654-9. [PMID: 20043866 DOI: 10.1016/j.bbamem.2009.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
We have studied the role of loop 9 in the function of neuronal nicotinic receptors. By systematically mutating the residues in the loop we have determined that the most important amino acids determining the coupling of binding to gating are the ones closer to the transmembrane region. Single mutations at location E173 in homomeric alpha7 receptors destroyed their function by completely abolishing the current while preserving the expression at the membrane. In contrast, heteromeric receptor alpha3beta4 with the same mutations retained some function. We conclude that loop 9 has a different role in the function of homomeric and heteromeric receptors.
Collapse
Affiliation(s)
- Manuel Criado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550-Alicante, Spain
| | | | | | | | | |
Collapse
|
21
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
22
|
The positive allosteric modulator morantel binds at noncanonical subunit interfaces of neuronal nicotinic acetylcholine receptors. J Neurosci 2009; 29:8734-42. [PMID: 19587280 DOI: 10.1523/jneurosci.1859-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We are interested in the positive allosteric modulation of neuronal nicotinic acetylcholine (ACh) receptors and have recently shown that the anthelmintic compound morantel potentiates by enhancing channel gating of the alpha3beta2 subtype. Based on the demonstration that morantel-elicited currents were inhibited by the classic ACh competitor dihydro-beta-erythroidine in a noncompetitive manner and that morantel still potentiates at saturating concentrations of agonist (Wu et al., 2008), we hypothesized that morantel binds at the noncanonical beta2(+)/alpha3(-) subunit interface. In the present study, we created seven cysteine-substituted subunits by site-directed mutagenesis, choosing residues in the putative morantel binding site with the aid of structural homology models. We coexpressed the mutant subunits and their respective wild-type partners in Xenopus oocytes and characterized the morantel potentiation of ACh-evoked currents, as well as morantel-evoked currents, before and after treatment with a variety of methanethiosulfonate (MTS)-based compounds, using voltage-clamp recordings. The properties of four of the seven mutants, two residues on each side of the interface, were changed by MTS treatments. Coapplication with ACh enhanced the extent of MTS modification for alpha3A106Cbeta2 and alpha3beta2S192C receptors. The activities of two mutants, alpha3T115Cbeta2 and alpha3beta2T150C, were dramatically altered by MTS modification. For alpha3beta2T150C, while peak current amplitudes were reduced, potentiation was enhanced. For alpha3T115Cbeta2, both current amplitudes and potentiation were reduced. MTS modification and morantel were mutually inhibitory: MTS treatment decreased morantel-evoked currents and morantel decreased the rate of MTS modification. We conclude that the four residues showing MTS effects contribute to the morantel binding site.
Collapse
|
23
|
Lee BH, Choi SH, Pyo MK, Shin TJ, Hwang SH, Kim BR, Lee SM, Lee JH, Lee JH, Lee HS, Choe H, Han KH, Kim HC, Rhim H, Yong JH, Nah SY. A role for Leu247 residue within transmembrane domain 2 in ginsenoside-mediated alpha7 nicotinic acetylcholine receptor regulation. Mol Cells 2009; 27:591-9. [PMID: 19466608 DOI: 10.1007/s10059-009-0073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 10/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not alpha7, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of alpha7 nAChR induces alterations in channel gating properties and converts alpha7 nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside Rg(3) (Rg(3)) activity against the alpha7 nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to Rg(3). We further characterized Rg(3) regulation of L247T receptors. We found that Rg(3) inhibition of mutant alpha7 nAChR channel currents was reversible and concentration-dependent. Rg(3) inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between Rg(3) and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in Rg(3) interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that Rg(3) forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas Rg(3) localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for Rg(3) at the channel pore.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barron SC, McLaughlin JT, See JA, Richards VL, Rosenberg RL. An allosteric modulator of alpha7 nicotinic receptors, N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596), causes conformational changes in the extracellular ligand binding domain similar to those caused by acetylcholine. Mol Pharmacol 2009; 76:253-63. [PMID: 19411608 DOI: 10.1124/mol.109.056226] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors are implicated in several neuropsychiatric disorders, including nicotine addiction, Alzheimer's, schizophrenia, and depression. Therefore, they represent a critical molecular target for drug development and targeted therapeutic intervention. Understanding the molecular mechanisms by which allosteric modulators enhance activation of these receptors is crucial to the development of new drugs. We used the substituted cysteine accessibility method to study conformational changes induced by the positive allosteric modulator N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596) in the extracellular ligand binding domain of alpha7 nicotinic receptors carrying the L247T mutation. PNU-120596 caused changes in cysteine accessibility at the inner beta sheet, transition zone, and agonist binding site. These changes in accessibility are similar to but not identical to those caused by ACh alone. In particular, PNU-120596 induced changes in MTSEA accessibility at N170C (in the transition zone) that were substantially different from those evoked by acetylcholine (ACh). We found that PNU-120596 induced changes at position E172C in the absence of allosteric modulation. We identified a cysteine mutation of the agonist binding site (W148C) that exhibited an unexpected phenotype in which PNU-120596 acts as a full agonist. In this mutant, ACh-evoked currents were more sensitive to thiol modification than PNU-evoked currents, suggesting that PNU-120596 does not bind at unoccupied agonist-binding sites. Our results provide evidence that binding sites for PNU-120596 are not in the agonist-binding sites and demonstrate that positive allosteric modulators such as PNU-120596 enhance agonist-evoked gating of nicotinic receptors by eliciting conformational effects that are similar but nonidentical to the gating conformations promoted by ACh.
