1
|
Kasano-Camones CI, Yokota S, Ohashi M, Sakamoto N, Ito D, Saito Y, Uchida R, Ninomiya K, Inoue Y. Hepatocyte nuclear factor 4α is a critical factor for the production of complement components in the liver. In Vitro Cell Dev Biol Anim 2024; 60:1174-1183. [PMID: 39285151 DOI: 10.1007/s11626-024-00972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 12/19/2024]
Abstract
The complement system plays an important role in biological defense as an effector to eliminate microorganisms that invade an organism and it is composed of more than 50 proteins, most of which are produced in the liver. Of these proteins, the mRNA expression of C3 and Cfb is known to be positively regulated by the nuclear receptor HNF4α. To investigate whether HNF4α regulates the complement system, we analyzed the hepatic expression of genes involved in the complement activation pathway and membrane attack complex (MAC) formation within the complement system using liver-specific Hnf4a-null mice (Hnf4aΔHep mice) and tamoxifen-induced liver-specific Hnf4a-null mice (Hnf4af/f;AlbERT2cre mice). We found that hepatic expression of many complement genes including C8a, C8b, C8g, and C9 that are involved in formation of the MAC was markedly decreased in Hnf4aΔHep mice and Hnf4af/f;AlbERT2cre mice. Furthermore, expression of C8A, C8B, and C8G was also decreased in human hepatoma cell lines in which the expression of HNF4α was suppressed, and expression of C8G and C9 was induced in a human immortalized hepatocyte cell line with forced expression of HNF4α. Transactivation of C8g and C9 was dependent on HNF4α expression of HNF4α binding sites, indicating that C8g and C9 are novel target genes of HNF4α. The results suggest that hepatic HNF4α plays an important role in regulation of the complement system, mainly MAC formation.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Satomi Yokota
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Maiko Ohashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Noriaki Sakamoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Daichi Ito
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Yoshifumi Saito
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Uchida
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazumi Ninomiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma, 371-8510, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma, 371-8510, Japan.
| |
Collapse
|
2
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Gurbuz B, Guldiken N, Reuken P, Fu L, Remih K, Preisinger C, Brůha R, Leníček M, Petrtýl J, Reissing J, Aly M, Fromme M, Zhou B, Karkossa I, Schubert K, von Bergen M, Stallmach A, Bruns T, Strnad P. Biomarkers of hepatocellular synthesis in patients with decompensated cirrhosis. Hepatol Int 2023; 17:698-708. [PMID: 36652164 DOI: 10.1007/s12072-022-10473-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIM Since hepatocytes produce majority of serum proteins, patients with cirrhosis display substantial alterations in the serum proteome. The aim of the current study was to characterize these changes and to study the prognostic utility of hepatocellular proteins available in routine clinical testing. METHODS Sera from 29 healthy controls and 43 patients with cirrhosis were subjected to untargeted proteomic analysis. Unsupervised hierarchical clustering was performed with Perseus software and R. Ingenuity pathway analysis (IPA) suggested upstream regulators that were validated in liver tissues. The behavior and prognostic usefulness of selected biomarkers was investigated in 61 controls and 285 subjects with decompensated cirrhosis. RESULTS Proteomics uncovered 65 and 16 hepatocellular serum proteins that are significantly downregulated or upregulated in patients with cirrhosis vs. controls. Hierarchical clustering revealed two main clusters and six sub-clusters. IPA identified HNF4α and IL-6 as the two major upstream regulators that were confirmed by hepatic gene expression analyses. Among pseudocholinesterase, transferrin, transthyretin, albumin, and apolipoprotein AI (Apo-AI), Apo-AI was the best predictor of 90-days transplant-free survival (AUROC 0.678; p = 0.0001) and remained an independent predictor in multivariable Cox independently of the presence of acute-on-chronic liver failure. CONCLUSION Our study reveals cirrhosis-associated changes in hepatocellular serum proteins and underlying transcription factors. Serum apolipoprotein AI may constitute a useful prognostic adjunct in patients with decompensated cirrhosis.
Collapse
Affiliation(s)
- Berivan Gurbuz
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nurdan Guldiken
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Lei Fu
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning, 530011, China
| | - Katharina Remih
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF), University Hospital RWTH, Aachen, Germany
| | - Radan Brůha
- 4th Department of Internal Medicine, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Jaromír Petrtýl
- 4th Department of Internal Medicine, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Johanna Reissing
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Mahmoud Aly
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat, 12 City, Sadat City, Egypt
| | - Malin Fromme
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Biaohuan Zhou
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Surgical Oncology, Fujian Provincial Hospital, Fuzhou, China
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.,Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Gao Y, Jin Q, Gao C, Chen Y, Sun Z, Guo G, Peng J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022; 11:3290. [PMID: 36291156 PMCID: PMC9600436 DOI: 10.3390/cells11203290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes for the larval intestine and liver, but also a considerable number of feature genes for marking the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes. Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for studying cell patterning and specification during the early development of the zebrafish intestine and liver.
Collapse
Affiliation(s)
- Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Jin
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Florentino RM, Li Q, Coard MC, Haep N, Motomura T, Diaz-Aragon R, Faccioli LAP, Amirneni S, Kocas-Kilicarslan ZN, Ostrowska A, Squires JE, Feranchak AP, Soto-Gutierrez A. Transmembrane channel activity in human hepatocytes and cholangiocytes derived from induced pluripotent stem cells. Hepatol Commun 2022; 6:1561-1573. [PMID: 35289126 PMCID: PMC9234678 DOI: 10.1002/hep4.1920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
The initial creation of human-induced pluripotent stem cells (iPSCs) set the foundation for the future of regenerative medicine. Human iPSCs can be differentiated into a variety of cell types in order to study normal and pathological molecular mechanisms. Currently, there are well-defined protocols for the differentiation, characterization, and establishment of functionality in human iPSC-derived hepatocytes (iHep) and iPSC-derived cholangiocytes (iCho). Electrophysiological study on chloride ion efflux channel activity in iHep and iCho cells has not been previously reported. We generated iHep and iCho cells and characterized them based on hepatocyte-specific and cholangiocyte-specific markers. The relevant transmembrane channels were selected: cystic fibrosis transmembrane conductance regulator, leucine rich repeat-containing 8 subunit A, and transmembrane member 16 subunit A. To measure the activity in these channels, we used whole-cell patch-clamp techniques with a standard intracellular and extracellular solution. Our iHep and iCho cells demonstrated definitive activity in the selected transmembrane channels, and this approach may become an important tool for investigating human liver biology of cholestatic diseases.
Collapse
Affiliation(s)
- Rodrigo M Florentino
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qin Li
- Department of PediatricsUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Michael C Coard
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Nils Haep
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Takashi Motomura
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ricardo Diaz-Aragon
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lanuza A P Faccioli
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sriram Amirneni
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | | - Alina Ostrowska
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - James E Squires
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Andrew P Feranchak
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,Department of PediatricsUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Alejandro Soto-Gutierrez
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA.,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA.,McGowan Institute for Regenerative MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Song Y, Shou S, Guo H, Gao Z, Liu N, Yang Y, Wang F, Deng Q, Liu J, Xie Y. Establishment and Characterization of a New Cell Culture System for Hepatitis B Virus Replication and Infection. Virol Sin 2022; 37:558-568. [PMID: 35568375 PMCID: PMC9437612 DOI: 10.1016/j.virs.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis B virus (HBV) is a primary cause of chronic liver diseases in humans. HBV infection exhibits strict host and tissue tropism. HBV core promoter (Cp) drives transcription of pregenomic RNA (pgRNA) and plays a key role in the viral life cycle. Hepatocyte nuclear factor 4α (HNF4α) acts as a major transcriptional factor that stimulates Cp. In this work, we reported that BEL7404 cell line displayed a high efficiency of DNA transfection and high levels of HBV antigen expression after transfection of HBV replicons without prominent viral replication. The introduction of exogenous HNF4α and human sodium taurocholate cotransporting polypeptide (hNTCP) expression into BEL7404 made it permissive for HBV replication and susceptible to HBV infection. BEL7404-derived cell lines with induced HBV permissiveness and susceptibility were constructed by stable co-transfection of hNTCP and Tet-inducible HNF4α followed by limiting dilution cloning. HBV replication in such cells was sensitive to inhibition by nucleotide analog tenofovir, while the infection was inhibited by HBV entry inhibitors. This cell culture system provides a new and additional tool for the study of HBV replication and infection as well as the characterization of antiviral agents. BEL7404 cells are characterized by a high transfection efficiency, but do not support canonical HBV replication. BEL7404 cells lack endogenous HNF4α expression, and exogenous HNF4α rescues canonical HBV replication. BEL7404 cells with stable hNTCP and inducible HNF4α expression support HBV infection and inducible replication. BEL7404-derived cell lines supporting HBV infection retain high transfection efficiencies and allow testing of antivirals.
