1
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
2
|
Reynés B, García-Ruiz E, van Schothorst EM, Keijer J, Oliver P, Palou A. TLCD4 as Potential Transcriptomic Biomarker of Cold Exposure. Biomolecules 2024; 14:935. [PMID: 39199323 PMCID: PMC11352221 DOI: 10.3390/biom14080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: Cold exposure induces metabolic adaptations that can promote health benefits, including increased energy disposal due to lipid mobilization in adipose tissue (AT). This study aims to identify easily measurable biomarkers mirroring the effect of cold exposure on AT. (2) Methods: Transcriptomic analysis was performed in peripheral blood mononuclear cells (PBMCs) and distinct AT depots of two animal models (ferrets and rats) exposed to cold, and in PBMCs of cold-exposed humans. (3) Results: One week of cold exposure (at 4 °C) affected different metabolic pathways and gene expression in the AT of ferrets, an animal model with an AT more similar to humans than that of rodents. However, only one gene, Tlcd4, was affected in the same way (overexpressed) in aortic perivascular and inguinal AT depots and in PBMCs, making it a potential biomarker of interest. Subsequent targeted analysis in rats showed that 1 week at 4 °C also induced Tlcd4 expression in brown AT and PBMCs, while 1 h at 4 °C resulted in reduced Tlcd4 mRNA levels in retroperitoneal white AT. In humans, no clear effects were observed. Nevertheless, decreased PBMC TLCD4 expression was observed after acute cold exposure in women with normal weight, although this effect could be attributed to short-term fasting during the procedure. No effect was evident in women with overweight or in normal-weight men. (4) Conclusions: Our results obtained for different species point toward TLCD4 gene expression as a potential biomarker of cold exposure/fat mobilization that could tentatively be used to address the effectiveness of cold exposure-mimicking therapies.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estefanía García-Ruiz
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
4
|
Grzeszczuk M, Dzięgiel P, Nowińska K. The Role of FNDC5/Irisin in Cardiovascular Disease. Cells 2024; 13:277. [PMID: 38334669 PMCID: PMC10854770 DOI: 10.3390/cells13030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Disorders of cardiomyocyte metabolism play a crucial role in many cardiovascular diseases, such as myocardial infarction, heart failure and ischemia-reperfusion injury. In myocardial infarction, cardiomyocyte metabolism is regulated by mitochondrial changes and biogenesis, which allows energy homeostasis. There are many proteins in cells that regulate and control metabolic processes. One of them is irisin (Ir), which is released from the transmembrane protein FNDC5. Initial studies indicated that Ir is a myokine secreted mainly by skeletal muscles. Further studies showed that Ir was also present in various tissues. However, its highest levels were observed in cardiomyocytes. Ir is responsible for many processes, including the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT) by increasing the expression of thermogenin (UCP1). In addition, Ir affects mitochondrial biogenesis. Therefore, the levels of FNDC5/Ir in the blood and myocardium may be important in cardiovascular disease. This review discusses the current knowledge about the role of FNDC5/Ir in cardiovascular disease.
Collapse
Affiliation(s)
- Maciej Grzeszczuk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Katarzyna Nowińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.); (P.D.)
| |
Collapse
|
5
|
Shen M, Zhang M, Mao N, Lin Z. Batokine in Central Nervous System Diseases. Mol Neurobiol 2023; 60:7021-7031. [PMID: 37526894 DOI: 10.1007/s12035-023-03490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Brown adipose tissue (BAT) is a special type of fat tissue in mammals and is also a key endocrine organ in the human body. Batokine, the endocrine effector of BAT, plays a neuroprotective role and improves the prognosis by exerting anti-apoptotic and anti-inflammatory effects, as well as by improving vascular endothelial function and other mechanisms in nerve injury diseases. The present article briefly reviewed several types of batokines related to central nervous system (CNS) diseases. Following this, the potential therapeutic value and future research direction of batokines for CNS diseases were chiefly discussed from the aspects of protective mechanism and signaling pathway.