Collapse
Affiliation(s)
- Sean C Barron
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
25
|
McLaughlin JT, Barron SC, See JA, Rosenberg RL. Conformational changes in alpha 7 acetylcholine receptors underlying allosteric modulation by divalent cations. BMC Pharmacol 2009; 9:1. [PMID: 19144123 PMCID: PMC2632993 DOI: 10.1186/1471-2210-9-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/13/2009] [Indexed: 11/22/2022] Open
Abstract
Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172.
Collapse
Affiliation(s)
- James T McLaughlin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA.
| | | | | | | |
Collapse
|
26
|
Bernal JA, Mulet J, Castillo M, Criado M, Sala S, Sala F. Binding-gating coupling in a nondesensitizing alpha7 nicotinic receptor A single channel pharmacological study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:410-6. [PMID: 19063861 DOI: 10.1016/j.bbamem.2008.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
The highly conserved alphaLys145 has been suggested to play an important role in the early steps of activation of the nicotinic acetylcholine receptor (nAChR) by acetylcholine. Both macroscopic and single channel currents were recorded in the slowly desensitizing mutants L248T- and K145A-L248T-alpha7 receptors expressed in Xenopus oocytes. On ACh-evoked currents, substitution of Lys145 by alanine showed the same effects that in wild type receptors: moderately decreased gating function and a more-than-expected loss of ACh potency, thus validating the experimental model. Single channel analysis quantitatively agreed with macroscopic data and revealed that impaired gating function in the double mutant alpha7K145A/L248T is the consequence of a slower opening rate, beta. Several nicotinic agonists were also studied, showing important features. Particularly, dimethylphenylpiperazinium (DMPP), acting as an antagonist in alpha7K145A, became a full agonist in alpha7K145A/L248T. Single channel analysis of DMPP-evoked currents showed effects of Lys145 removal similar to those observed with ACh. Data suggest that alpha7Lys145 facilitates the early steps of channel activation. Moreover, the slowly desensitizing mutant alpha7L248T could be an interesting tool for the study of channel activation in alpha7 receptors. Nevertheless, its extensively altered pharmacology precludes the simple extrapolation of pharmacological data obtained in singly mutated alpha7 receptors.
Collapse
Affiliation(s)
- José Antonio Bernal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550-Alicante, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Huang X, Zheng F, Stokes C, Papke RL, Zhan CG. Modeling binding modes of alpha7 nicotinic acetylcholine receptor with ligands: the roles of Gln117 and other residues of the receptor in agonist binding. J Med Chem 2008; 51:6293-302. [PMID: 18826295 DOI: 10.1021/jm800607u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive molecular docking, molecular dynamics simulations, and binding free energy calculations have been performed to understand how alpha7-specific agonists of nicotinic acetylcholine receptor (nAChR), including AR-R17779 (1), GTS-21 (4), and 4-OH-GTS-21 (5), interact with the alpha7 receptor, leading to important new insights into the receptor-agonist binding. In particular, the cationic head of 4 and 5 has favorable hydrogen bonding and cation-pi interactions with residue Trp149. The computational results have also led us to better understand the roles of Gln117 and other residues in the receptor binding with agonists. The computational predictions are supported by data obtained from wet experimental tests. The new insights into the binding and structure-activity relationship obtained from this study should be valuable for future rational design of more potent and selective agonists of the alpha7 receptor.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
28
|
Mapping a molecular link between allosteric inhibition and activation of the glycine receptor. Nat Struct Mol Biol 2008; 15:1084-93. [PMID: 18806798 DOI: 10.1038/nsmb.1492] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/27/2008] [Indexed: 11/08/2022]
Abstract
Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn(2+)-inhibition site. Mutating these hydrophobic residues disrupted Zn(2+) inhibition, generating novel Zn(2+)-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn(2+)-inhibition site, and to D84 and D86, on a neighboring beta3 strand, forming a Zn(2+)-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.