Collapse
Affiliation(s)
- Yingying Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuyu Shou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China; Children's Hospital, Fudan University, Shanghai 201102, China.
| |
Collapse
|
7
|
Sun J, Li J, Li Y, Du J, Zhao N, Mai K, Ai Q. Regulation of Δ6Fads2 Gene Involved in LC-PUFA Biosynthesis Subjected to Fatty Acid in Large Yellow Croaker ( Larimichthys crocea) and Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2022; 12:biom12050659. [PMID: 35625587 PMCID: PMC9139026 DOI: 10.3390/biom12050659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
Δ6 fatty acyl desaturase (Δ6Fads2) is regarded as the first rate-limiting desaturase that catalyzes the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from 18-carbon fatty acid in vertebrates, but the underlying regulatory mechanism of fads2 has not been comprehensively understood. This study aimed to investigate the regulation role of fads2 subjected to fatty acid in large yellow croaker and rainbow trout. In vivo, large yellow croaker and rainbow trout were fed a fish oil (FO) diet, a soybean oil (SO) diet or a linseed oil (LO) diet for 10 weeks. The results show that LO and SO can significantly increase fads2 expression (p < 0.05). In vitro experiments were conducted in HEK293T cells or primary hepatocytes to determine the transcriptional regulation of fads2. The results show that CCAAT/enhancer-binding protein α (C/EBPα) can up-regulate fads2 expression. GATA binding protein 3 (GATA3) can up-regulate fads2 expression in rainbow trout but showed opposite effect in large yellow croaker. Furthermore, C/EBPα protein levels were significantly increased by LO and SO (p < 0.05), gata3 expression was increased in rainbow trout by LO but decreased in large yellow croaker by LO and SO. In conclusion, we revealed that FO replaced by LO and SO increased fads2 expression through a C/EBPα and GATA3 dependent mechanism in large yellow croaker and rainbow trout. This study might provide critical insights into the regulatory mechanisms of fads2 expression and LC-PUFA biosynthesis.
Collapse
Affiliation(s)
- Jie Sun
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jingqi Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Yongnan Li
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Jianlong Du
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Nannan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.S.); (J.L.); (Y.L.); (J.D.); (N.Z.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031943
| |
Collapse
|
8
|
Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacol Sin 2022; 43:724-734. [PMID: 34117368 PMCID: PMC8888648 DOI: 10.1038/s41401-021-00695-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent liver cancer, is considered one of the most lethal malignancies with a dismal outcome mainly due to frequent intrahepatic and distant metastasis. In the present study, we demonstrated that oroxylin A, a natural product extracted from Scutellaria radix, significantly inhibits transforming growth factor-beta1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) and metastasis in HCC. Oroxylin A blocked the TGF-β1/Smad signaling via upregulating the non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression. Oroxylin A promoted NAG-1 transcription by regulating the acetylation of CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor that binds to the NAG-1 promoter. In terms of the underlying mechanism, oroxylin A may interact with histone deacetylase 1 (HDAC1) by forming hydrogen bonds with GLY149 residue and induce proteasome-mediated degradation of HDAC1 subsequently impairing HDAC1-mediated deacetylation of C/EBPβ and promoting the expression of NAG-1. Taken together, our findings revealed a previously unknown tumor-suppressive mechanism of oroxylin A. Oroxylin A should be further investigated as a potential clinical candidate for inhibiting HCC metastasis.
Collapse
|
9
|
Barajas JM, Lin CH, Sun HL, Alencastro F, Zhu AC, Aljuhani M, Navari L, Yilmaz SA, Yu L, Corps K, He C, Duncan AW, Ghoshal K. METTL3 Regulates Liver Homeostasis, Hepatocyte Ploidy, and Circadian Rhythm-Controlled Gene Expression in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:56-71. [PMID: 34599880 PMCID: PMC8759040 DOI: 10.1016/j.ajpath.2021.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal modifier of mRNAs installed by the methyltransferase 13 (METTL3) at the (G/A)(m6A)C motif, plays a critical role in the regulation of gene expression. METTL3 is essential for embryonic development, and its dysregulation is linked to various diseases. However, the role of METTL3 in liver biology is largely unknown. In this study, METTL3 function was unraveled in mice depleted of Mettl3 in neonatal livers (Mettl3fl/fl; Alb-Cre). Liver-specific Mettl3 knockout (M3LKO) mice exhibited global decrease in m6A on polyadenylated RNAs and pathologic features associated with nonalcoholic fatty liver disease (eg, hepatocyte ballooning, ductular reaction, microsteatosis, pleomorphic nuclei, DNA damage, foci of altered hepatocytes, focal lobular and portal inflammation, and elevated serum alanine transaminase/alkaline phosphatase levels). Mettl3-depleted hepatocytes were highly proliferative, with decreased numbers of binucleate hepatocytes and increased nuclear polyploidy. M3LKO livers were characterized by reduced m6A and expression of several key metabolic transcripts regulated by circadian rhythm and decreased nuclear protein levels of the core clock transcription factors BMAL1 and CLOCK. A significant decrease in total Bmal1 and Clock mRNAs but an increase in their nuclear levels were observed in M3LKO livers, suggesting impaired nuclear export. Consistent with the phenotype, methylated (m6A) RNA immunoprecipitation coupled with sequencing and RNA sequencing revealed transcriptome-wide loss of m6A markers and alterations in abundance of mRNAs involved in metabolism in M3LKO. Collectively, METTL3 and m6A modifications are critical regulators of liver homeostasis and function.
Collapse
Affiliation(s)
- Juan M Barajas
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Cho-Hao Lin
- Department of Pathology, The Ohio State University, Columbus, Ohio; Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Hui-Lung Sun
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania
| | - Allen C Zhu
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois
| | - Mona Aljuhani
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Ladan Navari
- Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Selen A Yilmaz
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Kara Corps
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Chuan He
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pennsylvania.
| | - Kalpana Ghoshal
- Department of Pathology, The Ohio State University, Columbus, Ohio; Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
10
|
Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/Differentiation Program. Front Oncol 2021; 11:707066. [PMID: 34504787 PMCID: PMC8421684 DOI: 10.3389/fonc.2021.707066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from lysosomes and causing inappropriate proteolysis. Our study found that CSTB was downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells compared with normal controls. Immunohistochemical analysis showed that CSTB was mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity was related to the grade classification. A correlation analysis between CSTB and clinical prognosis was performed using gene expression data and clinical information acquired from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of CSTB had shorter disease-free survival times and poorer clinicopathological features (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed based on the TCGA data to explore potential mechanisms, and CSTB appeared to correlate with squamous epithelial proliferation-differentiation processes, such as epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module most associated with CSTB expression (i.e., the brown module) was also the one most associated with grade classification. Upregulation of CSTB promoted the expression levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for differentiation and keratinization in vitro. Gene expression profile data of the overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq) technology. By comparing the GSEA enrichment results of RNA-seq data (from the OSCC models overexpressing CSTB) and existing public database data, three gene sets (i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the data from both sources. Overall, our study shows that CSTB is downregulated in OSCC and might regulate the malignant characteristics of OSCC via the epithelial proliferation/differentiation program.
Collapse
Affiliation(s)
- Tian-Tian Xu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiao-Wen Zeng
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xin-Hong Wang
- Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lu-Xi Yang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Luo
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
11
|
Lai J, Jiang S, Shuai L, Zhang Y, Xia R, Chen Q, Bai L. Comparison of the biological and functional characteristics of mesenchymal stem cells from intrahepatic and identical bone marrow. Stem Cell Res 2021; 55:102477. [PMID: 34343826 DOI: 10.1016/j.scr.2021.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
In our privious work, our reseach group characterized a population of hepatic-sourced mesenchymal stem cells (MSCs) called MLpvNG2+ cells. In the present study, we compared the biological and functional characteristics of naïve MLpvNG2 cells with identical bone marrow-derived MSCs (niBM-MSCs) using in vitro (conditioned media) and in vivo (a well-set diethylnitrosamine (DEN)-induced liver fibrotic/cirrhotic murine model) procedures. The intrahepatic-sourced mesodermal MLpvNG2+ cells exhibited some biological characteristics (e.g., a set of surface markers) similar to those of extrahepatic niBM-MSCs. In responsed to signals of pathological conditions, such as singals of fibrotic/cirrhotic liver, MLpvNG2+ cells showed higher survival and favored differentiation into ALB(+) and G6Pc(+) hepatocytes, whereas niBM-MSCs predominantly differentiated into CK/KRT19(+) cholangiocytes. We identified C/EBPα/β expression as a biological characteristic differentiating these two populations of MSCs, wherein MLpvNG2+ cells are likely regulated by C/EBPβ transcriptional signaling, whereas niBM-MSCs are likely controlled by C/EBPα transcriptional signaling. Notably, although C/EBPα and C/EBPβ transcriptional signaling regulate hepatocyte and cholangiocyte fate, respectively, the expression of these proteins in MLpvNG2+ cells is, to our knowledge, reported for the first time in the present study. We used anti-C/EBP neutralizing antibodies (Abs) both in vitro and in vivo to determine the functional characteristics of these proteins. We conclude that the biological characteristics of these two populations of MSCs depend on their differential C/EBPα/β expression patterns.
