1
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
2
|
Fang C, Ren P, He Y, Wang Y, Yao S, Zhao C, Li X, Zhang X, Li J, Li M. Spinster homolog 2/S1P signaling ameliorates macrophage inflammatory response to bacterial infections by balancing PGE 2 production. Cell Commun Signal 2024; 22:463. [PMID: 39350143 PMCID: PMC11440679 DOI: 10.1186/s12964-024-01851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear. METHODS Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2flox/floxLyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model. RESULTS In this study, we unveil prostaglandin E2 (PGE2) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE2 production to support malate-aspartate shuttle activity. Conversely, excessive PGE2 resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE2 due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE2 in inflammation throughout infections. The regulation of PGE2 production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one. CONCLUSIONS These findings emphasize PGE2 as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Pan Ren
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yejun He
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yitian Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuting Yao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Congying Zhao
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xueyong Li
- Department of Burns and Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jinqing Li
- Department of Burns, Plastic and Wound Repair Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Wang T, Wang Y, Zhu H, Liu Z, Chen YC, Wang L, Duan S, Yin X, Jiang L. Automatic substantia nigra segmentation with Swin-Unet in susceptibility- and T2-weighted imaging: application to Parkinson disease diagnosis. Quant Imaging Med Surg 2024; 14:6337-6351. [PMID: 39281181 PMCID: PMC11400694 DOI: 10.21037/qims-24-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024]
Abstract
Background Accurately distinguishing between Parkinson disease (PD) and healthy controls (HCs) through reliable imaging method is crucial for appropriate therapeutic intervention. However, PD diagnosis is hindered by the subjective nature of the evaluation. We aimed to develop an automatic deep-learning method that can segment the substantia nigra areas on susceptibility-weighted imaging (SWI) and T2-weighted imaging (T2WI) and further differentiate patients with PD from HCs using a machine learning algorithm. Methods Magnetic resonance imaging (MRI) data from 83 patients with PD and 83 age- and sex-matched HCs were obtained on the same 3.0-T MRI scanner. A deep learning method with Swin-Unet was developed to segment volumes of interest (VOIs) on SWI and then map the VOIs on SWI to the corresponding T2WI; features were then extracted from the VOIs on SWI and T2WI. Three machine learning models were developed and compared to differentiate those with PD from HCs. Results Swin-Unet achieved a better Dice coefficient than did U-Net in SWI segmentation (0.832 vs. 0.712). Machine learning models outperformed visual analysis (P>0.05), and logistic regression (LR) achieved the best performance [area under the curve (AUC) ≥0.819] and the most stable (relative standard deviations in AUC ≤0.05). The test results showed that the AUC of the LR model based on SWI segmentation was 0.894 while that of the LR model based on T2WI segmentation was 0.876. There was no significant difference in VOIs based on manual labeling or automatic segmentation across T2WI, SWI, or a combination of the two (P>0.05). The AUCs of the LR model based on automatic segmentation were close to those of the model based on manual labeling (P>0.05). Conclusions Our approach could provide a powerful and useful method for automatically and rapidly diagnosing PD in the clinic with only T2WI.
Collapse
Affiliation(s)
- Tongxing Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yajing Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haichen Zhu
- Lab of Image Science and Technology, Key Laboratory of Computer Network and Information Integration (Ministry of Education), School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Zhen Liu
- Department of Radiology, The Affiliated ChuZhou Hospital of AnHui Medical University, Chuzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liwei Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaofeng Duan
- GE HealthCare, Precision Health Institution, Shanghai, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
5
|
Parchem K, Letsiou S, Petan T, Oskolkova O, Medina I, Kuda O, O'Donnell VB, Nicolaou A, Fedorova M, Bochkov V, Gladine C. Oxylipin profiling for clinical research: Current status and future perspectives. Prog Lipid Res 2024; 95:101276. [PMID: 38697517 DOI: 10.1016/j.plipres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Ag. Spiridonos St. Egaleo, 12243 Athens, Greece.
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Anna Nicolaou
- School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Su H, Zhou W, Chen W, Yang K, Yang M, He H, Qian C, Yuan D, Jiang K, Zhu J. PGE2 binding to EP2 promotes ureteral stone expulsion by relaxing ureter via the cAMP-PKA pathway. BMC Urol 2024; 24:117. [PMID: 38851678 PMCID: PMC11161962 DOI: 10.1186/s12894-024-01504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.
