1
|
Nath S. Symmetry breaking and mismatch in the torsional mechanism of ATP synthesis by F OF 1-ATP synthase: mathematical number theory proof and its chemical and biological implications. Theory Biosci 2025; 144:81-93. [PMID: 39709580 DOI: 10.1007/s12064-024-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Can mathematical proofs be employed for the solution of fundamental molecular-level problems in biology? Recently, I mathematically tackled complex mechanistic problems arising during the synthesis of the universal biological currency, adenosine triphosphate (ATP) by the FOF1-ATP synthase, nature's smallest rotary molecular motor, using graph-theoretical and combinatorial approaches for the membrane-bound FO and water-soluble F1 domains of this fascinating molecule (see Nath in Theory Biosci 141:249‒260, 2022 and Theory Biosci 143:217‒227, 2024). In the third part of this trilogy, I investigate another critical aspect of the molecular mechanism-that of coupling between the FO and F1 domains of the ATP synthase mediated by the central γ-subunit of ∼ 1 nanometer diameter. According to Nath's torsional mechanism of energy transduction and ATP synthesis the γ-subunit twists during ATP synthesis and the release of stored torsional energy in the central γ-stalk causes conformational changes in the catalytic sites that lead to ATP synthesis, with 1 ATP molecule synthesized per discrete 120° rotation. The twisted γ-subunit breaks the symmetry of the molecule, and its residual torsional strain is shown to readily accommodate any symmetry mismatch existing between FO and F1. A mathematical number theory proof is developed to quantify the extent of symmetry mismatch at any angular position during rotation and derive the conditions for the regaining of symmetry at the end of a 360° rotation. The many chemical and biological implications of the mechanism and the mathematical proof are discussed in detail. Finally, suggestions for further mathematical development of the subject based on ideas from symmetry and group theory have been made. In sum, the answer to the question posed at the beginning of the Abstract is a resounding YES. There exists new, relatively unexplored territory at the interface of mathematics and molecular biology, especially at the level of molecular mechanism. It is hoped that more mathematicians and scientists interested in interdisciplinary work are encouraged to include in their research program approaches of this type-a mathematical proofs-inspired molecular biology-that have the power to lead to new vistas. Such molecular-scale mechanistic problems in biology have proved extraordinarily difficult to solve definitively using conventional experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Krah A, Grover V, Fong TC, Bond PJ, Grüber G. Water occupancy in the Acinetobacter baumannii F-ATP synthase c-ring and its implications as a novel inhibitor target. Structure 2025:S0969-2126(25)00004-8. [PMID: 39892380 DOI: 10.1016/j.str.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
The Acinetobacter baumannii F1FO-ATP synthase is essential for the opportunistic human pathogen. Its membrane-embedded FO domain consists of the c-ring and subunit a. The c-ring translocates protons via a conserved carboxylate across the membrane via two half-channels in subunit a, and its revolution enables the F1 domain to carry out ATP formation. Here, we used molecular dynamics simulations, free energy calculations, and in vivo mutational experiments to assess the likely existence of water molecules in the binding site of the A. baumannii c-ring. We first predicted its binding site structure in the ion-locked conformation and extrapolated the presence of two water molecules in the ion-binding site. Based on our predictions, amino acid point mutations confirmed the critical role of key residues involved in the water-binding site upon ATP synthesis ability and cell growth. We discuss the implications of our findings in the context of rational drug design to target the A. baumannii FO domain.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Vandana Grover
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tuck Choy Fong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Gerhard Grüber
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A(∗)STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
3
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
4
|
Singh V. The next generation of drug resistant tuberculosis drug design. Future Med Chem 2025:1-3. [PMID: 39814693 DOI: 10.1080/17568919.2025.2453406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Affiliation(s)
- Vinayak Singh
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Osipov SD, Zinovev EV, Anuchina AA, Kuzmin AS, Minaeva AV, Ryzhykau YL, Vlasov AV, Gushchin IY. High-Throughput Evaluation of Natural Diversity of F-Type ATP Synthase Rotor Ring Stoichiometries. Proteins 2025. [PMID: 39810702 DOI: 10.1002/prot.26790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane. Currently, c-rings of F-Type ATP synthases consisting of 8-17 (except 16) subunits have been experimentally demonstrated, but it is not known whether other stoichiometries are present in natural organisms. Here, we present an easy-to-use high-throughput computational approach based on AlphaFold that allows us to estimate the stoichiometry of all homo-oligomeric c-rings, whose sequences are present in genomic databases. We validate the approach on the available experimental data, obtaining the correlation as high as 0.94 for the reference dataset and use it to predict the existence of c-rings with stoichiometry varying at least from 8 to 27. We then conduct molecular dynamics simulations of two c-rings with stoichiometry above 17 to corroborate the machine learning-based predictions. Our work strongly suggests existence of rotor rings with previously undescribed high stoichiometry in natural organisms and highlights the utility of AlphaFold-based approaches for studying homo-oligomeric proteins.
Collapse
Affiliation(s)
- Stepan D Osipov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Arina A Anuchina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander S Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andronika V Minaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
6
|
Perveen S, Pal S, Sharma R. Breaking the energy chain: importance of ATP synthase in Mycobacterium tuberculosis and its potential as a drug target. RSC Med Chem 2025:d4md00829d. [PMID: 39790127 PMCID: PMC11707528 DOI: 10.1039/d4md00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of Mycobacterium tuberculosis marks ATP synthase as an important complex of the electron transport chain. This review focuses on the importance and unique characteristics of mycobacterial ATP synthase. Understanding these distinctions enables the targeting of ATP synthase subunits for drug discovery, without aiming at the mammalian counterpart. Furthermore, a brief comparison of the structural differences between mycobacterial and mitochondrial ATP synthase is discussed. Being a complex multi-subunit protein, ATP synthase offers multiple sites for potential inhibitors, including the a, c, ε, γ, and δ subunits. Inhibitors targeting these subunits are critically reviewed, providing insight into the design of better and more potent chemical entities with the potential for effective treatment regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sunny Pal
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
7
|
Chen S, Shang Y, Zheng J, Huo F, Xue Y, Zhao L, Jiang G, Chu N, Huang H. In vitro monitoring of drug resistance emergence during stepwise induction of bedaquiline and clofazimine, alone and in combination: a phenotypic and genotypic analysis. J Antimicrob Chemother 2025; 80:262-269. [PMID: 39523472 DOI: 10.1093/jac/dkae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES The co-resistance between bedaquiline and clofazimine raises significant concerns, as they are commonly co-administered as core drugs in drug-resistant TB regimens. The present study aimed to monitor drug resistance-associated gene mutations and the phenotypic change in Mycobacterium tuberculosis (Mtb) under a stepwise drug resistance induction in vitro using bedaquiline, clofazimine or combined drugs. METHODS Drug-resistant Mtb strains were gradually induced in vitro on a drug-containing solid medium with a 2-fold increasing concentration of bedaquiline, clofazimine and their combination. The MIC of the induced drug-resistant Mtb strains was determined. The drug resistance-associated genes, including Rv0678, Rv1979c, atpE and pepQ, were sequenced and analysed. RESULTS Unlike exposure to bedaquiline alone or the combination of these two drugs, clofazimine alone resulted in drug resistance gene mutations occurring later, specifically in the fourth round of induction as opposed to the second round of induction. Besides, nucleotide deletion or insertion in Rv0678 was the main mutation type for induction under the two-drug combination, while single-nucleotide polymorphisms (SNPs) in Rv0678 were the major mutation types when induced by bedaquiline or clofazimine alone. Rv0678 mutation happened at a relatively lower bedaquiline concentration exposure alone, while atpE mutation occurred at a higher bedaquiline concentration. Regardless of the drug exposure manner, a strong correlation between bedaquiline MICs and clofazimine MICs was observed in all drug resistance strains. CONCLUSIONS Combined exposure to bedaquiline and clofazimine developed Rv0678 mutation as early as exposure to bedaquiline alone. However, rather than SNPs, deletion and insertion were the dominant mutation types in dual-drug exposure strain.