Collapse
Affiliation(s)
- Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Shifang Jiang
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, the Army Medical University, No 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China.
| |
Collapse
|
12
|
Haep N, Florentino RM, Squires JE, Bell A, Soto-Gutierrez A. The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone. Semin Liver Dis 2021; 41:213-224. [PMID: 33992030 PMCID: PMC8996333 DOI: 10.1055/s-0041-1725023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic liver injury results in cirrhosis and end-stage liver disease (ESLD) which represents a leading cause of death worldwide, affecting people in their most productive years of life. Medical therapy can extend life, but the only definitive treatment is liver transplantation (LT). However, LT remains limited by access to quality donor organs and suboptimal long-term outcomes. The degeneration from healthy-functioning livers to cirrhosis and ESLD involves a dynamic process of hepatocyte damage, diminished hepatic function, and adaptation. However, the mechanisms responsible for deterioration of hepatocyte function and ultimately hepatic failure in man are poorly understood. We review the current understanding of cirrhosis and ESLD as a dynamic process and outline the current mechanisms associated with the development of hepatic failure from the clinical manifestations to energy adaptations, regeneration, and regulation of nuclear transcription factors. A new generation of therapeutics could target stabilization of hepatocyte differentiation and function to avoid the need for transplantation in patients with cirrhosis and ESLD.
Collapse
Affiliation(s)
- Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - James E. Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Zhang LL, He QK, Lv YN, Zhang ZJ, Xiang YK. Expression pattern and prognostic value of circadian clock genes in pancreatic adenocarcinoma. Chronobiol Int 2021; 38:681-693. [PMID: 33691542 DOI: 10.1080/07420528.2021.1890760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accumulating studies indicate that circadian clock genes are pivotal regulators of tumorigenesis and development of various cancers. Nevertheless, their implications in pancreatic adenocarcinoma (PAAD) remain poorly characterized. We investigated the expression pattern of circadian clock genes and evaluated their prognostic values in PAAD. Firstly, we systematically analyzed data from The Cancer Genome Atlas (TCGA) database pertaining to patient clinical information and gene expression data. We found that 19 of 20 circadian clock genes showed significantly different expression levels in comparisons between PAAD and normal tissues. In addition, 10 circadian clock genes with regression coefficients were selected to construct a new risk signature, which was then identified as an independent prognostic factor for PAAD. Mechanistically, circadian clock genes in PAAD may impact the basic state of cells and the composition of tumor-infiltrating immune cells, thus affecting disease prognosis. Finally, we construct a novel prognostic nomogram on the basis of histological nodes and risk score to precisely predict prognosis of patients with PAAD. In conclusion, our study uncovered the important role of circadian clock genes in PAAD and developed a risk signature as a promising prognostic biomarker for patients with PAAD.
Collapse
Affiliation(s)
- Le-Le Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi-Kuan He
- Department of General Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yan-Ning Lv
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Kai Xiang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Rajavel A, Schmitt AO, Gültas M. Computational Identification of Master Regulators Influencing Trypanotolerance in Cattle. Int J Mol Sci 2021; 22:ijms22020562. [PMID: 33429951 PMCID: PMC7827104 DOI: 10.3390/ijms22020562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is transmitted by the tsetse fly which carries pathogenic trypanosomes in its saliva, thus causing debilitating infection to livestock health. As the disease advances, a multistage progression process is observed based on the progressive clinical signs displayed in the host’s body. Investigation of genes expressed with regular monotonic patterns (known as Monotonically Expressed Genes (MEGs)) and of their master regulators can provide important clue for the understanding of the molecular mechanisms underlying the AAT disease. For this purpose, we analysed MEGs for three tissues (liver, spleen and lymph node) of two cattle breeds, namely trypanosusceptible Boran and trypanotolerant N’Dama. Our analysis revealed cattle breed-specific master regulators which are highly related to distinguish the genetic programs in both cattle breeds. Especially the master regulators MYC and DBP found in this study, seem to influence the immune responses strongly, thereby susceptibility and trypanotolerance of Boran and N’Dama respectively. Furthermore, our pathway analysis also bolsters the crucial roles of these master regulators. Taken together, our findings provide novel insights into breed-specific master regulators which orchestrate the regulatory cascades influencing the level of trypanotolerance in cattle breeds and thus could be promising drug targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
15
|
3D-Hepatocyte Culture Applied to Parasitology: Immune Activation of Canine Hepatic Spheroids Exposed to Leishmania infantum. Biomedicines 2020; 8:biomedicines8120628. [PMID: 33352885 PMCID: PMC7766187 DOI: 10.3390/biomedicines8120628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The application of innovative three-dimensional (3D) spheroids cell culture strategy to Parasitology offers the opportunity to closely explore host–parasite interactions. Here we present a first report on the application of 3D hepatic spheroids to unravel the immune response of canine hepatocytes exposed to Leishmania infantum. The liver, usually considered a major metabolic organ, also performs several important immunological functions and constitutes a target organ for L. infantum infection, the etiological agent of canine leishmaniasis (CanL), and a parasitic disease of major veterinary and public health concern. 3D hepatic spheroids were able to sense and immunologically react to L. infantum parasites, generating an innate immune response by increasing nitric oxide (NO) production and enhancing toll-like receptor (TLR) 2 and interleukin-10 gene expression. The immune response orchestrated by canine hepatocytes also lead to the impairment of several cytochrome P450 (CYP450) with possible implications for liver natural xenobiotic metabolization capacity. The application of meglumine antimoniate (MgA) increased the inflammatory response of 3D hepatic spheroids by inducing the expression of Nucleotide oligomerization domain (NOD) -like receptors 1 and NOD2 and TLR2, TLR4, and TLR9 and enhancing gene expression of tumour necrosis factor α. It is therefore suggested that hepatocytes are key effector cells and can activate and orchestrate the immune response to L. infantum parasites.
Collapse
|
16
|
Gao H, Zhang L, Wang L, Liu X, Hou X, Zhao F, Yan H, Wang L. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development. BMC Genomics 2020; 21:701. [PMID: 33032518 PMCID: PMC7545842 DOI: 10.1186/s12864-020-07094-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) remains a major problem associated with swine production. Thus, understanding the physiological changes of postnatal IUGR piglets would aid in improving growth performance. Moreover, liver metabolism plays an important role in the growth and survival of neonatal piglets. RESULTS By profiling the transcriptome of liver samples on postnatal Days 1, 7, and 28, our study focused on characterizing the growth, function, and metabolism in the liver of IUGR neonatal piglets. Our study demonstrates that the livers of IUGR piglets were associated with a series of complications, including inflammatory stress and immune dysregulation; cytoskeleton and membrane structure disorganization; dysregulated transcription events; and abnormal glucocorticoid metabolism. In addition, the abnormal liver function index in the serum [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total protein (TP)], coupled with hepatic pathological and ultrastructural morphological changes are indicative of liver damage and dysfunction in IUGR piglets. Moreover, these results reveal the sex-biased developmental dynamics between male and female IUGR piglets, and that male IUGR piglets may be more sensitive to disrupted metabolic homeostasis. CONCLUSIONS These observations provide a detailed reference for understanding the mechanisms and characterizations of IUGR liver functions, and suggest that the potential strategies for improving the survival and growth performance of IUGR offspring should consider the balance between postnatal catch-up growth and adverse metabolic consequences. In particular, sex-specific intervention strategies should be considered for both female and male IUGR piglets.