Collapse
Affiliation(s)
- Hao Su
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Wenyan Zhou
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou Province, China
| | - Weiming Chen
- Guizhou University School of Medicine, Guiyang, 550025, Guizhou Province, China
| | - Ke Yang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
- Guizhou Medical University, Guiyang, 550002, Guizhou Province, China
| | - Meng Yang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hu He
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Cheng Qian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China.
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou Province, China.
- Guizhou University School of Medicine, Guiyang, 550025, Guizhou Province, China.
- Guizhou Medical University, Guiyang, 550002, Guizhou Province, China.
- Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
7
|
Yang X, Zhang W, Wang L, Zhao Y, Wei W. Metabolite-sensing GPCRs in rheumatoid arthritis. Trends Pharmacol Sci 2024; 45:118-133. [PMID: 38182481 DOI: 10.1016/j.tips.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Persistent inflammation in damaged joints results in metabolic dysregulation of the synovial microenvironment, causing pathogenic alteration of cell activity in rheumatoid arthritis (RA). Recently, the role of metabolite and metabolite-sensing G protein-coupled receptors (GPCRs) in the RA-related inflammatory immune response (IIR) has become a focus of research attention. These GPCRs participate in the progression of RA by modulating immune cell activation, migration, and inflammatory responses. Here, we discuss recent evidence implicating metabolic dysregulation in RA pathogenesis, focusing on the connection between RA-related IIR and GPCR signals originating from the synovial joint and gut. Furthermore, we discuss future directions for targeting metabolite-sensing GPCRs for therapeutic benefit, emphasizing the importance of identifying endogenous ligands and investigating the various transduction mechanisms involved.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
8
|
Yang X, Zhao Y, Wei Q, Zhu X, Wang L, Zhang W, Liu X, Kuai J, Wang F, Wei W. GRK2 inhibits Flt-1 + macrophage infiltration and its proangiogenic properties in rheumatoid arthritis. Acta Pharm Sin B 2024; 14:241-255. [PMID: 38261818 PMCID: PMC10792976 DOI: 10.1016/j.apsb.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with a complex etiology. Monocyte-derived macrophages (MDMs) infiltration are associated with RA severity. We have reported the deletion of G-protein-coupled receptor kinase 2 (GRK2) reprograms macrophages toward an anti-inflammatory phenotype by recovering G-protein-coupled receptor signaling. However, as more GRK2-interacting proteins were discovered, the GRK2 interactome mechanisms in RA have been understudied. Thus, in the collagen-induced arthritis mouse model, we performed genetic GRK2 deletion using GRK2f/fLyz2-Cre+/- mice. Synovial inflammation and M1 polarization were improved in GRK2f/fLyz2-Cre+/- mice. Supporting experiments with RNA-seq and dual-luciferase reporter assays identified peroxisome proliferator-activated receptor γ (PPARγ) as a new GRK2-interacting protein. We further confirmed that fms-related tyrosine kinase 1 (Flt-1), which promoted macrophage migration to induce angiogenesis, was inhibited by GRK2-PPARγ signaling. Mechanistically, excess GRK2 membrane recruitment in CIA MDMs reduced the activation of PPARγ ligand-binding domain and enhanced Flt-1 transcription. Furthermore, the treatment of mice with GRK2 activity inhibitor resulted in significantly diminished CIA pathology, Flt-1+ macrophages induced-synovial inflammation, and angiogenesis. Altogether, we anticipate to facilitate the elucidation of previously unappreciated details of GRK2-specific intracellular signaling. Targeting GRK2 activity is a viable strategy to inhibit MDMs infiltration, affording a distinct way to control joint inflammation and angiogenesis of RA.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qi Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuemin Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Luping Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wankang Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xiaoyi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jiajie Kuai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Fengling Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| |
Collapse
|
9
|
Wang J, Kumar P, Engelmann C. Comprehensive insights into the multifaceted roles of the transient receptor potential vanilloid 1 channel in the digestive system. Life Sci 2023; 334:122207. [PMID: 37883862 DOI: 10.1016/j.lfs.2023.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The transient receptor potential vanilloid (TRPV) channel, a family of calcium transporters comprising six distinct members (TRPV1-6), takes on a paramount role in maintaining intracellular Ca2+ homeostasis in mammalian cells. Notably, TRPV1, among its counterparts, has emerged as the subject of extensive scrutiny, owing to its pervasive presence in diverse cellular, tissue, and organ settings. This ubiquitous distribution underscores its fundamental involvement in the genesis of pain, making it a central focus in pain-related research. However, recent investigations have unveiled that TRPV1's functional significance transcends the realm of pain modulation, extending its influence to encompass a wide spectrum of physiological and pathological processes. The ambit of TRPV1's influence encompasses not only pain responses but also embraces the intricate domains of nervous system disorders, cancer metastasis, as well as afflictions pertaining to the skin and heart. Moreover, compelling evidence now demonstrates that TRPV1 also wields substantial sway in the domain of digestive diseases, further highlighting its versatility and far-reaching impact on human health. Therefore, this comprehensive review endeavors to delve into the multifaceted roles played by TRPV1 in the various organs constituting the digestive system.