Collapse
Affiliation(s)
- Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jifang Zheng
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yi Xue
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Naihui Chu
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| |
Collapse
|
8
|
Roy A, Banerjee P, Paul I, Ghosh R, Ray S. Integrating structure-guided and fragment-based inhibitor design to combat bedaquiline resistant Mycobacterium tuberculosis: a molecular dynamics study. J Biomol Struct Dyn 2024:1-39. [PMID: 39714098 DOI: 10.1080/07391102.2024.2441426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/24/2024] [Indexed: 12/24/2024]
Abstract
The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F0 region of enzyme ATP synthase of Mycobacterium tuberculosis, thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties. For this purpose, we adopted techniques like molecular dynamics simulation, virtual screening, PCA, DCCM, binding affinity analysis to gauge structure-function relationship of the L136-ATPc complexes. L136 was found to induce a distinguishable conformational change in the bound ATPc which captivated the c9 rotor ring. L136 displays a binding free energy of -57.294, -59.027, -57.273, -58.726, -55.889 and -58.651 kcal/mol for ATPc_WT and the five respective mutants. The pIC50 value for the L136 ligand for the same proteins was unveiled to be 6.760, 7.285, 6.898, 7.222, 6.987 and 7.687. Moreover, L136 exhibited a strong ADMET profile. Furthermore, we discovered that the change in the hydrophobic platform in ATPc mutants hinders BDQ binding, which is overcome by L136, ensuring efficient binding and providing an assessment of L136's mechanism of ATPc inhibition. L136 provides a scope for in vivo test for future clinical drug trials.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Prantik Banerjee
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ritam Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
9
|
Abdelaal HFM, Berube BJ, Podell BK, Harband MH, Gary HE, Perez-Jaimes M, Ackart DF, Reese VA, Larsen SE, Pecor T, Wilkins DZ, Parish T, Maloney-Norcross SE, Mecham JB, Hickey AJ, Baldwin SL, Coler RN. Assessment of tuberculosis drug efficacy using preclinical animal models and in vitro predictive techniques. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:49. [PMID: 39843983 PMCID: PMC11721416 DOI: 10.1038/s44259-024-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) killed approximately 1.3 million people in 2022 and remains a leading cause of death from the bacteria Mycobacterium tuberculosis (M.tb); this number of deaths was surpassed only by COVID-19, caused by the SARS-CoV-2 virus. The alarming emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) M.tb strains presents an urgent need for effective new treatments. Our study aimed to determine the synergistic effects of antibiotic combinations against M.tb. Using a high-throughput in vitro checkerboard assay, we evaluated the interactions of Bedaquiline (BDQ) and other antibiotics including Capreomycin (CAP), Linezolid (LIN), and Sutezolid (SUT) against M.tb H37Rv. BDQ and CAP demonstrated in vitro enhanced effect, which prompted further investigation in vivo using the murine low dose aerosol (LDA) model. After aerosol challenge with M.tb, C57BL/6 mice were treated with BDQ, CAP, or their combination, starting 28 days post-infection. The antimicrobial treatment lasted four weeks, and the bacterial burden in lung and spleen tissues was assessed at the end of treatment. At 4 weeks post-treatment, a significant reduction in bacterial load was observed within the lungs and spleens of mice given BDQ alone or given as a BDQ/CAP combination compared to the untreated group. In contrast, CAP monotherapy led to an increase in bacterial load within the lung and no significant difference in bacterial burden in the spleen in comparison to the untreated mice. These results were confirmed in the guinea pig model of TB, where both BDQ and the BDQ/CAP combination treatment led to a decrease in bacterial burden in the lung and spleen, whereas CAP had no significant effect on bacterial burden at the 4-week post treatment timepoint. We next determined whether there may be differences in vitro with the BDQ/CAP combination against M.tb lineages 1, 2 and 4. We determined that in vitro enhanced effect was not observed in some representative strains of M.tb lineage 4, indicating variability in drug effectiveness across M.tb lineages. This research underscores the complexity of TB treatment and the critical need for innovative approaches to combat this global health threat.
Collapse
Affiliation(s)
- Hazem F M Abdelaal
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Bryan J Berube
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
- HDT BioCorp, Seattle, WA, 98102, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Matthew H Harband
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Hadley E Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Martin Perez-Jaimes
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Valerie A Reese
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - David Z Wilkins
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Tanya Parish
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Sara E Maloney-Norcross
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Jeffrey B Mecham
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Triangle Park, NC, 27709, USA
| | - Susan L Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA
| | - Rhea N Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, 98145, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Fan J, Tan Z, He S, Li A, Jia Y, Li J, Zhang Z, Li B, Chu H. TBAJ-587, a novel diarylquinoline, is active against Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0094524. [PMID: 39470202 PMCID: PMC11619292 DOI: 10.1128/aac.00945-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are extremely difficult to treat due to a natural resistance to many antimicrobials. TBAJ-587 is a novel diarylquinoline, which shows higher anti-tuberculosis activity, lower lipophilicity, and weaker inhibition of hERG channels than bedaquiline (BDQ). The susceptibilities of 11 NTM reference strains and 194 clinical Mycobacterium abscessus isolates to TBAJ-587 were determined by the broth microdilution assay. The activity of TBAJ-587 toward the growth of M. abscessus in macrophages was also evaluated. Minimum bactericidal concentration and time-kill kinetic assays were conducted to distinguish between the bactericidal and bacteriostatic activities of TBAJ-587. The synergy between TBAJ-587 and eight clinically important antibiotics was determined using a checkerboard assay. TBAJ-587 was highly effective against M. abscessus by targeting its F-ATP synthase c chain. The antimicrobial activities of TBAJ-587 and BDQ toward intracellular M. abscessus were comparable. The in vivo activities of TBAJ-587 and BDQ in an immunocompromised mouse model were also comparable. TBAJ-587 expressed bactericidal activity and was compatible with eight anti-NTM drugs commonly used in clinical practice; no antagonism was discovered. As such, TBAJ-587 represents a potential candidate for the treatment of NTM infections.