Collapse
Affiliation(s)
- Ming Shen
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Dwaib HS, Michel MC. Is the β 3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules 2023; 13:1714. [PMID: 38136585 PMCID: PMC10742325 DOI: 10.3390/biom13121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
β3-Adrenoceptors mediate several functions in rodents that could be beneficial for the treatment of obesity and type 2 diabetes. This includes promotion of insulin release from the pancreas, cellular glucose uptake, lipolysis, and thermogenesis in brown adipose tissue. In combination, they lead to a reduction of body weight in several rodent models including ob/ob mice and Zucker diabetic fatty rats. These findings stimulated drug development programs in various pharmaceutical companies, and at least nine β3-adrenoceptor agonists have been tested in clinical trials. However, all of these projects were discontinued due to the lack of clinically relevant changes in body weight. Following a concise historical account of discoveries leading to such drug development programs we discuss species differences that explain why β3-adrenoceptors are not a meaningful drug target for the treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Haneen S. Dwaib
- Department of Clinical Nutrition and Dietetics, Palestine Ahliya University, Bethlehem P.O. Box 1041, Palestine;
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Yang X, Hao J, Luo J, Lu X, Kong X. Adipose tissue‑derived extracellular vesicles: Systemic messengers in health and disease (Review). Mol Med Rep 2023; 28:189. [PMID: 37615193 PMCID: PMC10502927 DOI: 10.3892/mmr.2023.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Adipose tissue (AT) is a complicated metabolic organ consisting of a heterogeneous population of cells that exert wide‑ranging effects on the regulation of systemic metabolism and in maintaining metabolic homeostasis. Various obesity‑related complications are associated with the development of dysfunctional AT. As an essential transmitter of intercellular information, extracellular vesicles (EVs) have recently been recognized as crucial in regulating multiple physiological functions. AT‑derived extracellular vesicles (ADEVs) have been shown to facilitate cellular communication both inside and between ATs and other peripheral organs. Here, the role of EVs released from ATs in the homeostasis of metabolic and cardiovascular diseases, cancer, and neurological disorders by delivering lipids, proteins, and nucleic acids between different cells is summarized. Furthermore, the differences in the sources of ADEVs, such as adipocytes, AT macrophages, AT‑derived stem cells, and AT‑derived mesenchymal stem cells, are also discussed. This review may provide valuable information for the potential application of ADEVs in metabolic syndrome, cardiovascular diseases, cancer, and neurological disorders.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute, Zhejiang University, Hangzhou, Zheijiang 310002, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zheijiang 310002, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zheijiang 310002, P.R. China
| | - Jiayue Hao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310058, P.R. China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310006, P.R. China
| | - Xinliang Lu
- Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xianghui Kong
- Bone Marrow Transplantation Center and Institute of Immunology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
8
|
Stroh AM, Stanford KI. Exercise-induced regulation of adipose tissue. Curr Opin Genet Dev 2023; 81:102058. [PMID: 37295241 PMCID: PMC10524364 DOI: 10.1016/j.gde.2023.102058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Exercise induces various beneficial whole-body adaptations and can delay the onset of obesity, type 2 diabetes, and cardiovascular disease. While many of the beneficial effects of exercise on skeletal muscle and the cardiovascular system have been well established, recent studies have highlighted the role of exercise-induced improvements to adipose tissue that affect metabolic and whole-body health. Studies investigating exercise-induced adaptations of white adipose tissue (WAT) and brown adipose tissue (BAT) demonstrate modifications to glucose uptake, mitochondrial activity, and endocrine profile, and a beiging of WAT in rodents. This review discusses recent studies of the exercise-induced adaptations to WAT and BAT and their implications.
Collapse
Affiliation(s)
- Andrew M Stroh
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. https://twitter.com/@AndrewStroh
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Blackwell JA, Stanford KI. Exercise-induced intertissue communication: adipose tissue and the heart. CURRENT OPINION IN PHYSIOLOGY 2023; 31:100626. [PMID: 36588657 PMCID: PMC9802643 DOI: 10.1016/j.cophys.2022.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exercise leads to numerous beneficial whole-body effects and can protect against the development of obesity, cardiometabolic, and neurodegenerative diseases. Recent studies have highlighted the importance of inter-organ crosstalk with a focus on secretory factors that mediate communication among organs, including adipose tissue and the heart. Studies investigating the effects of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT) demonstrated that adipokines are released in response to exercise and act on the heart to decrease inflammation, alter gene expression, increase angiogenesis, and improve cardiac function. This review discusses the exercise-induced adaptations to BAT and WAT and how these adaptations affect heart health and function, while highlighting the importance of tissue crosstalk.