Collapse
Affiliation(s)
- Juan Wang
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Pavitra Kumar
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany.
| |
Collapse
|
10
|
Stanger L, Yamaguchi A, Yalavarthi P, Lambert S, Gilmore D, Rickenberg A, Luke C, Kumar K, Obi AT, White A, Bergh N, Dahlöf B, Holinstat M. The oxylipin analog CS585 prevents platelet activation and thrombosis through activation of the prostacyclin receptor. Blood 2023; 142:1556-1569. [PMID: 37624927 PMCID: PMC10656727 DOI: 10.1182/blood.2023020622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cardiovascular disease remains the primary cause of morbidity and mortality globally. Platelet activation is critical for maintaining hemostasis and preventing the leakage of blood cells from the vessel. There has been a paucity in the development of new drugs to target platelet reactivity. Recently, the oxylipin 12(S)-hydroxy-eicosatrienoic acid (12-HETrE), which is produced in platelets, was shown to limit platelet reactivity by activating the prostacyclin receptor. Here, we demonstrated the synthesis of a novel analog of 12-HETrE, known as CS585. Human blood and mouse models of hemostasis and thrombosis were assessed for the ability of CS585 to attenuate platelet activation and thrombosis without increasing the risk of bleeding. Human platelet activation was assessed using aggregometry, flow cytometry, western blot analysis, total thrombus formation analysis system, microfluidic perfusion chamber, and thromboelastography. Hemostasis, thrombosis, and bleeding assays were performed in mice. CS585 was shown to potently target the prostacyclin receptor on the human platelet, resulting in a highly selective and effective mechanism for the prevention of platelet activation. Furthermore, CS585 was shown to inhibit platelet function in human whole blood ex vivo, prevent thrombosis in both small and large vessels in mouse models, and exhibit long-lasting prevention of clot formation. Finally, CS585 was not observed to perturb coagulation or increase the risk of bleeding in the mouse model. Hence, CS585 represents a new validated target for the treatment of thrombotic diseases without the risk of bleeding or off-target activation observed with other prostaglandin receptor agonists.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pooja Yalavarthi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Sylviane Lambert
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Devin Gilmore
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew Rickenberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Catherine Luke
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kiran Kumar
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Andrea T. Obi
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew White
- Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Niklas Bergh
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Cereno Scientific, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Dahlöf
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Cereno Scientific, Gothenburg, Sweden
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
11
|
Huang SM, Xiong MY, Liu L, Mu J, Wang MW, Jia YL, Cai K, Tie L, Zhang C, Cao S, Wen X, Wang JL, Guo SC, Li Y, Qu CX, He QT, Cai BY, Xue C, Gan S, Xie Y, Cong X, Yang Z, Kong W, Li S, Li Z, Xiao P, Yang F, Yu X, Guan YF, Zhang X, Liu Z, Yang BX, Du Y, Sun JP. Single hormone or synthetic agonist induces G s/G i coupling selectivity of EP receptors via distinct binding modes and propagating paths. Proc Natl Acad Sci U S A 2023; 120:e2216329120. [PMID: 37478163 PMCID: PMC10372679 DOI: 10.1073/pnas.2216329120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 07/23/2023] Open
Abstract
To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.
