1
|
Wang B, Moynier F, Hu Y. Rubidium isotopic compositions of angrites controlled by extensive evaporation and partial recondensation. Proc Natl Acad Sci U S A 2024; 121:e2311402121. [PMID: 38147555 PMCID: PMC10769822 DOI: 10.1073/pnas.2311402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
The planetesimals in the solar system exhibit varying degrees of moderately volatile elements (MVEs) depletion compared to the protosolar composition. Revealing the relevant mechanisms is crucial for exploring early solar system evolution. Most volatile-depleted materials in the solar system exhibit enrichments in the heavier isotopes of MVEs, which have traditionally been attributed to the loss of volatiles through partial evaporation. Angrites are so far an exception as they are enriched in the lighter isotopes of K. This has been interpreted as reflecting condensation processes. Here, we present Rb isotopic data of angrites and find that they have lighter Rb isotopic compositions than Vesta, Mars, and the Moon. The δ87Rb value of the angrite parent body (APB) is estimated to range between -1.19‰ and -0.67‰. The extremely light Rb isotopic composition of the APB is likely a result of the kinetic recondensation of Rb after near-complete evaporation during the magma ocean stage. This finding provides further support for the partial recondensation model to explain the light Rb and K isotopic compositions of the APB. In addition, the APB, alongside other terrestrial planetary bodies (e.g., Earth, Mars, Moon, and Vesta), exhibit a strong correlation between their Rb and K isotopic compositions. This coupling of Rb and K isotopes is indicative of a volatility-driven isotopic fractionation rather than nucleosynthetic anomalies. The extremely light Rb-K isotopic signatures of the APB suggest that beyond evaporation, condensation plays an equally significant role in shaping the planetary-scale distributions of volatile elements.
Collapse
Affiliation(s)
- Baoliang Wang
- Institut de Physique du Globe de Paris, Université Paris Cité, CNRS, Paris75005, France
| | - Frederic Moynier
- Institut de Physique du Globe de Paris, Université Paris Cité, CNRS, Paris75005, France
| | - Yan Hu
- Institut de Physique du Globe de Paris, Université Paris Cité, CNRS, Paris75005, France
| |
Collapse
|
2
|
Zhu K, Schiller M, Pan L, Saji NS, Larsen KK, Amsellem E, Rundhaug C, Sossi P, Leya I, Moynier F, Bizzarro M. Late delivery of exotic chromium to the crust of Mars by water-rich carbonaceous asteroids. SCIENCE ADVANCES 2022; 8:eabp8415. [PMID: 36383650 PMCID: PMC9668285 DOI: 10.1126/sciadv.abp8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The terrestrial planets endured a phase of bombardment following their accretion, but the nature of this late accreted material is debated, preventing a full understanding of the origin of inner solar system volatiles. We report the discovery of nucleosynthetic chromium isotope variability (μ54Cr) in Martian meteorites that represent mantle-derived magmas intruded in the Martian crust. The μ54Cr variability, ranging from -33.1 ± 5.4 to +6.8 ± 1.5 parts per million, correlates with magma chemistry such that samples having assimilated crustal material define a positive μ54Cr endmember. This compositional endmember represents the primordial crust modified by impacting outer solar system bodies of carbonaceous composition. Late delivery of this volatile-rich material to Mars provided an exotic water inventory corresponding to a global water layer >300 meters deep, in addition to the primordial water reservoir from mantle outgassing. This carbonaceous material may also have delivered a source of biologically relevant molecules to early Mars.
Collapse
Affiliation(s)
- Ke Zhu
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lu Pan
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nikitha Susan Saji
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten K. Larsen
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elsa Amsellem
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Courtney Rundhaug
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Ingo Leya
- Physics Institute, University of Bern, Bern, Switzerland
| | - Frederic Moynier
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
| | - Martin Bizzarro
- Université de Paris, Institut de Physique du Globe de Paris, Paris, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Grewal DS, Dasgupta R, Hough T, Farnell A. Rates of protoplanetary accretion and differentiation set nitrogen budget of rocky planets. NATURE GEOSCIENCE 2021; 14:369-376. [PMID: 34163536 PMCID: PMC8216213 DOI: 10.1038/s41561-021-00733-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The effect of protoplanetary differentiation on the fate of life-essential volatiles like nitrogen and carbon and its subsequent effect on the dynamics of planetary growth is unknown. Because the dissolution of nitrogen in magma oceans depends on its partial pressure and oxygen fugacity, it is an ideal proxy to track volatile re-distribution in protoplanets as a function of their sizes and growth zones. Using high pressure-temperature experiments in graphite-undersaturated conditions, here we show that the siderophile (iron-loving) character of nitrogen is an order of magnitude higher than previous estimates across a wide range of oxygen fugacity. The experimental data combined with metal-silicate-atmosphere fractionation models suggest that asteroid-sized protoplanets, and planetary embryos that grew from them, were nitrogen-depleted. However, protoplanets that grew to planetary embryo-size before undergoing differentiation had nitrogen-rich cores and nitrogen-poor silicate reservoirs. Bulk silicate reservoirs of large Earth-like planets attained nitrogen from the cores of latter type of planetary embryos. Therefore, to satisfy the volatile budgets of Earth-like planets during the main stage of their growth, the timescales of planetary embryo accretion had to be shorter than their differentiation timescales, i.e., Moon- to Mars-sized planetary embryos grew rapidly within ~1-2 Myrs of the Solar System's formation.