Collapse
Affiliation(s)
- Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jia
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Juan Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Gerle C, Jiko C, Nakano A, Yokoyama K, Gopalasingam CC, Shigematsu H, Abe K. Human F-ATP synthase as a drug target. Pharmacol Res 2024; 209:107423. [PMID: 39303772 DOI: 10.1016/j.phrs.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention. Further, the technical requirements necessary to allow drug designs that are effective at the multiple levels of functionality and modality of human F-ATP synthase are discussed. The structure-based development of gastric proton pump inhibitors is used to exemplify what might be feasible for human F-ATP synthase. And finally, four structural regions of the human F-ATP synthase are examined as potential sites for the development of structure based drug development.
Collapse
Affiliation(s)
- Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan.
| | - Chimari Jiko
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Kouto, 1-1-1, Sayo, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, Japan
| | - Kazuhiro Abe
- Molecular Biochemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Reddyrajula R, Perveen S, Negi A, Etikyala U, Manga V, Sharma R, Dalimba UK. N-Acyl phenothiazines as mycobacterial ATP synthase inhibitors: Rational design, synthesis and in vitro evaluation against drug sensitive, RR and MDR-TB. Bioorg Chem 2024; 151:107702. [PMID: 39142196 DOI: 10.1016/j.bioorg.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.
Collapse
Affiliation(s)
- Rajkumar Reddyrajula
- Central Research Facility, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India; Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Umadevi Etikyala
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Vijjulatha Manga
- Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500 076, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Udaya Kumar Dalimba
- Organic and Materials Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India.
| |
Collapse
|
13
|
Dietrich L, Agip ANA, Kunz C, Schwarz A, Kühlbrandt W. In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells. Science 2024; 385:1086-1090. [PMID: 39236170 DOI: 10.1126/science.adp4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Cells depend on a continuous supply of adenosine triphosphate (ATP), the universal energy currency. In mitochondria, ATP is produced by a series of redox reactions, whereby an electrochemical gradient is established across the inner mitochondrial membrane. The ATP synthase harnesses the energy of the gradient to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. We determined the structure of ATP synthase within mitochondria of the unicellular flagellate Polytomella by electron cryo-tomography and subtomogram averaging at up to 4.2-angstrom resolution, revealing six rotary positions of the central stalk, subclassified into 21 substates of the F1 head. The Polytomella ATP synthase forms helical arrays with multiple adjacent rows defining the cristae ridges. The structure of ATP synthase under native operating conditions in the presence of a membrane potential represents a pivotal step toward the analysis of membrane protein complexes in situ.
Collapse
Affiliation(s)
- Lea Dietrich
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Ahmed-Noor A Agip
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Christina Kunz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
Ahmad Khosravi N, Sirous M, Khosravi A, Saki M. A Narrative Review of Bedaquiline and Delamanid: New Arsenals Against Multidrug-Resistant and Extensively Drug-Resistant Mycobacterium tuberculosis. J Clin Lab Anal 2024; 38:e25091. [PMID: 39431709 PMCID: PMC11492330 DOI: 10.1002/jcla.25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The treatment of multidrug-resistant (MDR-) and extensively drug-resistant tuberculosis (XDR-TB) is a formidable challenge. Treatment of MDR- and XDR-TB using bedaquiline (BDQ) and delamanid (DLM), two newly introduced medications, is steadily increasing. This narrative review aimed to present a concise overview of the existing information regarding BDQ and DLM, and elucidate their antimicrobial characteristics, resistance mechanisms, synergism with other drugs, and side effects. METHODS To collect the required information about the antimicrobial properties, a search for scientific evidence from the Scopus, PubMed, and Embase databases was performed, and all recently published articles up to May 2024 were considered. RESULTS BDQ had potent antimicrobial effects on various types of nontuberculous mycobacteria (NTM), including rapid-growing and slow-growing species, and MDR/XDR Mycobacterium tuberculosis. The mechanisms of BDQ resistance in M. tuberculosis primarily involve mutations in three genes: atpE, mmpR (Rv0678) and pepQ. BDQ may have synergistic effects when combined with DLM, pyrazinamide, and pretomanid/linezolid. BDQ has a low incidence of side effects. The use of BDQ may prolong the QTc interval. Similarly, DLM showed potent antimicrobial effects on NTM and MDR/XDR M. tuberculosis. The main resistance mechanisms to DLM are induced by mutations in fbiA, fbiB, fbiC, fgd1, and ddn genes. The DLM had synergistic effects with BDQ and moxifloxacin. The DLM also has few side effects in some patients including QTc prolongation. CONCLUSION BDQ and DLM are suitable antibiotics with few side effects for the treatment of MDR/XDR-TB. These antibiotics have synergistic effects when combined with other antituberculosis drugs.
Collapse
Affiliation(s)
- Nazanin Ahmad Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Mehrandokht Sirous
- Department of Microbiology and Parasitology, Faculty of MedicineBushehr University of Medical SciencesBushehrIran
| | - Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of Microbiology, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
16
|
Zhang Y, Lai Y, Zhou S, Ran T, Zhang Y, Zhao Z, Feng Z, Yu L, Xu J, Shi K, Wang J, Pang Y, Li L, Chen H, Guddat LW, Gao Y, Liu F, Rao Z, Gong H. Inhibition of M. tuberculosis and human ATP synthase by BDQ and TBAJ-587. Nature 2024; 631:409-414. [PMID: 38961288 DOI: 10.1038/s41586-024-07605-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
Bedaquiline (BDQ), a first-in-class diarylquinoline anti-tuberculosis drug, and its analogue, TBAJ-587, prevent the growth and proliferation of Mycobacterium tuberculosis by inhibiting ATP synthase1,2. However, BDQ also inhibits human ATP synthase3. At present, how these compounds interact with either M. tuberculosis ATP synthase or human ATP synthase is unclear. Here we present cryogenic electron microscopy structures of M. tuberculosis ATP synthase with and without BDQ and TBAJ-587 bound, and human ATP synthase bound to BDQ. The two inhibitors interact with subunit a and the c-ring at the leading site, c-only sites and lagging site in M. tuberculosis ATP synthase, showing that BDQ and TBAJ-587 have similar modes of action. The quinolinyl and dimethylamino units of the compounds make extensive contacts with the protein. The structure of human ATP synthase in complex with BDQ reveals that the BDQ-binding site is similar to that observed for the leading site in M. tuberculosis ATP synthase, and that the quinolinyl unit also interacts extensively with the human enzyme. This study will improve researchers' understanding of the similarities and differences between human ATP synthase and M. tuberculosis ATP synthase in terms of the mode of BDQ binding, and will allow the rational design of novel diarylquinolines as anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Ran
- Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Ziqing Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Kun Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Jianyun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yu Pang
- Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Liang Li
- Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, China
| | - Hongming Chen
- Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.