Collapse
|
29
|
Spontaneous conformational change and toxin binding in alpha7 acetylcholine receptor: insight into channel activation and inhibition. Proc Natl Acad Sci U S A 2008; 105:8280-5. [PMID: 18541920 DOI: 10.1073/pnas.0710530105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic AChRs (nAChRs) represent a paradigm for ligand-gated ion channels. Despite intensive studies over many years, our understanding of the mechanisms of activation and inhibition for nAChRs is still incomplete. Here, we present molecular dynamics (MD) simulations of the alpha7 nAChR ligand-binding domain, both in apo form and in alpha-Cobratoxin-bound form, starting from the respective homology models built on crystal structures of the acetylcholine-binding protein. The toxin-bound form was relatively stable, and its structure was validated by calculating mutational effects on the toxin-binding affinity. However, in the apo form, one subunit spontaneously moved away from the conformation of the other four subunits. This motion resembles what has been proposed for leading to channel opening. At the top, the C loop and the adjacent beta7-beta8 loop swing downward and inward, whereas at the bottom, the F loop and the C terminus of beta10 swing in the opposite direction. These swings appear to tilt the whole subunit clockwise. The resulting changes in solvent accessibility show strong correlation with experimental results by the substituted cysteine accessibility method upon addition of acetylcholine. Our MD simulation results suggest a mechanistic model in which the apo form, although predominantly sampling the "closed" state, can make excursions into the "open" state. The open state has high affinity for agonists, leading to channel activation, whereas the closed state upon distortion has high affinity for antagonists, leading to inhibition.
Collapse
|
30
|
Wu TY, Smith CM, Sine SM, Levandoski MM. Morantel allosterically enhances channel gating of neuronal nicotinic acetylcholine alpha 3 beta 2 receptors. Mol Pharmacol 2008; 74:466-75. [PMID: 18458055 DOI: 10.1124/mol.107.044388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied allosteric potentiation of rat alpha3beta2 neuronal nicotinic acetylcholine receptors (nAChRs) by the anthelmintic compound morantel. Macroscopic currents evoked by acetylcholine (ACh) from nAChRs expressed in Xenopus laevis oocytes increase up to 8-fold in the presence of low concentrations of morantel (< or =10 microM); the magnitude of the potentiation depends on both agonist and modulator concentrations. It is noteworthy that the potentiated currents exceed the maximum currents achieved by saturating (millimolar) concentrations of agonist. Studies of macroscopic currents elicited by prolonged drug applications (100-300 s) indicate that morantel does not increase alpha3beta2 receptor activity by reducing slow (> or =1 s) desensitization. Instead, using outside-out patch-clamp recordings, we demonstrate that morantel increases the frequency of single-channel openings and alters the bursting characteristics of the openings in a manner consistent with enhanced channel gating; these results quantitatively explain the macroscopic current potentiation. Morantel is a very weak agonist alone, but we show that the classic competitive antagonist dihydro-beta-erythroidine inhibits morantel-evoked currents noncompetitively, indicating that morantel does not bind to the canonical ACh binding sites.