Collapse
Affiliation(s)
- Damanveer S. Grewal
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Rajdeep Dasgupta
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Taylor Hough
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
| | - Alexandra Farnell
- Department of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main Street, MS 126, Houston, TX 77005, USA
- St. John’s School, 2401 Claremont Ln, Houston, TX 77019, USA
| |
Collapse
|
4
|
Chandra Paul G, Bilkis F, Ali ME, Chandra Barman M. Settling time of solid grains in gaseous giant protoplanets. PLANETARY AND SPACE SCIENCE 2021; 200:105212. [DOI: 10.1016/j.pss.2021.105212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Zhu K, Moynier F, Schiller M, Alexander CMO, Davidson J, Schrader DL, van Kooten E, Bizzarro M. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. GEOCHIMICA ET COSMOCHIMICA ACTA 2021; 301:158-186. [PMID: 34393262 PMCID: PMC7611480 DOI: 10.1016/j.gca.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chondrites are meteorites from undifferentiated parent bodies that provide fundamental information about early Solar System evolution and planet formation. The element Cr is highly suitable for deciphering both the timing of formation and the origin of planetary building blocks because it records both radiogenic contributions from 53Mn-53Cr decay and variable nucleosynthetic contributions from the stable 54Cr nuclide. Here, we report high-precision measurements of the massindependent Cr isotope compositions (ε53Cr and ε54Cr) of chondrites (including all carbonaceous chondrites groups) and terrestrial samples using for the first time a multi-collection inductively-coupled-plasma mass-spectrometer to better understand the formation histories and genetic relationships between chondrite parent bodies. With our comprehensive dataset, the order of decreasing ε54Cr (per ten thousand deviation of the 54Cr/52Cr ratio relative to a terrestrial standard) values amongst the carbonaceous chondrites is updated to CI = CH ≥ CB ≥ CR ≥ CM ≈ CV ≈ CO ≥ CK > EC > OC. Chondrites from CO, CV, CR, CM and CB groups show intra-group ε54Cr heterogeneities that may result from sample heterogeneity and/or heterogeneous accretion of their parent bodies. Resolvable ε54Cr (with 2SE uncertainty) differences between CV and CK chondrites rule out an origin from a common parent body or reservoir as has previously been suggested. The CM and CO chondrites share common ε54Cr characteristics, which suggests their parent bodies may have accreted their components in similar proportions. The CB and CH chondrites have low-Mn/Cr ratios and similar ε53Cr values to the CI chondrites, invalidating them as anchors for a bulk 53Mn-53Cr isochron for carbonaceous chondrites. Bulk Earth has a ε53Cr value that is lower than the average of chondrites, including enstatite chondrites. This depletion may constrain the timing of volatile loss from the Earth or its precursors to be within the first million years of Solar System formation and is incompatible with Earth's accretion via any of the known chondrite groups as main contributors, including enstatite chondrites.
Collapse
Affiliation(s)
- Ke Zhu
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Frédéric Moynier
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
| | - Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Conel M O'D Alexander
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA
| | - Jemma Davidson
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Devin L Schrader
- Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, AZ 85287-6004, USA
| | - Elishevah van Kooten
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| | - Martin Bizzarro
- Universite' de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, 1 rue Jussieu, Paris 75005, France
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen DK-1350, Denmark
| |
Collapse
|
6
|
Hirschmann MM, Bergin EA, Blake GA, Ciesla FJ, Li J. Early volatile depletion on planetesimals inferred from C-S systematics of iron meteorite parent bodies. Proc Natl Acad Sci U S A 2021; 118:e2026779118. [PMID: 33753516 PMCID: PMC8020667 DOI: 10.1073/pnas.2026779118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.
Collapse
Affiliation(s)
- Marc M Hirschmann
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455;
| | - Edwin A Bergin
- Department of Astronomy, University of Michigan, Ann Arbor, MI 48109
| | - Geoff A Blake
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Fred J Ciesla
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637
- Chicago Center for Cosmochemistry, University of Chicago, Chicago, IL 60637
| | - Jie Li
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Johansen A, Ronnet T, Bizzarro M, Schiller M, Lambrechts M, Nordlund Å, Lammer H. A pebble accretion model for the formation of the terrestrial planets in the Solar System. SCIENCE ADVANCES 2021; 7:7/8/eabc0444. [PMID: 33597233 PMCID: PMC7888959 DOI: 10.1126/sciadv.abc0444] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/30/2020] [Indexed: 06/02/2023]
Abstract
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites-formed by melting of dust aggregate pebbles or in impacts between planetesimals-have similar sizes. The role of pebble accretion for terrestrial planet formation is nevertheless unclear. Here, we present a model where inward-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with Earth to form the Moon), and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars' orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Last, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporize volatiles.