- Innovative Center for Pathogen Research, Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Cook GM, McNeil MB. Blueprints for ATP machinery will aid tuberculosis drug design. Nature 2024; 631:278-280. [PMID: 38961207 DOI: 10.1038/d41586-024-02094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
18
|
Nath S. Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications. Biosystems 2024; 240:105228. [PMID: 38735525 DOI: 10.1016/j.biosystems.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
19
|
Madadi-Goli N, Ahmadi K, Kamakoli MK, Azizi M, Khanipour S, Dizaji SP, Nasehi M, Siadat SD, Fateh A, Vaziri F. The importance of heteroresistance and efflux pumps in bedaquiline-resistant Mycobacterium tuberculosis isolates from Iran. Ann Clin Microbiol Antimicrob 2024; 23:36. [PMID: 38664815 PMCID: PMC11046812 DOI: 10.1186/s12941-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) continues to pose a threat to communities worldwide and remains a significant public health issue in several countries. We assessed the role of heteroresistance and efflux pumps in bedaquiline (BDQ)-resistant Mycobacterium tuberculosis isolates. METHODS Nineteen clinical isolates were included in the study, of which fifteen isolates were classified as MDR or XDR, while four isolates were fully susceptible. To evaluate BDQ heteroresistance, the Microplate Alamar Blue Assay (MABA) method was employed. For screening mixed infections, MIRU-VNTR was performed on clinical isolates. Mutations in the atpE and Rv0678 genes were determined based on next-generation sequencing data. Additionally, real-time PCR was applied to assess the expression of efflux pump genes in the absence and presence of verapamil (VP). RESULTS All 15 drug-resistant isolates displayed resistance to BDQ. Among the 19 total isolates, 21.05% (4/19) exhibited a heteroresistance pattern to BDQ. None of the isolates carried a mutation of the atpE and Rv0678 genes associated with BDQ resistance. Regarding the MIRU-VNTR analysis, most isolates (94.73%) showed the Beijing genotype. Fifteen (78.9%) isolates showed a significant reduction in BDQ MIC after VP treatment. The efflux pump genes of Rv0676c, Rv1258c, Rv1410c, Rv1634, Rv1819, Rv2459, Rv2846, and Rv3065 were overexpressed in the presence of BDQ. CONCLUSIONS Our results clearly demonstrated the crucial role of heteroresistance and efflux pumps in BDQ resistance. Additionally, we established a direct link between the Rv0676c gene and BDQ resistance. The inclusion of VP significantly reduced the MIC of BDQ in both drug-susceptible and drug-resistant clinical isolates.
Collapse
Affiliation(s)
- Nahid Madadi-Goli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Kamal Ahmadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Azizi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Pourazar Dizaji
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Nasehi
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave., Jomhoori St, Tehran, 1316943551, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
21
|
Singh R, Manna S, Nandanwar H, Purohit R. Bioactives from medicinal herb against bedaquiline resistant tuberculosis: removing the dark clouds from the horizon. Microbes Infect 2024; 26:105279. [PMID: 38128751 DOI: 10.1016/j.micinf.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Tuberculosis is a contagious bacterial ailment that primarily affects the lungs and is brought on by the bacterium Mycobacterium tuberculosis (MTB). An antimycobacterial medication called bedaquiline (BQ) is specified to treat multidrug-resistant tuberculosis (MDR-TB). Despite its contemporary use in clinical practice, the mutations (D32 A/G/N/V/P) constrain the potential of BQ by causing transitions in the structural conformation of the atpE subunit-c after binding. In this study, we have taken the benzylisoquinoline alkaloids from thalictrum foliolosum due to its antimicrobial activity reported in prior literature. We used an efficient and optimized structure-based strategy to examine the wild type (WT) and mutated protein upon molecule binding. Our results emphasize the drastic decline in BQ binding affinity of mutant and WT atpE subunit-c complexes compared to thalirugidine (top hit) from thalictrum foliolosum. The decrease in BQ binding free energy is due to electrostatic energy because nearly every atom in a macromolecule harbors a partial charge, and molecules taking part in molecular recognition will interact electrostatically. Similarly, the high potential mean force of thalirugidine than BQ in WT and mutant complexes demonstrated the remarkable ability to eradicate mycobacteria efficiently. Furthermore, the Alamar blue cell viability and ATP determination assay were performed to validate the computational outcomes in search of novel antimycobacterial. Upon closer examination of the ATP determination assay, it became apparent that both BQ and thalirugidine showed similar reductions in ATP levels at their respective MICs, presenting a potential common mechanism of action.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Souvik Manna
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemraj Nandanwar
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Negi A, Perveen S, Gupta R, Singh PP, Sharma R. Unraveling Dilemmas and Lacunae in the Escalating Drug Resistance of Mycobacterium tuberculosis to Bedaquiline, Delamanid, and Pretomanid. J Med Chem 2024; 67:2264-2286. [PMID: 38351709 DOI: 10.1021/acs.jmedchem.3c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ria Gupta
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Products and Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
23
|
Fontes FL, Rooker SA, Lynn-Barbe JK, Lyons MA, Crans DC, Crick DC. Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores. Front Mol Biosci 2024; 11:1350699. [PMID: 38414662 PMCID: PMC10896915 DOI: 10.3389/fmolb.2024.1350699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Pyrazinoic acid is the active form of pyrazinamide, a first-line antibiotic used to treat Mycobacterium tuberculosis infections. However, the mechanism of action of pyrazinoic acid remains a subject of debate, and alternatives to pyrazinamide in cases of resistance are not available. The work presented here demonstrates that pyrazinoic acid and known protonophores including salicylic acid, benzoic acid, and carbonyl cyanide m-chlorophenyl hydrazone all exhibit pH-dependent inhibition of mycobacterial growth activity over a physiologically relevant range of pH values. Other anti-tubercular drugs, including rifampin, isoniazid, bedaquiline, and p-aminosalicylic acid, do not exhibit similar pH-dependent growth-inhibitory activities. The growth inhibition curves of pyrazinoic, salicylic, benzoic, and picolinic acids, as well as carbonyl cyanide m-chlorophenyl hydrazone, all fit a quantitative structure-activity relationship (QSAR) derived from acid-base equilibria with R2 values > 0.95. The QSAR model indicates that growth inhibition relies solely on the concentration of the protonated forms of these weak acids (rather than the deprotonated forms). Moreover, pyrazinoic acid, salicylic acid, and carbonyl cyanide m-chlorophenyl hydrazone all caused acidification of the mycobacterial cytoplasm at concentrations that inhibit bacterial growth. Thus, it is concluded that pyrazinoic acid acts as an uncoupler of oxidative phosphorylation and that disruption of proton motive force is the primary mechanism of action of pyrazinoic acid rather than the inhibition of a classic enzyme activity.
Collapse
Affiliation(s)
- Fabio L. Fontes
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Steven A. Rooker
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jamie K. Lynn-Barbe
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Michael A. Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
Słabońska J, Sappati S, Marciniak A, Czub J. Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline. ACS Med Chem Lett 2024; 15:265-269. [PMID: 38352844 PMCID: PMC10860170 DOI: 10.1021/acsmedchemlett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
The role of short strong hydrogen bonds (SSHBs) in ligand-target binding remains largely unexplored, thereby hindering a potentially important avenue in rational drug design. Here we investigate the interaction between the antituberculosis drug bedaquiline (Bq) and the mycobacterial ATP synthase to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity. Our ab initio molecular dynamics simulations reveal that this bond belongs to the SSHB category and accounts for a substantial fraction of the target binding free energy. We also demonstrate that the presence of an extra acidic residue, i.e., aspartic acid at position 32 (D32), found exclusively in mycobacteria, cooperatively enhances the HB strength, ensuring specificity for the mycobacterial target. Consistently, we show that the removal of D32 markedly weakens the affinity, leading to Bq resistance associated with mutations of D32 to nonacidic residues. By designing simple Bq analogs, we then explore the possibility to overcome the resistance and potentially broaden the Bq antimicrobial spectrum by making the SSHB independent of the presence of the extra acidic residue.