Collapse
Affiliation(s)
- Tse-Yu Wu
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Many clinically important drugs target ligand-gated ion channels; however, the mechanisms by which these drugs modulate channel function remain elusive. Benzodiazepines (BZDs), anesthetics, and barbiturates exert their CNS actions by binding to GABA(A) receptors and modulating their function. The structural mechanisms by which BZD binding is transduced to potentiation or inhibition of GABA-induced current (I(GABA)) are essentially unknown. Here, we explored the role of the gamma(2)Q182-R197 region (Loop F/9) in the modulation of I(GABA) by positive (flurazepam, zolpidem) and negative [3-carbomethoxy-4-ethyl-6,7-dimethoxy-beta-carboline (DMCM)] BZD ligands. Each residue was individually mutated to cysteine, coexpressed with wild-type alpha(1) and beta(2) subunits in Xenopus oocytes, and analyzed using two-electrode voltage clamp. Individual mutations differentially affected BZD modulation of I(GABA). Mutations affecting positive modulation span the length of this region, whereas gamma(2)W183C at the beginning of Loop F was the only mutation that adversely affected DMCM inhibition. Radioligand binding experiments demonstrate that mutations in this region do not alter BZD binding, indicating that the observed changes in modulation result from changes in BZD efficacy. Flurazepam and zolpidem significantly slowed covalent modification of gamma(2)R197C, whereas DMCM, GABA, and the allosteric modulator pentobarbital had no effects, demonstrating that gamma(2)Loop F is a specific transducer of positive BZD modulator binding. Therefore, gamma(2)Loop F plays a key role in defining BZD efficacy and is part of the allosteric pathway allowing positive BZD modulator-induced structural changes at the BZD binding site to propagate through the protein to the channel domain.
Collapse
|
32
|
Mourot A, Bamberg E, Rettinger J. Agonist- and competitive antagonist-induced movement of loop 5 on the α subunit of the neuronal α4β4 nicotinic acetylcholine receptor. J Neurochem 2008; 105:413-24. [DOI: 10.1111/j.1471-4159.2007.05151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Thomas BE, Woznica I, Mierke DF, Wittelsberger A, Rosenblatt M. Conformational changes in the parathyroid hormone receptor associated with activation by agonist. Mol Endocrinol 2008; 22:1154-62. [PMID: 18258686 DOI: 10.1210/me.2007-0520] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Binding of hormones to their cognate G protein-coupled receptors (GPCRs) induces conformational shifts within the receptor based on evidence from a few hormone-receptor systems. Employing an engineered disulfide bond formation strategy and guided by a previously established model of the PTH-PTH receptor (PTHR)1 bimolecular complex, we set out to document and characterize the nature of agonist-induced changes in this family B GPCR. A mutant PTHR1 was generated which incorporates a Factor Xa cleavage site in the third intracellular loop. Treatment with Factor Xa fragments the receptor. However, if a new disulfide bond was formed before exposure to the enzyme, the fragments remain held together. A set of double cysteine-containing mutants were designed to probe the internal relative movements of transmembrane (TM) helices 2 and TM7. PTH enhanced formation of disulfide bonds in the K240C/F447C and A242C/F447C mutants. For the F238C/F447C mutant, a disulfide bond is formed in the basal state, but is disrupted by interaction with PTH. For the D241C/F447C PTHR1 construct, no disulfide bond formation was observed in either the basal or hormone-bound state. These findings demonstrate that the conformation of PTHR1 is altered from the basal state when PTH is bound. Novel information regarding spatial proximities between TM2 and TM7 of PTHR1 and the nature of relative movements between the two transmembrane regions was revealed. The data confirm and extend the experimentally derived model of the PTH-PTHR1 complex and provide insights at a new level of detail into the early events in PTHR1 activation by PTH.