Collapse
Affiliation(s)
- Anders Johansen
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Thomas Ronnet
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Martin Bizzarro
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Martin Schiller
- Center for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Michiel Lambrechts
- Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 221 00 Lund, Sweden
| | - Åke Nordlund
- Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| |
Collapse
|
8
|
Lichtenberg T, Dra Żkowska J, Schönbächler M, Golabek GJ, Hands TO. Bifurcation of planetary building blocks during Solar System formation. Science 2021; 371:365-370. [PMID: 33479146 DOI: 10.1126/science.abb3091] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/10/2020] [Indexed: 11/02/2022]
Abstract
Geochemical and astronomical evidence demonstrates that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar protoplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermochemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
Collapse
Affiliation(s)
- Tim Lichtenberg
- Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK.
| | - Joanna Dra Żkowska
- University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Schönbächler
- Institute for Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Gregor J Golabek
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Thomas O Hands
- Institute for Computational Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
O’Brien T, Tarduno JA, Anand A, Smirnov AV, Blackman EG, Carroll-Nellenback J, Krot AN. Arrival and magnetization of carbonaceous chondrites in the asteroid belt before 4562 million years ago. COMMUNICATIONS EARTH & ENVIRONMENT 2020; 1:54. [PMID: 33283201 PMCID: PMC7716897 DOI: 10.1038/s43247-020-00055-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/27/2020] [Indexed: 06/02/2023]
Abstract
Meteorite magnetizations can provide rare insight into early Solar System evolution. Such data take on new importance with recognition of the isotopic dichotomy between non-carbonaceous and carbonaceous meteorites, representing distinct inner and outer disk reservoirs, and the likelihood that parent body asteroids were once separated by Jupiter and subsequently mixed. The arrival time of these parent bodies into the main asteroid belt, however, has heretofore been unknown. Herein, we show that weak CV (Vigarano type) and CM (Mighei type) carbonaceous chondrite remanent magnetizations indicate acquisition by the solar wind 4.2 to 4.8 million years after Ca-Al-rich inclusion (CAI) formation at heliocentric distances of ~2-4 AU. These data thus indicate that the CV and CM parent asteroids had arrived near, or within, the orbital range of the present-day asteroid belt from the outer disk isotopic reservoir within the first 5 million years of Solar System history.
Collapse
Affiliation(s)
- Timothy O’Brien
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
| | - John A. Tarduno
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA
| | - Atma Anand
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA
| | - Aleksey V. Smirnov
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931 USA
- Physics Department, Michigan Technological University, Houghton, MI 49931 USA
| | - Eric G. Blackman
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA
| | | | - Alexander N. Krot
- Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, HI 96822 USA
| |
Collapse
|
10
|
Maurel C, Bryson JFJ, Lyons RJ, Ball MR, Chopdekar RV, Scholl A, Ciesla FJ, Bottke WF, Weiss BP. Meteorite evidence for partial differentiation and protracted accretion of planetesimals. SCIENCE ADVANCES 2020; 6:eaba1303. [PMID: 32754636 PMCID: PMC7381086 DOI: 10.1126/sciadv.aba1303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/09/2020] [Indexed: 06/02/2023]
Abstract
Modern meteorite classification schemes assume that no single planetary body could be source of both unmelted (chondritic) and melted (achondritic) meteorites. This dichotomy is a natural outcome of formation models assuming that planetesimal accretion occurred nearly instantaneously. However, it has recently been proposed that the accretion of many planetesimals lasted over ≳1 million years (Ma). This could have resulted in partially differentiated internal structures, with individual bodies containing iron cores, achondritic silicate mantles, and chondritic crusts. This proposal can be tested by searching for a meteorite group containing evidence for these three layers. We combine synchrotron paleomagnetic analyses with thermal, impact, and collisional evolution models to show that the parent body of the enigmatic IIE iron meteorites was such a partially differentiated planetesimal. This implies that some chondrites and achondrites simultaneously coexisted on the same planetesimal, indicating that accretion was protracted and that apparently undifferentiated asteroids may contain melted interiors.
Collapse
Affiliation(s)
- Clara Maurel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James F. J. Bryson
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Richard J. Lyons
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Matthew R. Ball
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Rajesh V. Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fred J. Ciesla
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - William F. Bottke
- Southwest Research Institute and NASA Solar System Exploration Research Virtual Institute–Institute for the Science of Exploration Targets, Boulder, CO 80302, USA
| | - Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
van Kooten E, Cavalcante L, Wielandt D, Bizzarro M. The role of Bells in the continuous accretion between the CM and CR chondrite reservoirs. METEORITICS & PLANETARY SCIENCE 2020; 55:575-590. [PMID: 32362738 PMCID: PMC7188250 DOI: 10.1111/maps.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
CM meteorites are dominant members of carbonaceous chondrites (CCs), which evidently accreted in a region separated from the terrestrial planets. These chondrites are key in determining the accretion regions of solar system materials, since in Mg and Cr isotope space, they intersect between what are identified as inner and outer solar system reservoirs. In this model, the outer reservoir is represented by metal-rich carbonaceous chondrites (MRCCs), including CR chondrites. An important question remains whether the barrier between MRCCs and CCs was a temporal or spatial one. CM chondrites and chondrules are used here to identify the nature of the barrier as well as the timescale of chondrite parent body accretion. We find based on high precision Mg and Cr isotope data of seven CM chondrites and 12 chondrules, that accretion in the CM chondrite reservoir was continuous lasting <3 Myr and showing late accretion of MRCC-like material reflected by the anomalous CM chondrite Bells. We further argue that although MRCCs likely accreted later than CM chondrites, CR chondrules must have initially formed from a reservoir spatially separated from CM chondrules. Finally, we hypothesize on the nature of the spatial barrier separating these reservoirs.