Collapse
Affiliation(s)
- Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
17
|
D-site binding protein regulates cell proliferation through mediating cell cycle progression in rat mesangial cells. Tissue Cell 2019; 61:35-43. [PMID: 31759405 DOI: 10.1016/j.tice.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 11/22/2022]
Abstract
Over proliferation of glomerular mesangial cells (MCs) disturbs mesangial homeostasis and leads to renal damage in mesangioproliferative glomerulonephritis. It is documented that transcriptional factors may be involved in the proliferation of MCs. This study aims to identify the key transcriptional factor that prevents the MCs from over proliferation and to clarify its regulatory mechanism. Microarray analysis of glomeruli isolated from Sprague-Dawley rats (SD rats) with or without anti-Thy1 nephritis (anti-Thy1N) showed that the cell cycle pathway was the most enriched pathway in anti-Thy1N model, and the D-site binding protein (DBP) ranked first in the cluster of transcription factors. Compare with normal rats, DBP is markedly decreased accompanied by an over proliferation of MCs in rats with anti-Thy1N. The cell proliferative capacity was measured by 5-Ethynyl-2'-deoxyuridine (EdU) assay in primary rat MCs with DBP knockdown or overexpression, respectively. The results showed that the knockdown of DBP significantly promoted the proliferation of MCs, whereas the overexpression of DBP inhibited the MCs' proliferation, compared to that of the control cells. Further study indicated that DBP arrested G1/S-phase transition by inhibiting the expression of p21, p27 and inducing the Cyclin D1 expression in MCs. The current data suggest that DBP effectively inhibits the proliferation of MCs through G1 phase arrest, and the decrease of DBP may induce mesangial over proliferation in rats with anti-Thy1N.
Collapse
|
18
|
Chen L, Zhang J, Yang X, Liu Y, Deng X, Yu C. Lysophosphatidic acid decreased macrophage foam cell migration correlated with downregulation of fucosyltransferase 8 via HNF1α. Atherosclerosis 2019; 290:19-30. [PMID: 31557675 DOI: 10.1016/j.atherosclerosis.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Aberrant fucosylation, such as α-1,6 fucosylation catalyzed by fucosyltransferase 8 (Fut8), is associated with reduced cell migration and is responsible for cholesterol-enriched foam cell accumulation in the intima in the early stage of atherosclerosis. The current study evaluated the impact of glycosyltransferases on foam cell migration induced by lysophosphatidic acid (LPA) and its potential mechanism. METHODS The mobility of foam cells was evaluated via transwell and scratch assays. The expression of Fut8 and α-1,6 fucosylation of proteins were assessed by RT-PCR, Western blotting, etc. Overexpression of Fut8 was used to explore the direct relationship between Fut8 and foam cell migration. Dual luciferase reporter assay was performed to determine whether the regulation of Fut8 by LPA occurred at the transcriptional level. Binding of hepatocyte nuclear factor 1-alpha (HNF1α) to the Fut8 promoter was assessed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. RESULTS We found that the migration capacity of foam cells induced by LPA was significantly decreased. Fut8 and α-1,6 fucosylation showed the most obvious decline after treatment with 200 μM LPA for 24 h. Overexpression of Fut8 was able to restore the foam cell migration capacity. Another important finding was that the LPA1 and LPA3 (LPA1,3) receptors were involved in the regulation of Fut8. It is interesting to note that LPA led to a decrease in Fut8 gene transcription activity, and HNF1α transcription factor played a positive role in downregulation of Fut8 promoter activity. CONCLUSIONS Our results strongly indicated that the LPA-LPA1, 3 receptor-HNF1α pathway is involved in the downregulation of Fut8, leading to diminished foam cell migration.
Collapse
Affiliation(s)
- Linmu Chen
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Zhang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xi Yang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Yan Liu
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiao Deng
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
19
|
Huang E, Huang H, Guan T, Liu C, Qu D, Xu Y, Yang J, Yan L, Xiong Y, Liang T, Wang Q, Chen L. Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett 2019; 312:11-21. [PMID: 31059759 DOI: 10.1016/j.toxlet.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) is a widely abused illicit psychoactive drug. Our previous study has shown that CCAAT-enhancer binding protein β (C/EBPβ) is an important regulator in METH-induced neuronal autophagy and apoptosis. However, the detailed molecular mechanisms underlying this process remain poorly understood. Previous studies have demonstrated that DNA damage-inducible transcript 4 (DDIT4), Trib3 (tribbles pseudo kinase 3), alpha-synuclein (α-syn) are involved in METH-induced dopaminergic neurotoxicity. We hypothesized that C/EBPβ is involved in METH-induced DDIT4-mediated neuronal autophagy and Trib3-mediated neuronal apoptosis. We tested our hypothesis by examining the effects of silencing C/EBPβ, DDIT4, Trib3 or α-syn with small interfering ribonucleic acid (siRNA) on METH-induced autophagy and apoptosis in the human neuroblastoma SH-SY5Y cells. We also measured the levels of phosphorylated tuberous sclerosis complex 2 (TSC2) protein and Parkin protein level in SH-SY5Y cells. Furthermore, we demonstrated the effect of silencing C/EBPβ on METH-caused neurotoxicity in the striatum of rats by injecting LV-shC/EBPβ lentivirus using a stereotaxic positioning system. The results showed that METH exposure increased C/EBPβ, DDIT4 protein expression. Elevated DDIT4 expression raised up p-TSC2/TSC2 protein expression ratio, inhibited mTOR signaling pathway, activating cell autophagy. We also found that METH exposure increased the expression of Trib3, α-syn, decreased the Parkin protein expression. Lowering levels of Parkin raised up α-syn expression, which initiated mitochondrial apoptosis by down-regulating anti-apoptotic Bcl-2, followed by up-regulation of pro-apoptotic Bax, resulting in translocation of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria to cytoplasm and activation of caspase-dependent pathways. These findings were supported by data showing METH-induced autophagy and apoptosis was significantly inhibited by silencing C/EBPβ, DDIT4, Trib3 or α-syn, or by Parkin over-expression. Based on the present data, a novel of mechanism on METH-induced cell toxicity is proposed, METH exposure increased C/EBPβ protein expression, triggered DDIT4/TSC2/mTOR signaling pathway, and evoked Trib3/Parkin/α-syn-related mitochondrial apoptotic signaling pathway. Collectively, these results suggest that C/EBPβ plays an important role in METH-triggered autophagy and apoptosis and it may be a potential target for therapeutics in METH-caused neurotoxicity.
Collapse
Affiliation(s)
- Enping Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Hongyan Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tianshan Guan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, People's Republic of China
| | - Dong Qu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yue Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiao Yang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Lei Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yahui Xiong
- Nanfang Hospital, Southern Medical University, The First Clinical Medicine School, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ting Liang
- Nanfang Hospital, Southern Medical University, The First Clinical Medicine School, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Qi Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
20
|
Curcumin restores hepatic epigenetic changes in propylthiouracil(PTU) Induced hypothyroid male rats: A study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 2019; 123:169-180. [DOI: 10.1016/j.fct.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|
21
|
Characterization of hepatocyte-based in vitro systems for reliable toxicity testing. Arch Toxicol 2018; 92:2981-2986. [DOI: 10.1007/s00204-018-2297-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
|
22
|
Yang M, Tao J, Wu H, Zhang L, Yao Y, Liu L, Zhu T, Fan H, Cui X, Dou H, Liu G. Responses of Transgenic Melatonin-Enriched Goats on LPS Stimulation and the Proteogenomic Profiles of Their PBMCs. Int J Mol Sci 2018; 19:ijms19082406. [PMID: 30111707 PMCID: PMC6121286 DOI: 10.3390/ijms19082406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023] Open
Abstract
The anti-inflammatory activity of melatonin (MT) has been well documented; however, little is known regarding endogenously occurring MT in this respect, especially for large animals. In the current study, we created a MT-enriched animal model (goats) overexpressing the MT synthetase gene Aanat. The responses of these animals to lipopolysaccharide (LPS) stimulation were systematically studied. It was found that LPS treatment exacerbated the inflammatory response in wild-type (WT) goats and increased their temperature to 40 °C. In addition, their granulocyte counts were also significantly elevated. In contrast, these symptoms were not observed in transgenic goats with LPS treatment. The rescue study with MT injection into WT goats who were treated with LPS confirmed that the protective effects in transgenic goats against LPS were attributed to a high level of endogenously produced MT. The proteomic analysis in the peripheral blood mononuclear cells (PBMCs) isolated from the transgenic animals uncovered several potential mechanisms. MT suppressed the lysosome formation as well as its function by downregulation of the lysosome-associated genes Lysosome-associated membrane protein 2 (LAMP2), Insulin-like growth factor 2 receptor (IGF2R), and Arylsulfatase B (ARSB). A high level of MT enhanced the antioxidant capacity of these cells to reduce the cell apoptosis induced by the LPS. In addition, the results also uncovered previously unknown information that showed that MT may have protective effects on some human diseases, including tuberculosis, bladder cancer, and rheumatoid arthritis, by downregulation of these disease-associated genes. All these observations warranted further investigations.