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
34
|
Gay EA, Yakel JL. Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol 2007; 584:727-33. [PMID: 17823204 PMCID: PMC2276999 DOI: 10.1113/jphysiol.2007.142554] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are in the superfamily of Cys-loop ligand-gated ion channels, and are pentameric assemblies of five subunits, with each subunit arranged around the central ion-conducting pore. The binding of ACh to the extracellular interface between two subunits induces channel opening. With the recent 4 A resolution of the Torpedo nAChR, and the crystal structure of the related molluscan ACh binding protein, much has been learned about the structure of the ligand binding domain and the channel pore, as well as major structural rearrangements that may confer channel opening. For example, the putative pathway coupling agonist binding to channel gating may include a major rearrangement of the C-loop within the ligand binding pocket, and the disruption of a salt bridge between an arginine residue at the end of the beta10 strand and a glutamate residue in the beta1-beta2 linker. Here we will review and discuss the latest structural findings aiming to further refine the transduction pathway linking binding to gating for the nAChR channels, and discuss similarities and differences among the different members of this Cys-loop superfamily of receptors.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
35
|
McLaughlin JT, Fu J, Rosenberg RL. Agonist-driven conformational changes in the inner beta-sheet of alpha7 nicotinic receptors. Mol Pharmacol 2007; 71:1312-8. [PMID: 17325129 DOI: 10.1124/mol.106.033092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cys-loop ligand-gated ion channels assemble as pentameric proteins, and each monomer contributes two structural elements: an extracellular ligand-binding domain (LBD) and a transmembrane ion channel domain. Models of receptor activation include rotational movements of subunits leading to opening of the ion channel. We tested this idea using substituted cysteine accessibility to track conformational changes in the inner beta sheet of the LBD. Using a nondesensitizing chick alpha7 background (L(247)T), we constructed 18 consecutive cysteine replacement mutants (Leu(36) to Ile(53)) and tested each for expression of acetylcholine (ACh)-evoked currents and functional sensitivity to thiol modification. We measured rates of modification in the presence and absence of ACh to identify conformational changes associated with receptor activation. Resting modification rates of eight substituted cysteines in the beta1 and beta2 strands and the sequence between them (loop 2) varied over several orders of magnitude, suggesting substantial differences in the accessibility or electrostatic environment of individual side chains. These differences were in general agreement with structural models of the LBD. Eight of 18 cysteine replacements displayed ACh-dependent changes in modification rates, indicating a change in the accessibility or electrostatic environment of the introduced cysteine during activation. We were surprised that the effects of agonist exposure were difficult to reconcile with rotational models of activation. Acetylcholine reduced the modification rate of M(40)C but increased it at N(52)C despite the close physical proximity of these residues. Our results suggest that models that depend strictly on rigid-body rotation of the LBD may provide an incomplete description of receptor activation.
Collapse
Affiliation(s)
- James T McLaughlin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | |
Collapse
|
36
|
Huang X, Zheng F, Chen X, Crooks PA, Dwoskin LP, Zhan CG. Modeling Subtype-Selective Agonists Binding with α4β2 and α7 Nicotinic Acetylcholine Receptors: Effects of Local Binding and Long-Range Electrostatic Interactions. J Med Chem 2006; 49:7661-74. [PMID: 17181149 DOI: 10.1021/jm0606701] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The subtype-selective binding of 14 representative agonists with alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs) has been studied by performing homology modeling, molecular docking, geometry optimizations, and microscopic and phenomenological binding free energy calculations. All of the computational results demonstrate that the subtype selectivity of the agonists binding with alpha4beta2 and alpha7 7 nAChRs is affected by both local binding and long-range electrostatic interactions between the receptors and the protonated structures of the agonists. The effects of the long-range electrostatic interactions are mainly due to the distinct difference in the net charge of the ligand-binding domain between the two nAChR subtypes. For the alpha4beta2-selective agonists examined, the microscopic binding modes with the alpha4beta2 nAChR are very similar to the corresponding modes with the alpha7 nAChR, and therefore, the subtype selectivity of these agonists binding with alpha4beta2 and alpha7 nAChRs is dominated by the long-range electrostatic interactions. For the alpha7-selective agonists, their microscopic binding modes with the alpha7 nAChR are remarkably different from those with the alpha4beta2 nAChR so that the local binding (including the hydrogen bonding and cation-pi interactions) with the alpha7 nAChR is much stronger than that with the alpha4beta2 nAChR. The calculated phenomenological binding free energies are in good agreement with available experimental data for the relative binding free energies concerning the subtype selectivity of agonists binding with the two different nAChR subtypes. The fundamental insights obtained in the present study should be valuable for future rational design of potential therapeutic agents targeted to specific nAChR subtypes.