Collapse
Affiliation(s)
- Elishevah van Kooten
- Institut de Physique du Globe de ParisUniversité de ParisCNRSUMR 71541 rue Jussieu75238ParisFrance
| | | | - Daniel Wielandt
- Centre for Star and Planet Formation and Natural History Museum of DenmarkUniversity of CopenhagenDK‐1350CopenhagenDenmark
| | - Martin Bizzarro
- Centre for Star and Planet Formation and Natural History Museum of DenmarkUniversity of CopenhagenDK‐1350CopenhagenDenmark
| |
Collapse
|
12
|
McKinnon WB, Richardson DC, Marohnic JC, Keane JT, Grundy WM, Hamilton DP, Nesvorný D, Umurhan OM, Lauer TR, Singer KN, Stern SA, Weaver HA, Spencer JR, Buie MW, Moore JM, Kavelaars JJ, Lisse CM, Mao X, Parker AH, Porter SB, Showalter MR, Olkin CB, Cruikshank DP, Elliott HA, Gladstone GR, Parker JW, Verbiscer AJ, Young LA. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science 2020; 367:science.aay6620. [PMID: 32054695 DOI: 10.1126/science.aay6620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 11/02/2022]
Abstract
The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.
Collapse
Affiliation(s)
- W B McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - D C Richardson
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - J C Marohnic
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - J T Keane
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - W M Grundy
- Lowell Observatory, Flagstaff, AZ 86001, USA.,Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - D P Hamilton
- Department of Astronomy, University of Maryland, College Park, MD 20742, USA
| | - D Nesvorný
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - O M Umurhan
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA.,SETI Institute, Mountain View, CA 94043, USA
| | - T R Lauer
- National Optical-Infrared Astronomy Research Laboratory, National Science Foundation, Tucson, AZ 85726, USA
| | - K N Singer
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - S A Stern
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - H A Weaver
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - J R Spencer
- National Research Council of Canada, Victoria, BC V9E 2E7, Canada
| | - M W Buie
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - J M Moore
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
| | - J J Kavelaars
- National Research Council of Canada, Victoria, BC V9E 2E7, Canada
| | - C M Lisse
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - X Mao
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - A H Parker
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - S B Porter
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | | | - C B Olkin
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - D P Cruikshank
- NASA Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA
| | - H A Elliott
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA.,Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249, USA
| | - G R Gladstone
- Division of Space Science and Engineering, Southwest Research Institute, San Antonio, TX 78238, USA
| | - J Wm Parker
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | - A J Verbiscer
- Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
| | - L A Young
- Division of Space Science and Engineering, Southwest Research Institute, Boulder, CO 80302, USA
| | | |
Collapse
|
13
|
Schiller M, Bizzarro M, Siebert J. Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth. SCIENCE ADVANCES 2020; 6:eaay7604. [PMID: 32095530 PMCID: PMC7015677 DOI: 10.1126/sciadv.aay7604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 06/02/2023]
Abstract
Nucleosynthetic isotope variability among solar system objects provides insights into the accretion history of terrestrial planets. We report on the nucleosynthetic Fe isotope composition (μ54Fe) of various meteorites and show that the only material matching the terrestrial composition is CI (Ivuna-type) carbonaceous chondrites, which represent the bulk solar system composition. All other meteorites, including carbonaceous, ordinary, and enstatite chondrites, record excesses in μ54Fe. This observation is inconsistent with protracted growth of Earth by stochastic collisional accretion, which predicts a μ54Fe value reflecting a mixture of the various meteorite parent bodies. Instead, our results suggest a rapid accretion and differentiation of Earth during the ~5-million year disk lifetime, when the volatile-rich CI-like material is accreted to the proto-Sun via the inner disk.