Collapse
Affiliation(s)
- Jade A. Blackwell
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
10
|
Nieman DC, Omar AM, Kay CD, Kasote DM, Sakaguchi CA, Lkhagva A, Weldemariam MM, Zhang Q. Almond intake alters the acute plasma dihydroxy-octadecenoic acid (DiHOME) response to eccentric exercise. Front Nutr 2023; 9:1042719. [PMID: 36698469 PMCID: PMC9868138 DOI: 10.3389/fnut.2022.1042719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction This investigation determined if 4-weeks ingestion of nutrient-dense almonds mitigated post-exercise inflammation and muscle soreness and damage. Methods An acute 90-min of eccentric exercise (90-EE) was used to induce muscle damage in 64 non-obese adults not engaging in regular resistance training (ages 30-65 years, BMI < 30 kg/m2). Using a parallel group design, participants were randomized to almond (AL) (57 g/d) or cereal bar (CB) (calorie matched) treatment groups for a 4-week period prior to the 90-EE (17 exercises). Blood and 24-h urine samples were collected before and after supplementation, with additional blood samples collected immediately post-90-EE, and then daily during 4 additional days of recovery. Changes in plasma oxylipins, urinary gut-derived phenolics, plasma cytokines, muscle damage biomarkers, mood states, and exercise performance were assessed. Results The 90-EE protocol induced significant muscle damage, delayed onset of muscle soreness (DOMS), inflammation, reduced strength and power performance, and mood disturbance. Interaction effects (2 group × 7 time points) supported that AL vs. CB was associated with reduced post-exercise fatigue and tension (p = 0.051, 0.033, respectively) and higher levels of leg-back strength (p = 0.029). No group differences were found for post-90-EE increases in DOMS and six cytokines. AL was associated with lower levels of serum creatine kinase immediately- and 1-day post-exercise (p = 0.034 and 0.013, respectively). The 90-EE bout increased plasma levels immediately post-exercise for 13 oxylipins. Interaction effects revealed significantly higher levels for AL vs. CB for 12,13-DiHOME (p < 0.001) and lower levels for 9,10-DiHOME (p < 0.001). Urine levels increased in AL vs. CB for seven gut-derived phenolics including 5-(3',4'-dihydroxyphenyl)-γ-valerolactone that was inversely related to changes in plasma 9,10-DiHOME (r = -0.029, p = 0.021). Discussion These data support some positive effects of almond intake in improving mood state, retaining strength, decreasing muscle damage, increasing the generation of gut-derived phenolic metabolites, and altering the plasma oxylipin DiHOME response to unaccustomed eccentric exercise in untrained adults. The elevated post-exercise plasma levels of 12,13-DiHOME with almond intake support positive metabolic outcomes for adults engaging in unaccustomed eccentric exercise bouts.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States,*Correspondence: David C. Nieman,
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D. Kay
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Deepak M. Kasote
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Ankhbayar Lkhagva
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Mehari Muuz Weldemariam
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
11
|
Quaranta A, Revol-Cavalier J, Wheelock CE. The octadecanoids: an emerging class of lipid mediators. Biochem Soc Trans 2022; 50:1569-1582. [PMID: 36454542 PMCID: PMC9788390 DOI: 10.1042/bst20210644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023]
Abstract
Oxylipins are enzymatic and non-enzymatic metabolites of mono- or polyunsaturated fatty acids that encompass potent lipid mediators including the eicosanoids and docosanoids. Previously considered of low interest and often dismissed as 'just fat', octadecanoid oxylipins have only recently begun to be recognized as lipid mediators in humans. In the last few years, these compounds have been found to be involved in the mediation of multiple biological processes related to nociception, tissue modulation, cell proliferation, metabolic regulation, inflammation, and immune regulation. At the same time, the study of octadecanoids is hampered by a lack of standardization in the field, a paucity of analytical standards, and a lack of domain expertise. These issues have collectively limited the investigation of the biosynthesis and bioactivity of octadecanoids. Here, we present an overview of the primary enzymatic pathways for the oxidative metabolism of 18-carbon fatty acids in humans and of the current knowledge of the major biological activity of the resulting octadecanoids. We also propose a systematic nomenclature system based upon that used for the eicosanoids in order to avoid ambiguities and resolve multiple designations for the same octadecanoid. The aim of this review is to provide an initial framework for the field and to assist in its standardization as well as to increase awareness of this class of compounds in order to stimulate research into this interesting group of lipid mediators.
Collapse
Affiliation(s)
- Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Revol-Cavalier
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Larodan Research Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
12
|
Tranter M, Stanford KI. Exosome Delivery to the Heart: What Can Brown Fat Do for You? Circ Res 2022; 131:148-150. [DOI: 10.1161/circresaha.122.321402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael Tranter
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH (M.T.)
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH (K.I.S.)
| |
Collapse
|