Collapse
Affiliation(s)
- Joanna Słabońska
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Subrahmanyam Sappati
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Antoni Marciniak
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-171 65 Solna, Sweden
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
25
|
Nath S. Coupling and biological free-energy transduction processes as a bridge between physics and life: Molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics. Biosystems 2024; 236:105134. [PMID: 38301737 DOI: 10.1016/j.biosystems.2024.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
26
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
27
|
Harden SA, Courbon GM, Liang Y, Kim AS, Rubinstein JL. A simple assay for inhibitors of mycobacterial oxidative phosphorylation. J Biol Chem 2024; 300:105483. [PMID: 37992805 PMCID: PMC10770618 DOI: 10.1016/j.jbc.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.
Collapse
Affiliation(s)
- Serena A Harden
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - Angelina S Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Shi Y, Jiang Y, Qiu H, Hu D, Song X. Mitochondrial dysfunction induced by bedaquiline as an anti-Toxoplasma alternative. Vet Res 2023; 54:123. [PMID: 38115043 PMCID: PMC10731829 DOI: 10.1186/s13567-023-01252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 μM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haolong Qiu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
29
|
Delbrouck JA, Murza A, Diachenko I, Ben Jamaa A, Devi R, Larose A, Chamberland S, Malouin F, Boudreault PL. From garden to lab: C-3 chemical modifications of tomatidine unveil broad-spectrum ATP synthase inhibitors to combat bacterial resistance. Eur J Med Chem 2023; 262:115886. [PMID: 37924710 DOI: 10.1016/j.ejmech.2023.115886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023]
Abstract
Antibiotic resistance is escalating alarmingly worldwide. Bacterial resistance mechanisms are surfacing and proliferating across the globe, jeopardizing our capacity to manage prevalent infectious illnesses. Without drastic measures, we risk entering a post-antibiotic era, where even trivial infections and injuries can cause death again. In this context, we have developed a new class of antibiotics based on tomatidine (TO), a natural product derived from tomato plants, with a novel mode of action by targeting bacterial ATP synthases. The first generation of compounds proved highly specific for small-colony variants (SCVs) of Staphylococcus aureus. However, optimization of this scaffold through extensive structure-activity relationship studies has enabled us to broaden its effectiveness to include both Gram-positive and Gram-negative bacteria. Notably, the results showed that specific C3-modification of TO could improve ATP synthase inhibition and also bypass the outer membrane barrier of Gram-negative bacteria to gain substantial growth inhibition including against multi-resistant strains.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Iryna Diachenko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Abdelkhalek Ben Jamaa
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Runjun Devi
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Audrey Larose
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, QC, Canada.
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada.
| |
Collapse
|
30
|
Kumar P, Petrenas R, Dawson WM, Schweke H, Levy ED, Woolfson DN. CC + : A searchable database of validated coiled coils in PDB structures and AlphaFold2 models. Protein Sci 2023; 32:e4789. [PMID: 37768271 PMCID: PMC10588367 DOI: 10.1002/pro.4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
α-Helical coiled coils are common tertiary and quaternary elements of protein structure. In coiled coils, two or more α helices wrap around each other to form bundles. This apparently simple structural motif can generate many architectures and topologies. Coiled coil-forming sequences can be predicted from heptad repeats of hydrophobic and polar residues, hpphppp, although this is not always reliable. Alternatively, coiled-coil structures can be identified using the program SOCKET, which finds knobs-into-holes (KIH) packing between side chains of neighboring helices. SOCKET also classifies coiled-coil architecture and topology, thus allowing sequence-to-structure relationships to be garnered. In 2009, we used SOCKET to create a relational database of coiled-coil structures, CC+ , from the RCSB Protein Data Bank (PDB). Here, we report an update of CC+ following an update of SOCKET (to Socket2) and the recent explosion of structural data and the success of AlphaFold2 in predicting protein structures from genome sequences. With the most-stringent SOCKET parameters, CC+ contains ≈12,000 coiled-coil assemblies from experimentally determined structures, and ≈120,000 potential coiled-coil structures within single-chain models predicted by AlphaFold2 across 48 proteomes. CC+ allows these and other less-stringently defined coiled coils to be searched at various levels of structure, sequence, and side-chain interactions. The identified coiled coils can be viewed directly from CC+ using the Socket2 application, and their associated data can be downloaded for further analyses. CC+ is available freely at http://coiledcoils.chm.bris.ac.uk/CCPlus/Home.html. It will be updated automatically. We envisage that CC+ could be used to understand coiled-coil assemblies and their sequence-to-structure relationships, and to aid protein design and engineering.