Collapse
Affiliation(s)
- Martin Schiller
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Globe Institute, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark
- Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, 75005 Paris, France
| | - Julien Siebert
- Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020. [PMID: 32801398 DOI: 10.1007/s11214-019-0625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
15
|
Abstract
An impasse exists between chemical and astrophysical models that explore the accretion of the Solar System’s building blocks, the chondrites. To resolve this issue means to gain an understanding of the dimensions of mass transport in the early Solar System and, hence, a crucial insight into the volatile inventory of the terrestrial planets. Here, we use element volatility patterns of chondrules and their dust rims to show that these main constituents of chondrites are not complementary to each other and did not form in the same chemical reservoirs. We propose a unifying chondrule and matrix accretion model that necessitates significant mass transport in the protoplanetary disk and an inward flux of volatile-rich CI-like (Ivuna-type carbonaceous chondrite) dust. The so far unique role of our Solar System in the universe regarding its capacity for life raises fundamental questions about its formation history relative to exoplanetary systems. Central in this research is the accretion of asteroids and planets from a gas-rich circumstellar disk and the final distribution of their mass around the Sun. The key building blocks of the planets may be represented by chondrules, the main constituents of chondritic meteorites, which in turn are primitive fragments of planetary bodies. Chondrule formation mechanisms, as well as their subsequent storage and transport in the disk, are still poorly understood, and their origin and evolution can be probed through their link (i.e., complementary or noncomplementary) to fine-grained dust (matrix) that accreted together with chondrules. Here, we investigate the apparent chondrule–matrix complementarity by analyzing major, minor, and trace element compositions of chondrules and matrix in altered and relatively unaltered CV, CM, and CR (Vigarano-type, Mighei-type, and Renazzo-type) chondrites. We show that matrices of the most unaltered CM and CV chondrites are overall CI-like (Ivuna-type) (similar to solar composition) and do not reflect any volatile enrichment or elemental patterns complementary to chondrules, the exception being their Fe/Mg ratios. We propose to unify these contradictory data by invoking a chondrule formation model in which CI-like dust accreted to so-called armored chondrules, which are ubiquitous in many chondrites. Metal rims expelled during chondrule formation, but still attached to their host chondrule, interacted with the accreted matrix, thereby enriching the matrix in siderophile elements and generating an apparent complementarity.
Collapse
|
16
|
Zube NG, Nimmo F, Fischer RA, Jacobson SA. Constraints on terrestrial planet formation timescales and equilibration processes in the Grand Tack scenario from Hf-W isotopic evolution. EARTH AND PLANETARY SCIENCE LETTERS 2019; 522:210-218. [PMID: 32636530 PMCID: PMC7339907 DOI: 10.1016/j.epsl.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We examine 141 N-body simulations of terrestrial planet late-stage accretion that use the Grand Tack scenario, coupling the collisional results with a hafnium-tungsten (Hf-W) isotopic evolution model. Accretion in the Grand Tack scenario results in faster planet formation than classical accretion models because of higher planetesimal surface density induced by a migrating Jupiter. Planetary embryos which grow rapidly experience radiogenic ingrowth of mantle tungsten which is inconsistent with the measured terrestrial value, unless much of the tungsten is removed by an impactor core that mixes thoroughly with the target mantle. For physically Earth-like surviving planets, we find that the fraction of equilibrating impactor core kcore ≥ 0.6 is required to produce results agreeing with observed terrestrial tungsten anomalies (assuming equilibration with relatively large volumes of target mantle material; smaller equilibrating mantle volumes would require even larger kcore ). This requirement of substantial core re-equilibration may be difficult to reconcile with fluid dynamical predictions and hydrocode simulations of mixing during large impacts, and hence this result disfavors the rapid planet building of Grand Tack accretion.
Collapse
Affiliation(s)
- Nicholas G. Zube
- University of California Santa Cruz, Dept. of Earth and Planetary Sciences, 1156 High St., Santa Cruz, CA 95064, USA
| | - Francis Nimmo
- University of California Santa Cruz, Dept. of Earth and Planetary Sciences, 1156 High St., Santa Cruz, CA 95064, USA
| | - Rebecca A. Fischer
- Harvard University, Dept. Earth and Planetary Sciences, 20 Oxford St., Cambridge, MA 02138, USA
| | - Seth A. Jacobson
- Northwestern University, Dept. Earth and Planetary Sciences, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Krot AN. CHONDRITES AND THEIR COMPONENTS: RECORDS OF EARLY SOLAR SYSTEM PROCESSES. METEORITICS & PLANETARY SCIENCE 2019; 54:1647-1691. [PMID: 31379423 PMCID: PMC6677159 DOI: 10.1111/maps.13350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