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hibbs RE, Radic Z, Taylor P, Johnson DA. Influence of agonists and antagonists on the segmental motion of residues near the agonist binding pocket of the acetylcholine-binding protein. J Biol Chem 2006; 281:39708-18. [PMID: 17068341 DOI: 10.1074/jbc.m604752200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the Lymnaea acetylcholine-binding protein as a surrogate of the extracellular domain of the nicotinic receptor, we combined site-directed labeling with fluorescence spectroscopy to assess possible linkages between ligand binding and conformational dynamics. Specifically, 2-[(5-fluoresceinyl)aminocarbonyl]ethyl methanethiosulfonate was conjugated to a free cysteine on loop C and to five substituted cysteines at strategic locations in the subunit sequence, and the backbone flexibility around each site of conjugation was measured with time-resolved fluorescence anisotropy. The sites examined were in loop C (Cys-188 using a C187S mutant), in the beta9 strand (T177C), in the beta10 strand (D194C), in the beta8-beta9 loop (N158C and Y164C), and in the beta7 strand (K139C). Conjugated fluorophores at these locations show distinctive anisotropy decay patterns indicating different degrees of segmental fluctuations near the agonist binding pocket. Ligand occupation and decay of anisotropy were assessed for one agonist (epibatidine) and two antagonists (alpha-bungarotoxin and d-tubocurarine). The Y164C and Cys-188 conjugates were also investigated with additional agonists (nicotine and carbamylcholine), partial agonists (lobeline and 4-hydroxy,2-methoxy-benzylidene anabaseine), and an antagonist (methyllycaconitine). With the exception of the T177C conjugate, both agonists and antagonists perturbed the backbone flexibility of each site; however, agonist-selective changes were only observed at Y164C in loop F where the agonists and partial agonists increased the range and/or rate of the fast anisotropy decay processes. The results reveal that agonists and antagonists produced distinctive changes in the flexibility of a portion of loop F.
Collapse
Affiliation(s)
- Ryan E Hibbs
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
38
|
Sancar F, Ericksen SS, Kucken AM, Teissére JA, Czajkowski C. Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol Pharmacol 2006; 71:38-46. [PMID: 17012619 DOI: 10.1124/mol.106.029595] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The imidazopyridine zolpidem (Ambien) is one of the most commonly prescribed sleep aids in the United States (Rush, 1998). Similar to classic benzodiazepines (BZDs), zolpidem binds at the extracellular N-terminal alpha/gamma subunit interface of the GABA-A receptor (GABAR). However, zolpidem differs significantly from classic BZDs in chemical structure and neuropharmacological properties. Thus, classic BZDs and zolpidem are likely to have different requirements for high-affinity binding to GABARs. To date, three residues--gamma2Met57, gamma2Phe77, and gamma2Met130--have been identified as necessary for high-affinity zolpidem binding (Proc Natl Acad Sci USA 94:8824-8829, 1997; Mol Pharmacol 52:874-881, 1997). In this study, we used radioligand binding techniques, gamma2/alpha1 chimeric subunits (chi), site-directed mutagenesis, and molecular modeling to identify additional gamma2 subunit residues important for high-affinity zolpidem binding. Whereas alpha1beta2chi receptors containing only the first 161 amino-terminal residues of the gamma2 subunit bind the classic BZD flunitrazepam with wild-type affinity, zolpidem affinity is decreased approximately 8-fold. By incrementally restoring gamma2 subunit sequence, we identified a seven-amino acid stretch in the gamma2 subunit loop F region (amino acids 186-192) that is required to confer high-affinity zolpidem binding to GABARs. When mapped to a homology model, these seven amino acids make up part of loop F located at the alpha/gamma interface. Based on in silico zolpidem docking, three residues within loop F, gamma2Glu189, gamma2Thr193, and gamma2Arg194, emerge as being important for stabilizing zolpidem in the BZD binding pocket and probably interact with other loop F residues to maintain the structural integrity of the BZD binding site.
Collapse
Affiliation(s)
- Feyza Sancar
- Department of Physiology, University of Wisconsin-Madison, 601 Science Dr, Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Throughout the nervous system, moment-to-moment communication relies on postsynaptic receptors to detect neurotransmitters and change the membrane potential. For the Cys-loop superfamily of receptors, recent structural data have catalysed a leap in our understanding of the three steps of chemical-to-electrical transduction: neurotransmitter binding, communication between the binding site and the barrier to ions, and opening and closing of the barrier. The emerging insights might be expected to explain how mutations of receptors cause neurological disease, but the opposite is generally true. Namely, analyses of disease-causing mutations have clarified receptor structure-function relationships as well as mechanisms governing the postsynaptic response.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
40
|
Abstract
Divalent cations promote activation of several nicotinic acetylcholine receptor (AChR) subtypes, presumably by lowering the energetic barrier between open and closed conformations. In wild-type alpha7 AChRs, binding of calcium to a particular part of the extracellular domain is required for potentiating activation. McLaughlin et al. (p. 16) tested the hypothesis that movements involved in agonist activation and calcium modulation involve a nearby beta sheet by linking strands within this sheet through disulfide bonds formed by replacing adjacent amino acids with cysteines to alter its mobility. These studies are helping to reveal how movements initiated by agonist binding to ACh binding sites are propagated through the extracellular domain of AChRs to regulate opening of the cation channel through the membrane.