Collapse
Affiliation(s)
- Minghui Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Jingli Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Lixi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Tianqi Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Hao Fan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| | - Xudai Cui
- Qingdao Sanuels Industrial & Commercial Co., Ltd., Qingdao 266000, China.
| | - Haoran Dou
- Qingdao Sanuels Industrial & Commercial Co., Ltd., Qingdao 266000, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
23
|
Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Rep 2018; 21:3317-3328. [PMID: 29241556 DOI: 10.1016/j.celrep.2017.11.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.
Collapse
|
24
|
Li W, Tanikawa T, Kryczek I, Xia H, Li G, Wu K, Wei S, Zhao L, Vatan L, Wen B, Shu P, Sun D, Kleer C, Wicha M, Sabel M, Tao K, Wang G, Zou W. Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metab 2018; 28:87-103.e6. [PMID: 29805099 PMCID: PMC6238219 DOI: 10.1016/j.cmet.2018.04.022] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/15/2017] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) inhibit anti-tumor immunity. Aerobic glycolysis is a hallmark of cancer. However, the link between MDSCs and glycolysis is unknown in patients with triple-negative breast cancer (TNBC). Here, we detect abundant glycolytic activities in human TNBC. In two TNBC mouse models, 4T1 and Py8119, glycolysis restriction inhibits tumor granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) expression and reduces MDSCs. These are accompanied with enhanced T cell immunity, reduced tumor growth and metastasis, and prolonged mouse survival. Mechanistically, glycolysis restriction represses the expression of a specific CCAAT/enhancer-binding protein beta (CEBPB) isoform, liver-enriched activator protein (LAP), via the AMP-activated protein kinase (AMPK)-ULK1 and autophagy pathways, whereas LAP controls G-CSF and GM-CSF expression to support MDSC development. Glycolytic signatures that include lactate dehydrogenase A correlate with high MDSCs and low T cells, and are associated with poor human TNBC outcome. Collectively, tumor glycolysis orchestrates a molecular network of the AMPK-ULK1, autophagy, and CEBPB pathways to affect MDSCs and maintain tumor immunosuppression.
Collapse
Affiliation(s)
- Wei Li
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China
| | - Takashi Tanikawa
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Ke Wu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Pan Shu
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Celina Kleer
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Max Wicha
- University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Sabel
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kaixiong Tao
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China.
| | - Guobin Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei 430022, China.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-0669, USA; University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Programs in Immunology and Tumor Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Liu X, Liu H, Xiong Y, Yang L, Wang C, Zhang R, Zhu X. Postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. Biomed Pharmacother 2018; 104:742-750. [PMID: 29807224 DOI: 10.1016/j.biopha.2018.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Estrogen deficiency is the main factor underlying postmenopausal osteoporosis. A large number of neuropeptides, which regulate skeletal metabolism, potentially represent a regulatory pathway for the pathogenesis of osteoporosis. The aim of this study was to explore factors involved in the regulation of bone-related neuropeptides and their association with estrogen deficiency and bone metabolism. Thirty adult female Sprague-Dawley (SD) rats were randomly divided into a control group with sham surgery (n = 15) and an ovariectomy group with bilateral oophorectomy (n = 15). After 16 weeks, serum estrogen was reduced,CTX-1 was increased and P1NP was not significantly affected in the ovariectomy group and a model of osteoporosis was established. We then investigate the gene expression and protein levels of a range of neuropeptides and their receptors, including substance P (SP) and tachykinin receptor 1 (TACR1), calcitonin gene-related peptide (CGRP) and calcitonin receptor-like (CALCRL), vasoactive intestinal polypeptide (VIP) and receptor 1 and 2 (VPAC1, 2), neuropeptide Y (NPY) and receptor Y1 and Y2, in the brain and femora. Ovariectomy reduced TACR1, CGRP, CALCRL, NPY, NPY Y2 in the brain, but increased TACR1 and decreased SP, CALCRL, VIP, VPAC2 in the bone. Collectively, our data revealed that the pathogenesis of postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. These novel results are of significant importance in the development of neuropeptides as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Jinan University College of Traditional Chinese Medicine, Guangzhou 510632, PR China
| | - Hengrui Liu
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Yingquan Xiong
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Li Yang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Chaopeng Wang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Ronghua Zhang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China.
| | - Xiaofeng Zhu
- First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
26
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
27
|
Adam AAA, van der Mark VA, Donkers JM, Wildenberg ME, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. A practice-changing culture method relying on shaking substantially increases mitochondrial energy metabolism and functionality of human liver cell lines. PLoS One 2018; 13:e0193664. [PMID: 29672606 PMCID: PMC5908182 DOI: 10.1371/journal.pone.0193664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Practice-changing culturing techniques of hepatocytes are highly required to increase their differentiation. Previously, we found that human liver cell lines HepaRG and C3A acquire higher functionality and increased mitochondrial biogenesis when cultured in the AMC-Bioartificial liver (BAL). Dynamic medium flow (DMF) is one of the major contributors to this stimulatory effect. Recently, we found that DMF-culturing by shaking of HepaRG monolayers resulted in higher mitochondrial biogenesis. Here we further investigated the effect of DMF-culturing on energy metabolism and hepatic functionality of HepaRG and C3A monolayers. HepaRG and C3A DMF-monolayers were incubated with orbital shaking at 60 rpm during the differentiation phase, while control monolayers were maintained statically. Subsequently, energy metabolism and hepatic functionality were compared between static and DMF-cultures. DMF-culturing of HepaRG cells substantially increased hepatic differentiation; transcript levels of hepatic structural genes and hepatic transcription regulators were increased up to 15-fold (Cytochrome P450 3A4) and nuclear translocation of hepatic transcription factor CEBPα was stimulated. Accordingly, hepatic functions were positively affected, including ammonia elimination, urea production, bile acid production, and CYP3A4 activity. DMF-culturing shifted energy metabolism from aerobic glycolysis towards oxidative phosphorylation, as indicated by a decline in lactate production and glucose consumption, and an increase in oxygen consumption. Similarly, DMF-culturing increased mitochondrial energy metabolism and hepatic functionality of C3A cells. In conclusion, simple shaking of monolayer cultures substantially improves mitochondrial energy metabolism and hepatic differentiation of human liver cell lines. This practice-changing culture method may prove to prolong the in-vitro maintenance of primary hepatocytes and increase hepatic differentiation of stem cells.