AbstractChondrites consist of three major components: refractory inclusions (Ca,Al‐rich inclusions [CAIs] and amoeboid olivine aggregates), chondrules, and matrix. Here, I summarize recent results on the mineralogy, petrology, oxygen, and aluminum‐magnesium isotope systematics of the chondritic components (mainly CAIs in carbonaceous chondrites) and their significance for understanding processes in the protoplanetary disk (PPD) and on chondrite parent asteroids. CAIs are the oldest solids originated in the solar system: their U‐corrected Pb‐Pb absolute age of 4567.3 ± 0.16 Ma is considered to represent time 0 of its evolution. CAIs formed by evaporation, condensation, and aggregation in a gas of approximately solar composition in a hot (ambient temperature >1300 K) disk region exposed to irradiation by solar energetic particles, probably near the protoSun; subsequently, some CAIs were melted in and outside their formation region during transient heating events of still unknown nature. In unmetamorphosed, type 2–3.0 chondrites, CAIs show large variations in the initial 26Al/27Al ratios, from <5 × 10–6 to ~5.25 × 10–5. These variations and the inferred low initial abundance of 60Fe in the PPD suggest late injection of 26Al by a wind from a nearby Wolf–Rayet star into the protosolar molecular cloud core prior to or during its collapse. Although there are multiple generations of CAIs characterized by distinct mineralogies, textures, and isotopic (O, Mg, Ca, Ti, Mo, etc.) compositions, the 26Al heterogeneity in the CAI‐forming region(s) precludes determining the duration of CAIs formation using 26Al‐26Mg systematics. The existence of multiple generations of CAIs and the observed differences in CAI abundances in carbonaceous and noncarbonaceous chondrites may indicate that CAIs were episodically formed and ejected by a disk wind from near the Sun to the outer solar system and then spiraled inward due to gas drag. In type 2–3.0 chondrites, most CAIs surrounded by Wark–Lovering rims have uniform Δ17O (= δ17O−0.52 × δ18O) of ~ −24‰; however, there is a large range of Δ17O (from ~−40 to ~ −5‰) among them, suggesting the coexistence of 16O‐rich (low Δ17O) and 16O‐poor (high Δ17O) gaseous reservoirs at the earliest stages of the PPD evolution. The observed variations in Δ17O of CAIs may be explained if three major O‐bearing species in the solar system (CO, H2O, and silicate dust) had different O‐isotope compositions, with H2O and possibly silicate dust being 16O‐depleted relative to both the Genesis solar wind Δ17O of −28.4 ± 3.6‰ and even more 16O‐enriched CO. Oxygen isotopic compositions of CO and H2O could have resulted from CO self‐shielding in the protosolar molecular cloud (PMC) and the outer PPD. The nature of 16O‐depleted dust at the earliest stages of PPD evolution remains unclear: it could have either been inherited from the PMC or the initially 16O‐rich (solar‐like) MC dust experienced O‐isotope exchange during thermal processing in the PPD. To understand the chemical and isotopic composition of the protosolar MC material and the degree of its thermal processing in PPD, samples of the primordial silicates and ices, which may have survived in the outer solar system, are required. In metamorphosed CO3 and CV3 chondrites, most CAIs exhibit O‐isotope heterogeneity that often appears to be mineralogically controlled: anorthite, melilite, grossite, krotite, perovskite, and Zr‐ and Sc‐rich oxides and silicates are 16O‐depleted relative to corundum, hibonite, spinel, Al,Ti‐diopside, forsterite, and enstatite. In texturally fine‐grained CAIs with grain sizes of ~10–20 μm, this O‐isotope heterogeneity is most likely due to O‐isotope exchange with 16O‐poor (Δ17O ~0‰) aqueous fluids on the CO and CV chondrite parent asteroids. In CO3.1 and CV3.1 chondrites, this process did not affect Al‐Mg isotope systematics of CAIs. In some coarse‐grained igneous CV CAIs, O‐isotope heterogeneity of anorthite, melilite, and igneously zoned Al,Ti‐diopside appears to be consistent with their crystallization from melts of isotopically evolving O‐isotope compositions. These CAIs could have recorded O‐isotope exchange during incomplete melting in nebular gaseous reservoir(s) with different O‐isotope compositions and during aqueous fluid–rock interaction on the CV asteroid.
Collapse
|
18
|
Singer KN, McKinnon WB, Gladman B, Greenstreet S, Bierhaus EB, Stern SA, Parker AH, Robbins SJ, Schenk PM, Grundy WM, Bray VJ, Beyer RA, Binzel RP, Weaver HA, Young LA, Spencer JR, Kavelaars JJ, Moore JM, Zangari AM, Olkin CB, Lauer TR, Lisse CM, Ennico K. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 2019; 363:955-959. [PMID: 30819958 DOI: 10.1126/science.aap8628] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/05/2019] [Indexed: 11/02/2022]
Abstract
The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System.
Collapse
|
19
|
Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 2018; 555:507-510. [PMID: 29565359 PMCID: PMC5884421 DOI: 10.1038/nature25990] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022]
Abstract
Nucleosynthetic isotope variability amongst Solar System objects is commonly used to probe the genetic relationship between meteorite groups and rocky planets, which, in turn, may provide insights into the building blocks of the Earth-Moon system1–5. Using this approach, it is inferred that no primitive meteorite matches the terrestrial composition such that the nature of the disk material that accreted to form the Earth and Moon is unconstrained6. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability amongst inner Solar System objects predominantly reflects spatial heterogeneity. Here, we use the isotopic composition of the refractory element calcium to show that the inner Solar System’s nucleosynthetic variability in the mass-independent 48Ca/44Ca ratio (μ48Ca) primarily represents a rapid change in the μ48Ca composition of disk solids associated with early mass accretion to the proto-Sun. In detail, the μ48Ca values of samples originating from the ureilite and angrite parent bodies as well as Vesta, Mars and Earth are positively correlated to the masses of the inferred parent asteroids and planets – a proxy of their accretion timescales – implying a secular evolution of the bulk μ48Ca disk composition in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within 1 Myr of proto-Sun collapse7 record the full range of inner Solar System μ48Ca compositions, indicating a rapid change in the composition of the disk material. We infer that this secular evolution reflects admixing of pristine outer Solar System material to the thermally-processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The indistinguishable μ48Ca composition of the Earth (0.2±3.9 ppm) and Moon (3.7±1.9 ppm) reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the disk lifetime.