Collapse
Affiliation(s)
- Shen-Ming Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Meng-Yao Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lei Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jianqiang Mu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Ying-Li Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Kui Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Sheng Cao
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jia-Le Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Yu Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chang-Xiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Bo-Yang Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Shiyi Gan
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Yihe Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Shuo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Research, Beijing100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Yang Du
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| |
Collapse
|
12
|
Bouhadoun A, Manikpurage HD, Deschildre C, Zalghout S, Dubourdeau M, Urbach V, Ho-Tin-Noe B, Deschamps L, Michel JB, Longrois D, Norel X. DHA, RvD1, RvD5, and MaR1 reduce human coronary arteries contractions induced by PGE 2. Prostaglandins Other Lipid Mediat 2023; 165:106700. [PMID: 36528331 DOI: 10.1016/j.prostaglandins.2022.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In patients with coronary artery disease (CAD), plasma levels of pro-inflammatory lipid mediators such as PGE2 and TxA2 are increased. They could increase vascular contraction while EPA and DHA could reduce it. Studies have been mostly conducted on animal vessels. Therefore, the aim of the study was to investigate if EPA, DHA, and DHA-derived metabolites: RvD1, RvD5 and MaR1 can modulate contraction of human coronary arteries (HCA) induced by PGE2 or TxA2 stable analogue (U46619). DHA and EPA relaxed HCA pre-contracted with PGE2. 18 h-incubation with DHA but not EPA reduced the PGE2-induced contractions. Pre-incubation with RvD1, RvD5 and MaR1 reduced the PGE2-induced contractions. Indomethacin did not significantly modify the PGE2 responses. L-NOARG (inhibitor of nitric oxide synthase), reduced only the PGE2-induced contractions in RvD1-treated rings. Finally, FPR2/ALX, GPR32 and LGR6 receptors are detected in HCA by immunofluorescence. Our results indicate that DHA and its metabolites could be beneficial for HCA blood flow and could be a therapeutic perspective for patients with CAD.
Collapse
Affiliation(s)
- Amel Bouhadoun
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Hasanga D Manikpurage
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Sara Zalghout
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | | | | | - Benoît Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Lydia Deschamps
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Dan Longrois
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Xavier Norel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France.
| |
Collapse
|
13
|
Fountain WA, Naruse M, Claiborne A, Trappe S, Trappe TA. Controlling Inflammation Improves Aging Skeletal Muscle Health. Exerc Sport Sci Rev 2023; 51:51-56. [PMID: 36722844 PMCID: PMC10033374 DOI: 10.1249/jes.0000000000000313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is associated with a decline in aging skeletal muscle health. Inflammation also seems to interfere with the beneficial skeletal muscle adaptations conferred by exercise training in older individuals. We hypothesize that the cyclooxygenase pathway is partially responsible for this negative inflammatory influence on aging skeletal muscle health and plasticity.
Collapse
|
14
|
Leng J, Zhao W, Guo J, Yu G, Zhu G, Ge J, He D, Xu Y, Chen X, Zhou Y, Liu B. E-prostanoid 3 receptor deficiency on myeloid cells protects against ischemic acute kidney injury via breaking the auto-amplification loop of necroinflammation. Kidney Int 2023; 103:100-114. [PMID: 36087809 DOI: 10.1016/j.kint.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
Necroinflammation plays an important role in disease settings such as acute kidney injury (AKI). We and others have elucidated that prostaglandins, which are critically involved in inflammation, may activate E-prostanoid 3 receptor (EP3) at low concentrations. However, how EP3 blockade interacts with regulated cell death and affects AKI remains unknown. In this study, AKI was induced by ischemia-reperfusion (30 minutes/24 hours) in Ep3 knockout (Ep3-/-), bone marrow chimeric, myeloid conditional EP3 knockout and corresponding control mice. The production of prostaglandins E2 and I2 was markedly increased after ischemia-reperfusion, and either abrogation or antagonism of EP3 ameliorated the injury. EP3 deficiency curbed inflammatory cytokine release, neutrophil infiltration and serum high-mobility group box 1 levels, but additional TLR4 inhibition with TAK-242 did not offer further protection against the injury and inflammation. The protection of Ep3-/- was predominantly mediated by suppressing Mixed Lineage Kinase domain-Like-dependent necroptosis, resulting from the inhibition of cytokine generation and the switching of cell death modality from necroptosis to apoptosis through caspase-8 up-regulation, in part due to the restraint of IL-6/JAK2/STAT3 signaling. EP3 deficiency failed to further alleviate the injury when necroptosis was inhibited. Ep3-/- in bone marrow-derived cells, particularly that in myeloid cells, protected kidneys to the same extent as that of global EP3 deletion. Thus, our results demonstrate that EP3 deficiency especially that on myeloid cells, ameliorates ischemic AKI via curbing inflammation and breaking the auto-amplification loop of necroinflammation. Hence, EP3 may be a promising target for the prevention and/or treatment of AKI.