Collapse
Affiliation(s)
- Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, 217 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6074, USA.
| |
Collapse
|
41
|
McLaughlin JT, Fu J, Sproul AD, Rosenberg RL. Role of the Outer β-Sheet in Divalent Cation Modulation of α7 Nicotinic Receptors. Mol Pharmacol 2006; 70:16-22. [PMID: 16533908 DOI: 10.1124/mol.106.023259] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha-7 Nicotinic acetylcholine receptors (AChRs) exhibit a positive modulation by divalent cations similar to that observed in other AChRs. In the chick alpha7 AChR, this modulation involves a conserved glutamate in loop 9 (Glu172) that undergoes agonist-dependent movements during activation. From these observations, we hypothesized that movements of the nearby beta-sheet formed by the beta7, beta9, and beta10 strands may be involved in agonist activation and/or divalent modulation. To test this hypothesis, we examined functional properties of cysteine mutations of the beta7 and beta10 strands, alone or in pairs. We postulated that reduced flexibility or mobility of the beta7/beta9/beta10-sheet as a result of introduction of a disulfide bond between the beta strands would alter activation by agonists. Using a nondesensitizing alpha7 mutant background (L247T), we identified one mutant pair, K144C + T198C, that exhibited a unique characteristic: it was fully activated by divalent cations (Ca2+, Ba2+, or Sr2+) in the absence of acetylcholine (ACh). Divalent-evoked currents were blocked by the alpha7 antagonist methyllycaconitine and were abolished when Glu172 was mutated to glutamine. When the K144C + T198C pair was expressed in wild-type alpha7 receptors, activation required both ACh and divalent cations. We conclude that the introduction of a disulfide bond into beta7/beta9/beta10 lowers the energetic barrier between open and closed conformations, probably by reducing the torsional flexibility of the beta-sheet. In this setting, divalent cations, acting at the conserved glutamate in loop 9, act as full agonists or requisite coagonists.
Collapse
Affiliation(s)
- James T McLaughlin
- Department of Pharmacology, CB# 7365, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA.
| | | | | | | |
Collapse
|
42
|
Lee WY, Sine SM. Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 2005; 438:243-7. [PMID: 16281039 DOI: 10.1038/nature04156] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 08/09/2005] [Indexed: 11/08/2022]
Abstract
Synaptic receptors respond to neurotransmitters by opening an intrinsic ion channel in the final step in synaptic transmission. How binding of the neurotransmitter is conveyed over the long distance to the channel remains a central question in neurobiology. Here we delineate a principal pathway that links neurotransmitter binding to channel gating by using a structural model of the Torpedo acetylcholine receptor at 4-A resolution, recordings of currents through single receptor channels and determinations of energetic coupling between pairs of residues. We show that a pair of invariant arginine and glutamate residues in each receptor alpha-subunit electrostatically links peripheral and inner beta-sheets from the binding domain and positions them to engage with the channel. The key glutamate and flanking valine residues energetically couple to conserved proline and serine residues emerging from the top of the channel-forming alpha-helix, suggesting that this is the point at which the binding domain triggers opening of the channel. The series of interresidue couplings identified here constitutes a primary allosteric pathway that links neurotransmitter binding to channel gating.
Collapse
Affiliation(s)
- Won Yong Lee
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
43
|
Henchman RH, Wang HL, Sine SM, Taylor P, McCammon JA. Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain. Biophys J 2005; 88:2564-76. [PMID: 15665135 PMCID: PMC1305353 DOI: 10.1529/biophysj.104.053934] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Molecular dynamics simulations of a homology model of the ligand binding domain of the alpha7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca(2+), to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca(2+) appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change.
Collapse
Affiliation(s)
- Richard H Henchman
- Howard Hughes Medical Institute, NSF Center for Theoretical Biophysics, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|