Collapse
Affiliation(s)
- Prasun Kumar
- School of ChemistryUniversity of BristolBristolUK
| | | | | | - Hugo Schweke
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Emmanuel D. Levy
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Derek N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Medical Sciences Building, University WalkBristolUK
- Bristol BioDesign Institute, School of ChemistryUniversity of BristolBristolUK
| |
Collapse
|
31
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
32
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
33
|
Chakraborty G, Nath I V A, Sharma M, Sheth J, Kori M, Tiwari A, Patra N. In silico structural and mechanical insights into bedaquiline resistance associated with high-grade non-synonymous mutations in atpE, mmpR5, and pepQ. J Biomol Struct Dyn 2023; 42:10937-10949. [PMID: 37728541 DOI: 10.1080/07391102.2023.2259486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Clinical resistance against bedaquiline (BDQ) remains intractable to anti-tuberculosis therapies since its introduction to the market over a decade ago. Herein, we investigated the structural and mechanical aspects of BDQ resistance in AtpE, MmpR5, and PepQ. The known target-specific resistant single non-synonymous mutations were refined to high-grade candidates. Thus, 7 (AtpE), 5 (MmpR5), and 1 (PepQ) single nucleotide polymorphisms (SNPs) and one insertion frameshift mutation in MmpR5 were recreated at the molecular level, and these phenotypic models were then directed to stringent dynamics to define time-scaled changes. The AtpE variants destabilized the structure; mainly, L59V, E61D, and I66M were detrimental to the complex fitness, while L74V and L114P boosted the BDQ binding to MmpR5. The first three and last two alterations gave rise to loss- and gain-of-function to AtpE and MmpR5, respectively. Hence, these five mutants are functionally relevant and therapeutically targetable hotspots of BDQ resistance. There were no noticeable changes in PepQ data analysis. The present study revealed that MmpR5 mutations confer BDQ resistance, whereas AtpE and PepQ SNPs display low susceptibility. These results were tallied with the published findings, which testified to the pursued method's reliability and accuracy. We hope these data and inferences could be helpful for the futuristic design of novel TB drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mukta Sharma
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | - Jigar Sheth
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | - Mahima Kori
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | | | - Niladri Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
34
|
An Q, Lin R, Yang Q, Wang C, Wang D. Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: A systematic review and meta-analysis. J Glob Antimicrob Resist 2023; 34:214-226. [PMID: 37172764 DOI: 10.1016/j.jgar.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES The aim of the study was to update the classification of drugs used in multidrug-resistant tuberculosis (MDR-TB) regimens. Group A drugs (fluoroquinolones, bedaquiline (BDQ), and linezolid (LZD)) are crucial drugs for the control of MDR-TB. Molecular drug resistance assays could facilitate the effective use of Group A drugs. METHODS We summarised the evidence implicating specific genetic mutations in resistance to Group A drugs. We searched PubMed, Embase, MEDLINE, and the Cochrane Library for studies published from the inception of each database until July 1, 2022. Using a random-effects model, we calculated the odds ratios and 95% confidence intervals as our measures of association. RESULTS A total of 5001 clinical isolates were included in 47 studies. Mutations in gyrA A90V, D94G, D94N, and D94Y were significantly associated with an increased risk of a levofloxacin (LFX)-resistant phenotype. In addition, mutations in gyrA G88C, A90V, D94G, D94H, D94N, and D94Y were significantly associated with an increased risk of a moxifloxacin (MFX)-resistant phenotype. In only one study, the majority of gene loci (n = 126, 90.65%) in BDQ-resistant isolates were observed to have unique mutations in atpE, Rv0678, mmpL5, pepQ, and Rv1979c. The most common mutations occurred at four sites in the rrl gene (g2061t, g2270c, g2270t, and g2814t) and at one site in rplC (C154R) in LZD-resistant isolates. Our meta-analysis demonstrated that there were no mutations associated with BDQ- or LZD-resistant phenotypes. CONCLUSION The mutations detected by rapid molecular assay were correlated with phenotypic resistance to LFX and MFX. The absence of mutation-phenotype associations for BDQ and LZD hindered the development of a rapid molecular assay.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Qing Yang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
35
|
Courbon GM, Palme PR, Mann L, Richter A, Imming P, Rubinstein JL. Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines. EMBO J 2023; 42:e113687. [PMID: 37377118 PMCID: PMC10390873 DOI: 10.15252/embj.2023113687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug-resistant tuberculosis but suffers from off-target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ-876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton-conducting channel. Remarkably, BDQ, TBAJ-876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.
Collapse
Affiliation(s)
- Gautier M Courbon
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoONCanada
- Department of Medical BiophysicsThe University of TorontoTorontoONCanada
| | - Paul R Palme
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Lea Mann
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Adrian Richter
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - Peter Imming
- Institut für PharmazieMartin‐Luther‐Universität Halle‐WittenbergHalle, SaaleGermany
| | - John L Rubinstein
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoONCanada
- Department of Medical BiophysicsThe University of TorontoTorontoONCanada
- Department of BiochemistryThe University of TorontoTorontoONCanada
| |
Collapse
|
36
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interaction studies on imidazo[1,2-a] pyridine ethers and squaramides as anti-tubercular agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-23. [PMID: 37365919 DOI: 10.1080/1062936x.2023.2225872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Development of new anti-tubercular agents is required in the wake of resistance to the existing and newly approved drugs through novel-validated targets like ATP synthase, etc. The major limitation of poor correlation between docking scores and biological activity by SBDD was overcome by a novel approach of quantitatively correlating the interactions of different amino acid residues present in the target protein structure with the activity. This approach well predicted the ATP synthase inhibitory activity of imidazo[1,2-a] pyridine ethers and squaramides (r = 0.84) in terms of Glu65b interactions. Hence, the models were developed on combined (r = 0.78), and training (r = 0.82) sets of 52, and 27 molecules, respectively. The training set model well predicted the diverse dataset (r = 0.84), test set (r = 0.755), and, external dataset (rext = 0.76). This model predicted three compounds from a focused library generated by incorporating the essential features of the ATP synthase inhibition with the pIC50 values in the range of 0.0508-0.1494 µM. Molecular dynamics simulation studies ascertain the stability of the protein structure and the docked poses of the ligands. The developed model(s) may be useful in the identification and optimization of novel compounds against TB.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
37
|
Calvet-Seral J, Crespo-Yuste E, Mathys V, Rodriguez-Villalobos H, Ceyssens PJ, Martin A, Gonzalo-Asensio J. Targeted Chromosomal Barcoding Establishes Direct Genotype-Phenotype Associations for Antibiotic Resistance in Mycobacterium abscessus. Microbiol Spectr 2023; 11:e0534422. [PMID: 36988496 PMCID: PMC10269753 DOI: 10.1128/spectrum.05344-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
A bedaquiline-resistant Mycobacterium abscessus isolate was sequenced, and a candidate mutation in the atpE gene was identified as responsible for the antibiotic resistance phenotype. To establish a direct genotype-phenotype relationship of this mutation which results in a Asp-to-Ala change at position 29 (D29A), we developed a recombineering-based method consisting of the specific replacement of the desired mutation in the bacterial chromosome. As surrogate bacteria, we used two M. abscessus bedaquiline-susceptible strains: ATCC 19977 and the SL541 clinical isolate. The allelic exchange substrates used in recombineering carried either the sole D29A mutation or a genetic barcode of silent mutations in codons flanking the D29A mutation. After selection of bedaquiline-resistant M. abscessus colonies transformed with both substrates, we obtained equivalent numbers of recombinants. These resistant colonies were analyzed by allele-specific PCR and Sanger sequencing, and we demonstrated that the presence of the genetic barcode was linked to the targeted incorporation of the desired mutation in its chromosomal location. All recombinants displayed the same MIC to bedaquiline as the original isolate, from which the D29A mutation was identified. Finally, to demonstrate the broad applicability of this method, we confirmed the association of bedaquiline resistance with the atpE A64P mutation in analysis performed in independent M. abscessus strains and by independent researchers. IMPORTANCE Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by microorganisms. On the other hand, infections caused by Mycobacterium abscessus affect people with chronic lung diseases, and their incidence has grown alarmingly in recent years. Further, these bacteria are known to easily develop AMR to the few therapeutic options available, making their treatment long-lasting and challenging. The recent introduction of new antibiotics against M. abscessus, such as bedaquiline, makes us anticipate a future when a plethora of antibiotic-resistant strains will be isolated and sequenced. However, in the era of whole-genome sequencing, one of the challenges is to unequivocally assign a biological function to each identified polymorphism. Thus, in this study, we developed a fast, robust, and reliable method to assign genotype-phenotype associations for putative antibiotic-resistant polymorphisms in M. abscessus.