Collapse
Affiliation(s)
- Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Wen Zhao
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Guanghui Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Dong He
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xijian Chen
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
15
|
Civelek E, Ozen G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102508. [PMID: 36270150 DOI: 10.1016/j.plefa.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Adipose tissue has been established as an endocrine organ that plays an important role in maintaining metabolic homeostasis. Adipose tissue releases several bioactive molecules called adipokines. Inflammation, dysregulation of adipokine synthesis, and secretion are observed in obesity and related diseases and cause adipose tissue dysfunction. Prostanoids, belonging to the eicosanoid family of lipid mediators, can be synthesized in adipose tissue and play a critical role in adipose tissue biology. In this review, we summarized the current knowledge regarding the interaction of prostanoids with adipokines, the expression of prostanoid receptors, and prostanoid synthase enzymes in adipose tissues in health and disease. Furthermore, the involvement of prostanoids in the physiological function or dysfunction of adipose tissue including inflammation, lipolysis, adipogenesis, thermogenesis, browning of adipocytes, and vascular tone regulation was also discussed by examining studies using pharmacological approaches or genetically modified animals for prostanoid receptors/synthase enzymes. Overall, the present review provides a perspective on the evidence from literature regarding the biological effects of prostanoids in adipose tissue. Among prostanoids, prostaglandin E2 (PGE2) is prominent in regards to its substantial role in both adipose tissue physiology and pathophysiology. Targeting prostanoids may serve as a potential therapeutic strategy for preventing or treating obesity and related diseases.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
16
|
Suno R, Sugita Y, Morimoto K, Takazaki H, Tsujimoto H, Hirose M, Suno-Ikeda C, Nomura N, Hino T, Inoue A, Iwasaki K, Kato T, Iwata S, Kobayashi T. Structural insights into the G protein selectivity revealed by the human EP3-G i signaling complex. Cell Rep 2022; 40:111323. [PMID: 36103815 DOI: 10.1016/j.celrep.2022.111323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Prostaglandin receptors have been implicated in a wide range of functions, including inflammation, immune response, reproduction, and cancer. Our group has previously determined the crystal structure of the active-like EP3 bound to its endogenous agonist, prostaglandin E2. Here, we present the single-particle cryoelectron microscopy (cryo-EM) structure of the human EP3-Gi signaling complex at a resolution of 3.4 Å. The structure reveals the binding mode of Gi to EP3 and the structural changes induced in EP3 by Gi binding. In addition, we compare the structure of the EP3-Gi complex with other subtypes of prostaglandin receptors (EP2 and EP4) bound to Gs that have been previously reported and examine the differences in amino acid composition at the receptor-G protein interface. Mutational analysis reveals that the selectivity of the G protein depends on specific amino acid residues in the second intracellular loop and TM5.
Collapse
Affiliation(s)
- Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Yukihiko Sugita
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kazushi Morimoto
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Takazaki
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Hirokazu Tsujimoto
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Chiyo Suno-Ikeda
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Norimichi Nomura
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8578, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - So Iwata
- Department of Cell Biology and Medical Chemistry, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
17
|
Prostanoid Signaling in Cancers: Expression and Regulation Patterns of Enzymes and Receptors. BIOLOGY 2022; 11:biology11040590. [PMID: 35453789 PMCID: PMC9029281 DOI: 10.3390/biology11040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient’s overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.