Collapse
|
20
|
Abstract
We present time-anchored elemental abundance data for some of the Solar System’s first solids by tracking Pb−Pb dated chondrule compositions. Volatile element contents generally rise, while redox conditions (based on chondrule Mn/Na ratios) decline beginning ∼1 My after Solar System formation (∼4,567 Ma). These results reflect a continued rise in volatile element contents and their fugacities during chondrule recycling, and early water influx to the inner Solar System followed by its express removal. These observations support the early formation of Mars under oxidizing condition and Earth’s protracted growth under more reducing conditions in an environment increasing in volatile contents with time, while also calling into question the coupling of water and volatile elements during Solar System evolution. Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition—rare earth, refractory, main group, and volatile element contents—of a suite of chondrules previously dated using the Pb−Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.
Collapse
|
21
|
|
22
|
Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 2018; 558:586-589. [PMID: 29950620 PMCID: PMC6107064 DOI: 10.1038/s41586-018-0222-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/01/2018] [Indexed: 11/08/2022]
Abstract
The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U-Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu-176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir1-3. Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars4,5. These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust 4 , thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U-Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U-Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts4,5, to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust6,7.
Collapse
|
23
|
Charbonnier Q, Moynier F, Bouchez J. Barium isotope cosmochemistry and geochemistry. Sci Bull (Beijing) 2018; 63:385-394. [PMID: 36658876 DOI: 10.1016/j.scib.2018.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/21/2023]
Abstract
While the isotopic variations of barium were reported for the first time fourty years ago, the number of studies on barium isotopes significantly increased only after 2010. Barium isotope anomalies in meteorites have been successfully used to provide constraints about the origin of presolar SiC grains. In carbonaceous chondrites Ba isotope anomalies are indicative of the heterogeneity of the early solar system, possibly resulting from of a later injection of material after the cooling of solar system. Barium isotope fractionation in the same carbonaceous chondrites suggests that a strong magnetic field was present in the innermost part of the early solar system. Barium mass-dependent isotope fractionation has also been detected throughout Earth surface materials. While igneous rocks show limited Ba isotopic variations, relatively large isotopic variations are observed amongst and within soils, rivers, and biological materials. Indeed, plants seem to fractionate Ba isotopes during Ba uptake from soil solutions. Therefore, Ba isotope signatures have the potential to provide clues on the biological cycling of Ba at the Earth surface. In seawater, Ba isotopic variations have been mapped out, and are mainly related to barite precipitation, which is in turn related to organic matter remineralization in the water column. This makes Ba isotopes a potentially powerful tool to reconstruct past ocean productivity, although constraints are still lacking regarding the inputs of dissolved Ba to the oceans by rivers or hydrothermalism.
Collapse
Affiliation(s)
- Quentin Charbonnier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7154, 1 rue Jussieu, 75238 Paris, France.
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7154, 1 rue Jussieu, 75238 Paris, France; Institut Universitaire de France and Université Paris Diderot, 75231 Paris, France
| | - Julien Bouchez
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR 7154, 1 rue Jussieu, 75238 Paris, France
| |
Collapse
|
24
|
|
25
|
Scott ERD, Krot AN, Sanders IS. ISOTOPIC DICHOTOMY AMONG METEORITES AND IMPLICATIONS FOR THE EVOLUTION OF THE PROTOPLANETARY DISK. PROCEEDINGS OF LUNAR AND PLANETARY SCIENCE 2018; 2018:1713. [PMID: 30880865 PMCID: PMC6419968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Edward R D Scott
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Alexander N Krot
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Ian S Sanders
- Department of Geology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
26
|
Scott ERD, Krot AN, Sanders IS. Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk. THE ASTROPHYSICAL JOURNAL 2018; 854:164. [PMID: 30842684 PMCID: PMC6398615 DOI: 10.3847/1538-4357/aaa5a5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole rock Δ17O and nucleosynthetic isotopic variations for chromium, titanium, nickel, and molybdenum in meteorites define two isotopically distinct populations: carbonaceous chondrites (CCs) and some achondrites, pallasites, and irons in one and all other chondrites and differentiated meteorites in the other. Since differentiated bodies accreted 1-3 Myr before the chondrites, the isotopic dichotomy cannot be attributed to temporal variations in the disk. Instead, the two populations were most likely separated in space, plausibly by proto-Jupiter. Formation of CCs outside Jupiter could account for their characteristic chemical and isotopic composition. The abundance of refractory inclusions in CCs can be explained if they were ejected by disk winds from near the Sun to the disk periphery where they spiraled inward due to gas drag. Once proto-Jupiter reached 10-20 M ⊕, its external pressure bump could have prevented millimeter- and centimeter-sized particles from reaching the inner disk. This scenario would account for the enrichment in CCs of refractory inclusions, refractory elements, and water. Chondrules in CCs show wide ranges in Δ17O as they formed in the presence of abundant 16O-rich refractory grains and 16O-poor ice particles. Chondrules in other chondrites (ordinary, E, R, and K groups) show relatively uniform, near-zero Δ17O values as refractory inclusions and ice were much less abundant in the inner solar system. The two populations were plausibly mixed together by the Grand Tack when Jupiter and Saturn migrated inward emptying and then repopulating the asteroid belt with roughly equal masses of planetesimals from inside and outside Jupiter's orbit (S- and C-type asteroids).