Collapse
Affiliation(s)
- Juan Calvet-Seral
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefanía Crespo-Yuste
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Mathys
- Unit of Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Cliniques Universitaires Saint-Luc, Microbiology Department, Université Catholique de Louvain, Brussels, Belgium
| | | | - Anandi Martin
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
- Syngulon, Seraing, Belgium
| | - Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, Universidad de Zaragoza IIS-Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
| |
Collapse
|
38
|
Lee BS, Singh S, Pethe K. Inhibiting respiration as a novel antibiotic strategy. Curr Opin Microbiol 2023; 74:102327. [PMID: 37235914 DOI: 10.1016/j.mib.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The approval of the first-in-class antibacterial bedaquiline for tuberculosis marks a breakthrough in antituberculosis drug development. The drug inhibits mycobacterial respiration and represents the validation of a wholly different metabolic process as a druggable target space. In this review, we discuss the advances in the development of mycobacterial respiratory inhibitors, as well as the potential of applying this strategy to other pathogens. The non-fermentative nature of mycobacteria explains their vulnerability to respiration inhibition, and we caution that this strategy may not be equally effective in other organisms. Conversely, we also showcase fundamental studies that reveal ancillary functions of the respiratory pathway, which are crucial to some pathogens' virulence, drug susceptibility and fitness, introducing another perspective of targeting bacterial respiration as an antibiotic strategy.
Collapse
Affiliation(s)
- Bei Shi Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
39
|
Kelam LM, Wani MA, Dhaked DK. An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:87-104. [PMID: 37105260 DOI: 10.1016/j.pbiomolbio.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
ATP synthase is a key protein in the oxidative phosphorylation process, as it aids in the effective production of ATP (Adenosine triphosphate) in all life's of kingdoms. ATP synthases have distinctive properties that contribute to efficient ATP synthesis. The ATP synthase of mycobacterium is of special relevance since it has been identified as a target for potential anti-TB molecules, especially Bedaquiline (BDQ). Better knowledge of how mycobacterial ATP synthase functions and its peculiar characteristics will aid in our understanding of bacterial energy metabolism adaptations. Furthermore, identifying and understanding the important distinctions between human ATP synthase and bacterial ATP synthase may provide insight into the design and development of inhibitors that target specific ATP synthase. In recent years, many potential candidates targeting the ATP synthase of mycobacterium have been developed. In this review, we discuss the druggable targets of the Electron transport chain (ETC) and recently identified potent inhibitors (including clinical molecules) from 2015 to 2022 of diverse classes that target ATP synthase of M. tuberculosis.
Collapse
Affiliation(s)
- Lakshmi Mounika Kelam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
40
|
Shrestha RK, Founds MW, Shepard SJ, Rothrock MM, Defnet AE, Steed PR. Mutational analysis of a conserved positive charge in the c-ring of E. coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148962. [PMID: 36822493 PMCID: PMC9998364 DOI: 10.1016/j.bbabio.2023.148962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
F1Fo ATP synthase is a ubiquitous molecular motor that utilizes a rotary mechanism to synthesize adenosine triphosphate (ATP), the fundamental energy currency of life. The membrane-embedded Fo motor converts the electrochemical gradient of protons into rotation, which is then used to drive the conformational changes in the soluble F1 motor that catalyze ATP synthesis. In E. coli, the Fo motor is composed of a c10 ring (rotor) alongside subunit a (stator), which together provide two aqueous half channels that facilitate proton translocation. Previous work has suggested that Arg50 and Thr51 on the cytoplasmic side of each subunit c are involved in the proton translocation process, and positive charge is conserved in this region of subunit c. To further investigate the role of these residues and the chemical requirements for activity at these positions, we generated 13 substitution mutants and assayed their in vitro ATP synthesis, H+ pumping, and passive H+ permeability activities, as well as the ability of mutants to carry out oxidative phosphorylation in vivo. While polar and hydrophobic mutations were generally tolerated in either position, introduction of negative charge or removal of polarity caused a substantial defect. We discuss the possible effects of altered electrostatics on the interaction between the rotor and stator, water structure in the aqueous channel, and interaction of the rotor with cardiolipin.
Collapse
Affiliation(s)
- Rashmi K Shrestha
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Michael W Founds
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Sam J Shepard
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Mallory M Rothrock
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - Amy E Defnet
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America
| | - P Ryan Steed
- Department of Chemistry & Biochemistry, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, United States of America.
| |
Collapse
|
41
|
Baruzzo G, Serafini A, Finotello F, Sanavia T, Cioetto-Mazzabò L, Boldrin F, Lavezzo E, Barzon L, Toppo S, Provvedi R, Manganelli R, Di Camillo B. Role of the Extracytoplasmic Function Sigma Factor SigE in the Stringent Response of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0294422. [PMID: 36946740 PMCID: PMC10100808 DOI: 10.1128/spectrum.02944-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Bacteria respond to nutrient starvation implementing the stringent response, a stress signaling system resulting in metabolic remodeling leading to decreased growth rate and energy requirements. A well-characterized model of stringent response in Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracytoplasmic function (ECF) sigma factor SigE was previously suggested as having a key role in the activation of stringent response. In this study, we challenge this hypothesis by analyzing the temporal dynamics of the transcriptional response of a sigE mutant and its wild-type parental strain to low phosphate using RNA sequencing. We found that both strains responded to low phosphate with a typical stringent response trait, including the downregulation of genes encoding ribosomal proteins and RNA polymerase. We also observed transcriptional changes that support the occurring of an energetics imbalance, compensated by a reduced activity of the electron transport chain, decreased export of protons, and a remodeling of central metabolism. The most striking difference between the two strains was the induction in the sigE mutant of several stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances, their induction suggests that the sigE mutant is not able to maintain redox homeostasis in response to the energetics imbalance induced by low phosphate. In conclusion, our data suggest that SigE is not directly involved in initiating stringent response but in protecting the cell from stress consequent to the low phosphate exposure and activation of stringent response. IMPORTANCE Mycobacterium tuberculosis can enter a dormant state enabling it to establish latent infections and to become tolerant to antibacterial drugs. Dormant bacteria's physiology and the mechanism(s) used by bacteria to enter dormancy during infection are still unknown due to the lack of reliable animal models. However, several in vitro models, mimicking conditions encountered during infection, can reproduce different aspects of dormancy (growth arrest, metabolic slowdown, drug tolerance). The stringent response, a stress response program enabling bacteria to cope with nutrient starvation, is one of them. In this study, we provide evidence suggesting that the sigma factor SigE is not directly involved in the activation of stringent response as previously hypothesized, but it is important to help the bacteria to handle the metabolic stress related to the adaptation to low phosphate and activation of stringent response, thus giving an important contribution to our understanding of the mechanism behind stringent response development.