Collapse
|
18
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
19
|
Jin D, Zhong TP. Prostaglandin signaling in ciliogenesis and development. J Cell Physiol 2021; 237:2632-2643. [PMID: 34927727 DOI: 10.1002/jcp.30659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022]
Abstract
Prostaglandin (PG) signaling regulates a wide variety of physiological and pathological processes, including body temperature, cardiovascular homeostasis, reproduction, and inflammation. Recent studies have revealed that PGs play pivotal roles in embryo development, ciliogenesis, and organ formation. Prostaglandin E2 (PGE2) and its receptor EP4 modulate ciliogenesis by increasing the anterograde intraflagellar transport. Many G-protein-coupled receptors (GPCRs) including EP4 are localized in cilia for modulating cAMP signaling under various conditions. During development, PGE2 signaling regulates embryogenesis, hepatocyte differentiation, hematopoiesis, and kidney formation. Prostaglandins are also essential for skeletal muscle repair. This review outlines recent advances in understanding the functions and mechanisms of prostaglandin signaling in ciliogenesis, embryo development, and organ formation.
Collapse
Affiliation(s)
- Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Ozen G, Aljesri K, Abdelazeem H, Norel X, Turkyılmaz G, Turkyılmaz S, Topal G. Comparative study on the effect of aspirin, TP receptor antagonist and TxA 2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery. Life Sci 2021; 286:120073. [PMID: 34688694 DOI: 10.1016/j.lfs.2021.120073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
AIMS Thromboxane (TxA2) is synthesized from arachidonic acid (AA) via thromboxane synthase (TxS) enzyme and induces vasoconstriction via TP receptor. Our aim is to compare the effects of aspirin, TxS inhibitor and TP receptor antagonist on vascular reactivity of bypass grafts (saphenous vein and internal mammary artery). MAIN METHODS Using isolated organ bath, saphenous vein and internal mammary artery preparations were incubated with TP receptor antagonist, TxS inhibitor, aspirin, IP or EP4 receptor antagonist. Then prostaglandin (PG)E2, PGF2α, phenylephrine and AA were administered in concentration-dependent manner. The expression of prostanoid receptor and PGI2 synthase (PGIS) enzyme was determined by Western Blot. KEY FINDINGS TP receptor antagonist inhibited the contraction induced by PGE2, PGF2α, and AA but not that induced by phenylephrine in both types of vessels. Aspirin increased phenylephrine-induced contraction only in internal mammary artery and decreased AA-induced contraction in saphenous vein. TxS inhibitor decreased both PGE2 and AA-induced contraction in both types of vessels. This decrease was reversed by co-incubation of TxS inhibitor and IP/EP4 receptor antagonists. The expressions of EP3 receptor and PGIS enzyme were greater in internal mammary artery compared to saphenous vein while IP and TP receptors expressed at similar levels. SIGNIFICANCE TP receptor antagonist and TxS inhibitor are more effective to reduce contraction induced by different spasmogens in comparison to aspirin. Our results suggest that TP receptor antagonist and TxS inhibitor might have an advantage over aspirin due to their preventive effect on increased vascular reactivity observed in post-operative period of coronary artery bypass grafting.