Collapse
Affiliation(s)
- Aziza A. A. Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent A. van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Department Of Gastroenterology and Hepatology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. F. M. Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology 2018; 154:1258-1272. [PMID: 29428334 PMCID: PMC6237283 DOI: 10.1053/j.gastro.2018.01.066] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; The Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas, Madrid, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Lee EH, Oh JH, Selvaraj S, Park SM, Choi MS, Spanel R, Yoon S, Borlak J. Immunogenomics reveal molecular circuits of diclofenac induced liver injury in mice. Oncotarget 2017; 7:14983-5017. [PMID: 26934552 PMCID: PMC4924767 DOI: 10.18632/oncotarget.7698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Diclofenac is a non-steroidal anti-inflammatory drug and its use can be associated with severe adverse reactions, notably myocardial infarction, stroke and drug-induced liver injury (DILI). In pursue of immune-mediated DILI mechanisms an immunogenomic study was carried out. Diclofenac treatment of mice at 30 mg/kg for 3 days caused significant serum ALT and AST elevations, hepatomegaly and degenerative changes including hepatic glycogen depletion, hydropic swelling, cholesterolosis and eosinophilic hepatocytes with one animal presenting subsegmental infarction due to portal vein thrombosis. Furthermore, portal/periportal induction of the rate limiting enzyme in ammonia detoxification, i.e. carbamoyl phosphate synthetase 1 was observed. The performed microarray studies informed on > 600 differential expressed genes of which 35, 37 and 50 coded for inflammation, 51, 44 and 61 for immune and 116, 129 and 169 for stress response, respectively after single and repeated dosing for 3 and 14 days. Bioinformatic analysis defined molecular circuits of hepatic inflammation with the growth hormone (Ghr)− and leptin receptor, the protein-tyrosine-phosphatase, selectin and the suppressor-of-cytokine-signaling (Socs) to function as key nodes in gene regulatory networks. Western blotting confirmed induction of fibronectin and M-CSF to hallmark tissue repair and differentiation of monocytes and macrophages. Transcript expression of the macrophage receptor with collagenous structure increased > 7-fold and immunohistochemistry of CD68 evidenced activation of tissue-resident macrophages. Importantly, diclofenac treatment prompted strong expression of phosphorylated Stat3 amongst individual animals and the associated 8- and 4-fold Soc3 and Il-6 induction reinforced Ghr degradation as evidenced by immunoblotting. Moreover, immunohistochemistry confirmed regulation of master regulatory proteins of diclofenac treated mice to suggest complex pro-and anti-inflammatory reactions in immune-mediated hepatic injury. The findings encourage translational research.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea.,Department of Human and Environmental Toxicology, School of Engineering, Korea University of Science and Technology, Daejeon, 305-343, Republic of Korea
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.,Institute for Clinical Pathology, 41747 Viersen, Germany
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea.,Department of Human and Environmental Toxicology, School of Engineering, Korea University of Science and Technology, Daejeon, 305-343, Republic of Korea
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
30
|
Liu J, Patlewicz G, Williams AJ, Thomas RS, Shah I. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Chem Res Toxicol 2017; 30:2046-2059. [PMID: 28768096 DOI: 10.1021/acs.chemrestox.7b00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Animal testing alone cannot practically evaluate the health hazard posed by tens of thousands of environmental chemicals. Computational approaches making use of high-throughput experimental data may provide more efficient means to predict chemical toxicity. Here, we use a supervised machine learning strategy to systematically investigate the relative importance of study type, machine learning algorithm, and type of descriptor on predicting in vivo repeat-dose toxicity at the organ-level. A total of 985 compounds were represented using chemical structural descriptors, ToxPrint chemotype descriptors, and bioactivity descriptors from ToxCast in vitro high-throughput screening assays. Using ToxRefDB, a total of 35 target organ outcomes were identified that contained at least 100 chemicals (50 positive and 50 negative). Supervised machine learning was performed using Naïve Bayes, k-nearest neighbor, random forest, classification and regression trees, and support vector classification approaches. Model performance was assessed based on F1 scores using 5-fold cross-validation with balanced bootstrap replicates. Fixed effects modeling showed the variance in F1 scores was explained mostly by target organ outcome, followed by descriptor type, machine learning algorithm, and interactions between these three factors. A combination of bioactivity and chemical structure or chemotype descriptors were the most predictive. Model performance improved with more chemicals (up to a maximum of 24%), and these gains were correlated (ρ = 0.92) with the number of chemicals. Overall, the results demonstrate that a combination of bioactivity and chemical descriptors can accurately predict a range of target organ toxicity outcomes in repeat-dose studies, but specific experimental and methodologic improvements may increase predictivity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Information Science, University of Arkansas at Little Rock , Arkansas 72204, United States.,Oak Ridge Institute for Science Education, National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| | - Grace Patlewicz
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| | - Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, Durham, North Carolina 27711, United States
| |
Collapse
|
31
|
Burns KE, Shepherd P, Finlay G, Tingle MD, Helsby NA. Indirect regulation of CYP2C19 gene expression via DNA methylation. Xenobiotica 2017; 48:781-792. [PMID: 28840784 DOI: 10.1080/00498254.2017.1372648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kathryn Elisa Burns
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Phillip Shepherd
- School of Medical Sciences, University of Auckland, Auckland, New Zealand, and
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Malcolm Drummond Tingle
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nuala Ann Helsby
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
32
|
Tumor-suppressive effect of S-adenosylmethionine supplementation in a murine model of inflammation-mediated hepatocarcinogenesis is dependent on treatment longevity. Oncotarget 2017; 8:104772-104784. [PMID: 29285212 PMCID: PMC5739599 DOI: 10.18632/oncotarget.18300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation precedes the majority of hepatocellular carcinoma (HCC) cases. We investigated the chemopreventive potential of S-adenosylmethionine (SAM), an essential donor for all methylation reactions in the cell, at the late precancerous stage of HCC development using the Mdr2-knockout (Mdr2-KO, Abcb4−/−) mice, a model of inflammation-mediated hepatocarcinogenesis. Previously, we revealed down-regulation of the genes regulating SAM metabolism in the liver of these mice at the precancerous stages. Now, we have supplied Mdr2-KO mice at the late precancerous stage with SAM during either a short-term (17 days) or a long-term (51 days) period and explored the effects of such supplementation on tumor development, DNA methylation and gene expression in the liver. The short-term SAM supplementation significantly decreased the number of small tumor nodules, proliferating hepatocytes and the total DNA methylation level, while it increased expression of the tumor suppressor proteins Mat1a and p21. Surprisingly, the long-term SAM supplementation did not affect tumor growth and hepatocyte proliferation, while it increased the total liver DNA methylation. Our results demonstrate that the short-term SAM supplementation in the Mdr2-KO mice inhibited liver tumor development potentially by increasing multiple tumor suppressor mechanisms resulting in cell cycle arrest. The long-term SAM supplementation resulted in a bypass of the cell cycle arrest in this HCC model by a yet unknown mechanism.
Collapse
|
33
|
Lin J, Gu C, Shen Z, Liu Y, Wang W, Tao S, Cui X, Liu J, Xie Y. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway. PLoS One 2017; 12:e0174017. [PMID: 28319127 PMCID: PMC5358864 DOI: 10.1371/journal.pone.0174017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication.
Collapse
Affiliation(s)
- Junyu Lin
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Tao
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxian Cui
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| |
Collapse
|
34
|
Lake AD, Chaput AL, Novak P, Cherrington NJ, Smith CL. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis. Biochem Pharmacol 2016; 122:62-71. [PMID: 27836672 PMCID: PMC5129657 DOI: 10.1016/j.bcp.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms behind the transition from simple steatosis to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD) are not clearly understood. This hinders development of effective therapies for treatment and prevention of NASH. In this study expression profiling data from normal, steatosis, and NASH human livers were used to predict transcription factors that are misregulated as mechanistic features of NAFLD progression. Previously-published human NAFLD gene expression profiling data from normal, steatosis, and NASH livers were subjected to transcription factor binding site enrichment analysis. Selected transcription factors that bind enriched transcription factor binding sites were analyzed for changes in expression. Distinct transcription factor binding sites were enriched in genes significantly up- or down-regulated in NASH livers. Those enriched in up-regulated genes were bound by transcription factors such as FOXA, CEBP, and HNF1 family members, while those enriched in down-regulated genes were bound by nuclear receptors involved in xenobiotic sensing and lipid metabolism. Levels of mRNA and protein for selected transcription factors were significantly changed during disease progression. The study indicates that NAFLD progression involves changes in activity or expression of transcription factors that regulate genes involved in hepatic processes known to be altered in NASH. Transcription factors such as PPAR receptors, FoxA family members, and HNF4A might be targeted therapeutically to prevent NAFLD progression.
Collapse
Affiliation(s)
- April D Lake
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Alexandria L Chaput
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Petr Novak
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovska 31, Ceske Budejovice CZ-37005, Czech Republic
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
35
|
Kuttippurathu L, Patra B, Cook D, Hoek JB, Vadigepalli R. Pattern analysis uncovers a chronic ethanol-induced disruption of the switch-like dynamics of C/EBP-β and C/EBP-α genome-wide binding during liver regeneration. Physiol Genomics 2016; 49:11-26. [PMID: 27815535 DOI: 10.1152/physiolgenomics.00097.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 09/23/2016] [Accepted: 10/26/2016] [Indexed: 01/19/2023] Open
Abstract
Chronic ethanol intake impairs liver regeneration through a system-wide alteration in the regulatory networks driving the response to injury. Our study focused on the initial phase of response to 2/3rd partial hepatectomy (PHx) to investigate how adaptation to chronic ethanol intake affects the genome-wide binding profiles of the transcription factors C/EBP-β and C/EBP-α. These factors participate in complementary and often opposing functions for maintaining cellular differentiation, regulating metabolism, and governing cell growth during liver regeneration. We analyzed ChIP-seq data with a comparative pattern count (COMPACT) analysis, which exhaustively enumerates temporal patterns of discretized binding profiles to identify dominant as well as subtle patterns that may not be apparent from conventional clustering analyses. We found that adaptation to chronic ethanol intake significantly alters the genome-wide binding profile of C/EBP-β and C/EBP-α before and following PHx. A subset of these ethanol-induced changes include C/EBP-β binding to promoters of genes involved in the profibrogenic transforming growth factor-β pathway, and both C/EBP-β and C/EBP-α binding to promoters of genes involved in the cell cycle, apoptosis, homeostasis, and metabolic processes. The shift in C/EBP binding loci, coupled with an ethanol-induced increase in C/EBP-β binding at 6 h post-resection, indicates that ethanol adaptation may change both the amount and nature of C/EBP binding postresection. Taken together, our results suggest that chronic ethanol consumption leads to a spatially and temporally reorganized activity at many genomic loci, resulting in a shift in the dynamic balance and coordination of cellular processes underlying regenerative response.
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Biswanath Patra
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniel Cook
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware; and
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
37
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
38
|
Pan X, Ning M, Jeong H. Transcriptional Regulation of CYP2D6 Expression. Drug Metab Dispos 2016; 45:42-48. [PMID: 27698228 DOI: 10.1124/dmd.116.072249] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023] Open
Abstract
CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism.