Collapse
Affiliation(s)
- Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | - Tiziana Sanavia
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy
| |
Collapse
|
42
|
Zhang XW, Jiang GL, Li GJ, Chen XY, Zhou AN, Liu Y. Quantitative Study of Impurities in Bedaquiline Fumarate: Identification and Characterization of Its Three Degradation Products Using HPLC, LC/ESI-MS, and NMR Analyses. PHARMACEUTICAL FRONTS 2023. [DOI: 10.1055/s-0043-1764418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The study aimed to establish a high-performance liquid chromatography (HPLC) method for the quantitative analysis of the related substances of bedaquiline fumarate. Nuclear magnetic resonance and mass spectrometry were used for characterization and assay. A chromatographic method was used for separation. The conditions used were: gradient elution system composed of methanol 0.01mol/L KH2PO4 and 0.01 mol/L K2HPO4 (pH = 4.1) with a flow rate of 1 mL/min, at 224 nm as the detection wavelength. In this study, three degradation products of bedaquiline fumarate have been disclosed for the first time. The related impurities and degradation products of the drug were well separated. The method provided linear responses within the concentration range, which varied from 0.20 to 10.08 μg/mL with limits of detection of 0.10 μg/mL and limits of quantification of 0.20 μg/mL. The mean percent recovery varied between 91.64 and 105.89%. The method was validated for other parameters such as specificity, stability, and robustness. This method was validated and worked well for the impurity studies and quality control analysis of the laboratory-prepared samples of bedaquiline fumarate.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Gang-Long Jiang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Guo-Jing Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Xiao-Yan Chen
- China National Medicines Guorui Pharmaceutical Co., Ltd., Huainan, People's Republic of China
| | - Ai-Nan Zhou
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu Liu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co. Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
43
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
44
|
Zhu H, Chen Q, Zhao L, Hu P. Targeting ATP Synthase by Bedaquiline as a Therapeutic Strategy to Sensitize Ovarian Cancer to Cisplatin. Nutr Cancer 2023; 75:1271-1280. [PMID: 36880762 DOI: 10.1080/01635581.2023.2180825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cisplatin is a common chemotherapeutic drug for treating ovarian cancer, but its clinical efficacy is hampered by intrinsic and acquired resistance. Previous studies had shown inhibiting oxidative phosphorylation overcomes cisplatin resistance in ovarian cancer. Studies reveal that bedaquiline, a clinically available antimicrobial drug, inhibits cancer via targeting mitochondria. This study systematically assessed the efficacy of bedaquiline in ovarian cancer and its underlying mechanism. Using a panel of ovarian cancer cell lines and normal ovary cells, we demonstrated bedaquiline is selective for anti-ovarian cancer activities. Furthermore, the sensitivity varied among different ovarian cancer cell lines regardless of their sensitivity to cisplatin. Bedaquiline inhibited growth, survival and migration, through decreasing levels of ATP synthase subunit, complex V activity, mitochondrial respiration and ATP. We further found that ovarian cancer displayed increased levels of ATP, oxygen consumption rate (OCR), complex V activity and ATP synthase subunits compared to normal counterpart. Combination index analysis showed that bedaquiline and cisplatin is synergistic. Bedaquiline remarkably enhanced the efficacy of cisplatin in inhibiting ovarian cancer growth in mice. Our study provides evidence to repurpose bedaquiline for ovarian cancer treatment and suggests that ATP synthase is a selective target to overcome cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Qitian Chen
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lingling Zhao
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
45
|
Akutsu H. Strategies for elucidation of the structure and function of the large membrane protein complex, F oF 1-ATP synthase, by nuclear magnetic resonance. Biophys Chem 2023; 296:106988. [PMID: 36898347 DOI: 10.1016/j.bpc.2023.106988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nuclear magnetic resonance (NMR) investigation of large membrane proteins requires well-focused questions and critical techniques. Here, research strategies for FoF1-ATP synthase, a membrane-embedded molecular motor, are reviewed, focusing on the β-subunit of F1-ATPase and c-subunit ring of the enzyme. Segmental isotope-labeling provided 89% assignment of the main chain NMR signals of thermophilic Bacillus (T)F1β-monomer. Upon nucleotide binding to Lys164, Asp252 was shown to switch its hydrogen-bonding partner from Lys164 to Thr165, inducing an open-to-closed bend motion of TF1β-subunit. This drives the rotational catalysis. The c-ring structure determined by solid-state NMR showed that cGlu56 and cAsn23 of the active site took a hydrogen-bonded closed conformation in membranes. In 505 kDa TFoF1, the specifically isotope-labeled cGlu56 and cAsn23 provided well-resolved NMR signals, which revealed that 87% of the residue pairs took a deprotonated open conformation at the Foa-c subunit interface, whereas they were in the closed conformation in the lipid-enclosed region.
Collapse
Affiliation(s)
- Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
46
|
Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023; 81:117212. [PMID: 36804747 DOI: 10.1016/j.bmc.2023.117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Departemnt of Natural Products, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad 500037, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
47
|
Li P, Wang B, Chen X, Lin Z, Li G, Lu Y, Huang H. Design, synthesis and biological evaluation of alkynyl-containing maleimide derivatives for the treatment of drug-resistant tuberculosis. Bioorg Chem 2023; 131:106250. [PMID: 36423487 DOI: 10.1016/j.bioorg.2022.106250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
A series of alkynyl-containing maleimides with potent anti-tuberculosis (TB) activity was developed through a rigid group substitution strategy based on our previous study. Systematic optimization of the two side chains flanking the maleimide core led to new compounds with potent activity against Mycobacterium tuberculosis (MIC < 1 μg/mL) and low cytotoxicity (IC50 > 64 μg/mL). Among them, compound 29 not only possessed good activity against extensively drug-resistant TB and favorable hepatocyte stability, but also displayed good intracellular antimycobacterial activity in macrophages. This study lays a good foundation for identifying new alkynyl-containing maleimides as promising leads for treating drug-resistant TB.
Collapse
Affiliation(s)
- Peng Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Xi Chen
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Ziyun Lin
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China.
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
48
|
Barbaro L, Nagalingam G, Triccas JA, Tan L, West NP, Priebbenow DL, Baell JB. Discovery of Anti-tubercular Analogues of Bedaquiline with Modified A-, B- and C-Ring Subunits. ChemMedChem 2023; 18:e202200533. [PMID: 36259365 DOI: 10.1002/cmdc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
To date, the clinical use of the anti-tubercular therapy bedaquiline has been somewhat limited due to safety concerns. Recent investigations determined that modification of the B- and C-ring units of bedaquiline delivered new diarylquinolines (for example TBAJ-587) with potent anti-tubercular activity yet an improved safety profile due to reduced affinity for the hERG channel. Building on our recent discovery that substitution of the quinoline motif (the A-ring subunit) for C5-aryl pyridine groups within bedaquiline analogues led to retention of anti-tubercular activity, we investigated the concurrent modification of A-, B- and C-ring units within bedaquiline variants. This led to the discovery that 4-trifluoromethoxyphenyl and 4-chlorophenyl pyridyl analogues of TBAJ-587 retained relatively potent anti-tubercular activity and for the 4-chlorophenyl derivative in particular, a significant reduction in hERG inhibition relative to bedaquiline was achieved, demonstrating that modifications of the A-, B- and C-ring units within the bedaquiline structure is a viable strategy for the design of effective, yet safer (and less lipophilic) anti-tubercular compounds.
Collapse
Affiliation(s)
- Lisa Barbaro
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| | - Gayathri Nagalingam
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - James A Triccas
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Daniel L Priebbenow
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia.,School of Chemistry, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| |
Collapse
|
49
|
Nesci S. Bacterial and mammalian F1FO-ATPase: Structural similarities and divergences to exploit in the battle against Mycobacterium tuberculosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors. Antimicrob Agents Chemother 2022; 66:e0105622. [PMID: 36445139 PMCID: PMC9764993 DOI: 10.1128/aac.01056-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.
Collapse
|