Collapse
Affiliation(s)
- Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Khadija Aljesri
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Heba Abdelazeem
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Xavier Norel
- Université de Paris, INSERM, UMR-S 1148, CHU X. Bichat, 75018 Paris, France; Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Gulsum Turkyılmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr Sadi Konuk Education and Research Hospital Bakırkoy, Istanbul, Turkey
| | - Saygın Turkyılmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr Sadi Konuk Education and Research Hospital Bakırkoy, Istanbul, Turkey
| | - Gokce Topal
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
21
|
Fang J, Feng C, Chen W, Hou P, Liu Z, Zuo M, Han Y, Xu C, Melino G, Verkhratsky A, Wang Y, Shao C, Shi Y. Redressing the interactions between stem cells and immune system in tissue regeneration. Biol Direct 2021; 16:18. [PMID: 34670590 PMCID: PMC8527311 DOI: 10.1186/s13062-021-00306-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Wangwang Chen
- Laboratory Animal Center, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pengbo Hou
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuyi Han
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Chenchang Xu
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, People's Republic of China. .,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
22
|
Masato M, Miyata Y, Kurata H, Ito H, Mitsunari K, Asai A, Nakamura Y, Araki K, Mukae Y, Matsuda T, Harada J, Matsuo T, Ohba K, Sakai H. Oral administration of E-type prostanoid (EP) 1 receptor antagonist suppresses carcinogenesis and development of prostate cancer via upregulation of apoptosis in an animal model. Sci Rep 2021; 11:20279. [PMID: 34645904 PMCID: PMC8514456 DOI: 10.1038/s41598-021-99694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 plays an important role in carcinogenesis and malignant potential of prostate cancer (PC) cells by binding to its specific receptors, E-type prostanoid (EP) receptors. However, anti-carcinogenic effects of the EP receptor antagonist are unclear. In this study, we used a mouse model of PC. The mice were provided standard feed (control) or feed containing the EP1 receptor antagonist and were sacrificed at 10, 15, 30, and 52 weeks of age. Apoptosis was evaluated by immunohistochemical analysis using a cleaved caspase-3 assay. The incidence of cancer in the experimental group was significantly lower than that in the control group at 15, 30, and 52 weeks of age. The percentage of poorly differentiated PC cells was significantly lower in the experimental group than in the control group at 30 and 52 weeks of age. The percentage of apoptotic cells in the experimental group was significantly higher than that in the control group at 15, 30, and 52 weeks of age. These findings indicate that feeding with the addition of EP1 receptor antagonist delayed PC progression via the upregulation of apoptosis. We suggest that the EP1 receptor antagonist may be a novel chemopreventive agent for PC.
Collapse
Affiliation(s)
- Masahito Masato
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Hiroki Kurata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hidenori Ito
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuta Mukae
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tsuyoshi Matsuda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Junki Harada
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
23
|
ÖZEN G, ŞEN Eİ, ÇELİK Z, ŞAHBAZ T, TOPAL G, DIRAÇOĞLU D. Association between synovial fluid prostanoid levels and ultrasonographic findings in knee osteoarthritis. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.899751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Ochiai T, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Absence of prostacyclin greatly relieves cyclophosphamide-induced cystitis and bladder pain in mice. FASEB J 2021; 35:e21952. [PMID: 34555210 DOI: 10.1096/fj.202101025r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023]
Abstract
Cyclophosphamide (CP) has been widely used in the treatment of various malignancies and autoimmune diseases, but acrolein, a byproduct of CP, causes severe hemorrhagic cystitis as the major side effect of CP. On the other hand, a large amount of prostacyclin (PGI2 ) is produced in bladder tissues, and PGI2 has been shown to play a critical role in bladder homeostasis. PGI2 is biosynthesized from prostaglandin (PG) H2 , the common precursor of PGs, by PGI2 synthase (PTGIS) and is known to also be involved in inflammatory responses. However, little is known about the roles of PTGIS-derived PGI2 in bladder inflammation including CP-induced hemorrhagic cystitis. Using both genetic and pharmacological approaches, we here revealed that PTGIS-derived PGI2 -IP (PGI2 receptor) signaling exacerbated CP-induced bladder inflammatory reactions. Ptgis deficiency attenuated CP-induced vascular permeability and chemokine-mediated neutrophil migration into bladder tissues and then suppressed hemorrhagic cystitis. Treatment with RO1138452, an IP selective antagonist, also suppressed CP-induced cystitis. We further found that cystitis-related nociceptive behavior was also relieved in both Ptgis-/- mice and RO1138452-treated mice. Our findings may provide new drug targets for bladder inflammation and inflammatory pain in CP-induced hemorrhagic cystitis.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Chieko Yokoyama