Collapse
Affiliation(s)
- Xian Pan
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Miaoran Ning
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences (X.P., M.N., H.J.), and Department of Pharmacy Practice (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
39
|
Wolf B, Krieg K, Falk C, Breuhahn K, Keppeler H, Biedermann T, Schmid E, Warmann S, Fuchs J, Vetter S, Thiele D, Nieser M, Avci-Adali M, Skokowa Y, Schöls L, Hauser S, Ringelhan M, Yevsa T, Heikenwalder M, Kossatz-Boehlert U. Inducing Differentiation of Premalignant Hepatic Cells as a Novel Therapeutic Strategy in Hepatocarcinoma. Cancer Res 2016; 76:5550-61. [PMID: 27488521 DOI: 10.1158/0008-5472.can-15-3453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/27/2016] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related deaths and is reported to be resistant to chemotherapy caused by tumor-initiating cells. These tumor-initiating cells express stem cell markers. An accumulation of tumor-initiating cells can be found in 2% to 50% of all HCC and is correlated with a poor prognosis. Mechanisms that mediate chemoresistance include drug export, increased metabolism, and quiescence. Importantly, the mechanisms that regulate quiescence in tumor-initiating cells have not been analyzed in detail so far. In this research we have developed a single cell tracking method to follow up the fate of tumor-initiating cells during chemotherapy. Thereby, we were able to demonstrate that mCXCL1 exerts cellular state-specific effects regulating the resistance to chemotherapeutics. mCXCL1 is the mouse homolog of the human IL8, a chemokine that correlates with poor prognosis in HCC patients. We found that mCXCL1 blocks differentiation of premalignant cells and activates quiescence in tumor-initiating cells. This process depends on the activation of the mTORC1 kinase. Blocking of the mTORC1 kinase induces differentiation of tumor-initiating cells and allows their subsequent depletion using the chemotherapeutic drug doxorubicin. Our work deciphers the mCXCL1-mTORC1 pathway as crucial in liver cancer stem cell maintenance and highlights it as a novel target in combination with conventional chemotherapy. Cancer Res; 76(18); 5550-61. ©2016 AACR.
Collapse
Affiliation(s)
- Benita Wolf
- Department of Internal Medicine I, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathrin Krieg
- Department for Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christine Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hildegard Keppeler
- Department of Internal Medicine I, University Hospital Tuebingen, Tuebingen, Germany
| | - Tilo Biedermann
- FACS Core Facility of the Interdisciplinary Center for Clinical Research of the University Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany. Department of Dermatology and Allergy Biederstein, Technical University Munich, Munich, Germany
| | - Evi Schmid
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Steven Warmann
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Joerg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Tuebingen, Tuebingen, Germany
| | - Silvia Vetter
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Tuebingen, Tuebingen, Germany
| | - Dennis Thiele
- Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Maike Nieser
- Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Yulia Skokowa
- Division of Translational Oncology, Department of Hematology, Immunology, University Hospital Tuebingen
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany. Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - Marc Ringelhan
- Second Medical Department, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany. Institute of Virology, Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany. Institute of Virology, Technische Universität München (TUM)/Helmholtz Zentrum München (HMGU), Munich, Germany
| | - Uta Kossatz-Boehlert
- Department of Internal Medicine I, University Hospital Tuebingen, Tuebingen, Germany. Department for Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
40
|
Leiting S, Seidl S, Martinez-Palacian A, Muhl L, Kanse SM. Transforming Growth Factor-β (TGF-β) Inhibits the Expression of Factor VII-activating Protease (FSAP) in Hepatocytes. J Biol Chem 2016; 291:21020-21028. [PMID: 27462075 DOI: 10.1074/jbc.m116.744631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 01/09/2023] Open
Abstract
Deletion of the Habp2 gene encoding Factor VII-activating protease (FSAP) increases liver fibrosis in mice. A single nucleotide polymorphism (G534E) in HABP2 leads to lower enzymatic activity and is associated with enhanced liver fibrosis in humans. Liver fibrosis is associated with a decrease in FSAP expression but, to date, nothing is known about how this might be regulated. Primary mouse hepatocytes or the hepatocyte cell line, AML12, were treated with different factors, and expression of FSAP was determined. Of the various regulatory factors tested, only transforming growth factor-β (TGF-β) demonstrated a concentration- and time-dependent inhibition of FSAP expression at the mRNA and protein level. The TGF-β-Type I receptor (ALK-5) antagonist SB431542 and Smad2 siRNA, but neither SIS3, which inhibits SMAD3, nor siRNA against Smad3 could block this effect. Various regions of the HABP2 promoter region were cloned into reporter constructs, and the promoter activity was determined. Accordingly, the promoter activity, which could phenocopy changes in Habp2 mRNA in response to TGF-β, was found to be located in the 177-bp region upstream of the transcription start site, and this region did not contain any SMAD binding sites. Mutation analysis of the promoter and chromatin immunoprecipitation assays were performed to identify an important role for the ATF3 binding element. Thus, TGF-β is the most likely mediator responsible for the decrease in FSAP expression in liver fibrosis.
Collapse
Affiliation(s)
- Silke Leiting
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Sandip M Kanse
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany, Oslo University Hospital and Institute for Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway, and
| |
Collapse
|
41
|
Xu T, Shen X, Seyfert HM. Stearoyl-CoA desaturase 1 expression is downregulated in liver and udder during E. coli mastitis through enhanced expression of repressive C/EBP factors and reduced expression of the inducer SREBP1A. BMC Mol Biol 2016; 17:16. [PMID: 27439381 PMCID: PMC4955114 DOI: 10.1186/s12867-016-0069-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023] Open
Abstract
Background Stearoyl-CoA desaturase 1 (SCD1) desaturates long chain fatty acids and is therefore a key enzyme in fat catabolism. Its synthesis is downregulated in liver during illnesses caused by high levels of circulating lipopolysaccharide (LPS). SCD1 expression is known to be stimulated under adipogenic conditions through a variety of transcription factors, notably SREBP1 and C/EBPα and −β. However, mechanisms downregulating SCD1 expression during illness related reprograming of the metabolism were unknown. Escherichia coli elicited mastitis is an example of such a condition and was found to downregulates milk and milk fat synthesis. This is in part mediated through epigenetic mechanisms. We analyzed here mechanism controlling SCD1 expression in livers and udders from cows suffering from experimentally induced E. coli mastitis. Results We validated with RT-qPCR that SCD1 expression was reduced in these organs of the experimental cows. They also featured decreased levels of mRNAs encoding SREBP1a but increased levels for C/EBP α and −β. Chromatin accessibility PCR (CHART) revealed that downregulation of SCD1 expression in liver was not caused by tighter chromatin compaction of the SCD1 promoter. Reporter gene analyses showed in liver (HepG2) and mammary epithelial (MAC-T) model cells that overexpression of SREBP1a expectedly activated the promoter, while unexpectedly C/EBPα and −β strongly quenched the promoter activity. Abrogation of two from among of the three C/EBP DNA-binding motifs of the promoter revealed that C/EBPα acts in cis but C/EBPβ in trans. Overexpressing truncated C/EBPα or −β factors lacking their repressive domains confirmed in both model cells the direct action of C/EBPα, but not of C/EBPβ on the promoter. Conclusions We found no evidence that epigenetic mechanism remodeling the chromatin compaction of the SCD1 promoter would contribute to downregulate SCD1 expression during infection. Instead, our data show for the first time that C/EBP factors may repress SCD1 expression in liver and udder rather than stimulating as it was previously shown in adipocytes. This cell type specific dual and opposite function of C/EBP factors for regulating SCD1 expression was previously unknown. Infection related activation of their expression combined with downregulated expression of SREBP1a explains reduced SCD1 expression in liver and udder during acute mastitis. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0069-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianle Xu
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
42
|
Abstract
Sex hormone-binding globulin (SHBG) is a circulating glycoprotein that transports testosterone and other steroids in the blood. Interest in SHBG has escalated in recent years because of its inverse association with obesity and insulin resistance, and because many studies have linked lower circulating levels of SHBG to metabolic syndrome, type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovary syndrome, and early puberty. The purpose of this review is to summarize molecular, clinical, endocrine, and epidemiological findings to illustrate how measurement of plasma SHBG may be useful in clinical medicine in children.
Collapse
Affiliation(s)
- Banu Aydın
- University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA
| | - Stephen J. Winters
- University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA
,* Address for Correspondence: University of Louisville Faculty of Medicine, Division of Endocrinology, Metabolism and Diabetes, Kentucky, USA Phone: +1 502 852 52 37 E-mail:
| |
Collapse
|
43
|
Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016; 6:a021402. [PMID: 26747833 DOI: 10.1101/cshperspect.a021402] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest. However, there is an absolute requirement for HBx in assays that recapitulate the infectious virus life cycle. There is much evidence that HBx can contribute directly to HBV replication by acting on viral promoters embedded within protein coding sequences. In addition, HBx may also contribute indirectly by modulating cellular pathways to benefit virus replication. Understanding the mechanism(s) of HBx action during virus replication may provide insight into novel ways to disrupt chronic HBV replication.