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
25
|
Ozen G, Aljesri K, Turkyilmaz G, Turkyilmaz S, Kavala AA, Topal G, Norel X. Comparative study of coronary artery bypass graft materials: reduced contraction and ADMA levels in internal mammary artery versus saphenous vein. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 63:69-77. [PMID: 34472766 DOI: 10.23736/s0021-9509.21.11796-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Vasospasm and atherosclerosis due to low endothelial capacity are the most important causes of coronary artery bypass graft failure observed in internal mammary artery (IMA) and saphenous vein (SV). Vasospasm can be mimicked in in vitro studies by inducing vasoconstriction of graft materials. In the present study, we aimed to compare the vascular contraction induced by several spasmogens including prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2α), phenylephrine (PE), leukotriene C4 (LTC4), LTD4, potassium chloride (KCl), and arachidonic acid between IMA and SV preparations. Furthermore, endothelial capacity, nitrite and asymmetric dimethylarginine (ADMA) levels were compared between two grafts. METHODS By using organ bath, contractile responses induced by different spasmogens were compared between IMA and SV preparations derived from patients underwent coronary artery bypass surgery (n=35). The endothelial capacity was determined by acetylcholine (ACh) -induced relaxation in PE-precontracted vessels. Nitrite and ADMA levels were measured in organ culture supernatant of IMA and SV preparations. RESULTS Contractile responses induced by PGE2, PGF2α, PE, LTC4, LTD4, KCl and arachidonic acid were significantly lower in IMA preparations versus SV preparations. ACh-induced relaxation was significantly more prominent in IMA than SV preparations. Nitrite levels were greater and ADMA levels were lower in IMA versus SV preparations. CONCLUSIONS IMA has reduced capacity to constrict to several vasoconstrictor agents. Furthermore, IMA has greater endothelial capacity associated with higher nitrite levels and lower ADMA levels. Our results support the greater patency rate observed in IMA versus SV preparations.
Collapse
Affiliation(s)
- Gulsev Ozen
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey -
| | - Khadija Aljesri
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gulsum Turkyilmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr Sadi Konuk Education and Research Hospital Bakirkoy, Istanbul, Turkey
| | - Saygın Turkyilmaz
- Department of Cardiovascular Surgery, Bakirkoy Dr Sadi Konuk Education and Research Hospital Bakirkoy, Istanbul, Turkey
| | - Ali A Kavala
- Department of Cardiovascular Surgery, Bakirkoy Dr Sadi Konuk Education and Research Hospital Bakirkoy, Istanbul, Turkey
| | - Gokce Topal
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Xavier Norel
- Eicosanoids and Vascular Pharmacology Group, Université de Paris, INSERM U1148, Paris, France
| |
Collapse
|
26
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
27
|
Rittchen S, Rohrer K, Platzer W, Knuplez E, Bärnthaler T, Marsh LM, Atallah R, Sinn K, Klepetko W, Sharma N, Nagaraj C, Heinemann A. Prostaglandin D 2 strengthens human endothelial barrier by activation of E-type receptor 4. Biochem Pharmacol 2020; 182:114277. [PMID: 33038299 DOI: 10.1016/j.bcp.2020.114277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Life-threatening inflammatory conditions such as acute respiratory distress syndrome or sepsis often go hand in hand with severe vascular leakage. During inflammation, endothelial cell integrity and intact barrier function are crucial to limit leukocyte and plasma extravasation. Prostaglandin D2 (PGD2) is a potent inflammatory lipid mediator with vasoactive properties. Previous studies suggest that PGD2 is involved in the regulation of endothelial barrier function; however, it is unclear whether this is also true for primary human pulmonary microvascular endothelial cells. Furthermore, as PGD2 is a highly promiscuous ligand, we set out to determine which receptors are important in human pulmonary endothelial cells. In the current study, we found that PGD2 and the DP1 agonist BW245c potently strengthened pulmonary and dermal microvascular endothelial cell barrier function and protected against thrombin-induced barrier disruption. Yet surprisingly, these effects were mediated only to a negligible extent via DP1 receptor activation. In contrast, we observed that the EP4 receptor was most important and mediated the barrier enhancement by PGD2 and BW245c. Stimulation with PGE2 or PGD2 reduced AKT phosphorylation which could be reversed by prior blockade of EP4 receptors. These data demonstrate a novel mechanism by which PGD2 may modulate inflammation and emphasizes the role of EP4 receptors in human endothelial cell function.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Kathrin Rohrer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Wolfgang Platzer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria.
| |
Collapse
|