Collapse
Affiliation(s)
- Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
44
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein. J Virol 2015; 90:1729-40. [PMID: 26637457 DOI: 10.1128/jvi.02604-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. IMPORTANCE Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV-induced pathogenesis of hepatic steatosis still remains to be elucidated. In this study, we found that expression of liver fatty acid binding protein (FABP1) was dramatically increased in the sera of HBV-infected patients and in both sera and liver tissues of HBV-transgenic mice. Forced expression of HBx led to FABP1 upregulation, whereas knockdown of FABP1 remarkably diminished lipid accumulation in both in vitro and in vivo models. It is possible that HBx promotes hepatic lipid accumulation through upregulating FABP1 in the development of HBV-induced nonalcoholic fatty liver disease. Therefore, inhibition of FABP1 might have therapeutic value in steatosis-associated chronic HBV infection.
Collapse
|
46
|
Studer P, da Silva CG, Revuelta Cervantes JM, Mele A, Csizmadia E, Siracuse JJ, Damrauer SM, Peterson CR, Candinas D, Stroka DM, Ma A, Bhasin M, Ferran C. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ 2015; 22:2068-77. [PMID: 25976305 PMCID: PMC4816110 DOI: 10.1038/cdd.2015.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatic expression of A20, including in hepatocytes, increases in response to injury, inflammation and resection. This increase likely serves a hepatoprotective purpose. The characteristic unfettered liver inflammation and necrosis in A20 knockout mice established physiologic upregulation of A20 as integral to the anti-inflammatory and anti-apoptotic armamentarium of hepatocytes. However, the implication of physiologic upregulation of A20 in modulating hepatocytes' proliferative responses following liver resection remains controversial. To resolve the impact of A20 on hepatocyte proliferation and the liver's regenerative capacity, we examined whether decreased A20 expression, as in A20 heterozygous knockout mice, affects outcome following two-third partial hepatectomy. A20 heterozygous mice do not demonstrate a striking liver phenotype, indicating that their A20 expression levels are still sufficient to contain inflammation and cell death at baseline. However, usually benign partial hepatectomy provoked a staggering lethality (>40%) in these mice, uncovering an unsuspected phenotype. Heightened lethality in A20 heterozygous mice following partial hepatectomy resulted from impaired hepatocyte proliferation due to heightened levels of cyclin-dependent kinase inhibitor, p21, and deficient upregulation of cyclins D1, E and A, in the context of worsened liver steatosis. A20 heterozygous knockout minimally affected baseline liver transcriptome, mostly circadian rhythm genes. Nevertheless, this caused differential expression of >1000 genes post hepatectomy, hindering lipid metabolism, bile acid biosynthesis, insulin signaling and cell cycle, all critical cellular processes for liver regeneration. These results demonstrate that mere reduction of A20 levels causes worse outcome post hepatectomy than full knockout of bona fide liver pro-regenerative players such as IL-6, clearly ascertaining A20's primordial role in enabling liver regeneration. Clinical implications of these data are of utmost importance as they caution safety of extensive hepatectomy for donation or tumor in carriers of A20/TNFAIP3 single nucleotide polymorphisms alleles that decrease A20 expression or function, and prompt the development of A20-based liver pro-regenerative therapies.
Collapse
Affiliation(s)
- P Studer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - C G da Silva
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J M Revuelta Cervantes
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Mele
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Csizmadia
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - J J Siracuse
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S M Damrauer
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C R Peterson
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - D Candinas
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - D M Stroka
- Department of Visceral Surgery and Medicine, University Hospital Bern, Bern, Switzerland
| | - A Ma
- Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Bhasin
- Division of Gastroenterology, Department of Medicine, University of California in San Francisco, San Fransisco, CA, USA
| | - C Ferran
- Division of Vascular Surgery, Center for Vascular biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Matsuo S, Ogawa M, Muckenthaler MU, Mizui Y, Sasaki S, Fujimura T, Takizawa M, Ariga N, Ozaki H, Sakaguchi M, Gonzalez FJ, Inoue Y. Hepatocyte Nuclear Factor 4α Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver. J Biol Chem 2015; 290:30855-65. [PMID: 26527688 PMCID: PMC4692214 DOI: 10.1074/jbc.m115.694414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Iron is an essential element in biological systems, but excess iron promotes the formation of reactive oxygen species, resulting in cellular toxicity. Several iron-related genes are highly expressed in the liver, a tissue in which hepatocyte nuclear factor 4α (HNF4α) plays a critical role in controlling gene expression. Therefore, the role of hepatic HNF4α in iron homeostasis was examined using liver-specific HNF4α-null mice (Hnf4aΔH mice). Hnf4aΔH mice exhibit hypoferremia and a significant change in hepatic gene expression. Notably, the expression of transferrin receptor 2 (Tfr2) mRNA was markedly decreased in Hnf4aΔH mice. Promoter analysis of the Tfr2 gene showed that the basal promoter was located at a GC-rich region upstream of the transcription start site, a region that can be transactivated in an HNF4α-independent manner. HNF4α-dependent expression of Tfr2 was mediated by a proximal promoter containing two HNF4α-binding sites located between the transcription start site and the translation start site. Both the GC-rich region of the basal promoter and the HNF4α-binding sites were required for maximal transactivation. Moreover, siRNA knockdown of HNF4α suppressed TFR2 expression in human HCC cells. These results suggest that Tfr2 is a novel target gene for HNF4α, and hepatic HNF4α plays a critical role in iron homeostasis.
Collapse
Affiliation(s)
- Shunsuke Matsuo
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Ogawa
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Martina U Muckenthaler
- the Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yumiko Mizui
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Shota Sasaki
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takafumi Fujimura
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Takizawa
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Nagayuki Ariga
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Hiroaki Ozaki
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- the Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan, and
| | - Frank J Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20852
| | - Yusuke Inoue
- From the Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan,
| |
Collapse
|
48
|
Bauer RC, Sasaki M, Cohen DM, Cui J, Smith MA, Yenilmez BO, Steger DJ, Rader DJ. Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα. J Clin Invest 2015; 125:3809-18. [PMID: 26348894 DOI: 10.1172/jci77095] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2015] [Indexed: 12/24/2022] Open
Abstract
Variants near the gene TRIB1 are significantly associated with several plasma lipid traits, circulating liver enzymes, and the development of coronary artery disease in humans; however, it is not clear how its protein product tribbles-1 regulates lipid metabolism. Here, we evaluated mice harboring a liver-specific deletion of Trib1 (Trib1_LSKO) to elucidate the role of tribbles-1 in mammalian hepatic lipid metabolism. These mice exhibited increased hepatic triglyceride (TG) content, lipogenic gene transcription, and de novo lipogenesis. Microarray analysis revealed altered transcription of genes that are downstream of the transcription factor C/EBPα, and Trib1_LSKO mice had increased hepatic C/EBPα protein. Hepatic overexpression of C/EBPα in WT mice phenocopied Trib1_LSKO livers, and hepatic knockout of Cebpa in Trib1_LSKO mice revealed that C/EBPα is required for the increased lipogenesis. Using ChIP-Seq, we found that Trib1_LSKO mice had increased DNA-bound C/EBPα near lipogenic genes and the Trib1 gene, which itself was transcriptionally upregulated by C/EBPα overexpression. Together, our results reveal that tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα, which in turn transcriptionally upregulates Trib1. These data suggest an important role for C/EBPα in mediating the lipogenic effects of hepatic Trib1 deletion and provide insight into the association between TRIB1 and plasma lipids, and liver traits in humans.
Collapse
|
49
|
Park JM, Jo SH, Kim MY, Kim TH, Ahn YH. Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell 2015; 6:804-13. [PMID: 26334401 PMCID: PMC4624674 DOI: 10.1007/s13238-015-0204-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
50
|
Gerlach JC, Over P, Foka HG, Turner ME, Thompson RL, Gridelli B, Schmelzer E. Role of transcription factor CCAAT/enhancer-binding protein alpha in human fetal liver cell types in vitro. Hepatol Res 2015; 45:919-32. [PMID: 25195540 DOI: 10.1111/hepr.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/15/2022]
Abstract
AIM The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. METHODS Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. RESULTS When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. CONCLUSION We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick Over
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hubert G Foka
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Morris E Turner
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert L Thompson
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bruno Gridelli
- Department of Surgery, ISMETT - Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|