Collapse
Affiliation(s)
- Edward R D Scott
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, HI 96822, USA
| | - Alexander N Krot
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, HI 96822, USA
| | - Ian S Sanders
- Department of Geology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
27
|
|
28
|
Wang H, Weiss BP, Bai XN, Downey BG, Wang J, Wang J, Suavet C, Fu RR, Zucolotto ME. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 2017; 355:623-627. [PMID: 28183977 DOI: 10.1126/science.aaf5043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 01/18/2017] [Indexed: 11/02/2022]
Abstract
A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.
Collapse
Affiliation(s)
- Huapei Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin P Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xue-Ning Bai
- Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - Brynna G Downey
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Wang
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY, USA
| | - Jiajun Wang
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY, USA
| | - Clément Suavet
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger R Fu
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
29
|
DeMeo F. Meet the primordial asteroid family. Science 2017; 357:972-973. [PMID: 28883059 DOI: 10.1126/science.aao1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Francesca DeMeo
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Raymond SN, Izidoro A. The empty primordial asteroid belt. SCIENCE ADVANCES 2017; 3:e1701138. [PMID: 28924609 PMCID: PMC5597311 DOI: 10.1126/sciadv.1701138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.
Collapse
Affiliation(s)
- Sean N. Raymond
- Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
| | - Andre Izidoro
- Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- Universidade Estadual Paulista (UNESP), Grupo de Dinamica Orbital e Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo, Brazil
| |
Collapse
|
31
|
Delbo' M, Walsh K, Bolin B, Avdellidou C, Morbidelli A. Identification of a primordial asteroid family constrains the original planetesimal population. Science 2017; 357:1026-1029. [PMID: 28775212 DOI: 10.1126/science.aam6036] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/13/2017] [Indexed: 11/02/2022]
Abstract
A quarter of known asteroids is associated with more than 100 distinct asteroid families, meaning that these asteroids originate as impact fragments from the family parent bodies. The determination of which asteroids of the remaining population are members of undiscovered families, or accreted as planetesimals from the protoplanetary disk, would constrain a critical phase of planetary formation by unveiling the unknown planetesimal size distribution. We discovered a 4-billion-year-old asteroid family extending across the entire inner part of the main belt whose members include most of the dark asteroids previously unlinked to families. This allows us to identify some original planetesimals, which are all larger than 35 kilometers, supporting the view of asteroids being born big. Their number matches the known distinct meteorite parent bodies.
Collapse
Affiliation(s)
- Marco Delbo'
- Université Côte d'Azur, CNRS-Lagrange, Observatoire de la Côte d'Azur, CS 34229-F 06304 Nice Cedex 4, France.
| | - Kevin Walsh
- Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA
| | - Bryce Bolin
- Université Côte d'Azur, CNRS-Lagrange, Observatoire de la Côte d'Azur, CS 34229-F 06304 Nice Cedex 4, France
| | - Chrysa Avdellidou
- Scientific Support Office, Directorate of Science, European Space Agency, Keplerlaan 1, NL-2201 AZ Noordwijk ZH, Netherlands
| | - Alessandro Morbidelli
- Université Côte d'Azur, CNRS-Lagrange, Observatoire de la Côte d'Azur, CS 34229-F 06304 Nice Cedex 4, France
| |
Collapse
|
32
|
Bollard J, Connelly JN, Whitehouse MJ, Pringle EA, Bonal L, Jørgensen JK, Nordlund Å, Moynier F, Bizzarro M. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. SCIENCE ADVANCES 2017; 3:e1700407. [PMID: 28808680 PMCID: PMC5550225 DOI: 10.1126/sciadv.1700407] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/11/2017] [Indexed: 06/01/2023]
Abstract
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
Collapse
Affiliation(s)
- Jean Bollard
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - James N. Connelly
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | | | - Emily A. Pringle
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lydie Bonal
- Institut de Planétologie et d’Astrophysique de Grenoble, Grenoble, France
| | - Jes K. Jørgensen
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - Åke Nordlund
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martin Bizzarro
- Centre for Star and Planet Formation, University of Copenhagen, Copenhagen, Denmark
- Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
Alexander CMO. The origin of inner Solar System water. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20150384. [PMID: 28416723 PMCID: PMC5394251 DOI: 10.1098/rsta.2015.0384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 05/23/2023]
Abstract
Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Collapse
Affiliation(s)
- Conel M O'D Alexander
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015, USA
| |
Collapse
|
34
|
Olsen MB, Wielandt D, Schiller M, Van Kooten EM, Bizzarro M. Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules - Insights into early disk processes. GEOCHIMICA ET COSMOCHIMICA ACTA 2016; 191:118-138. [PMID: 27563152 PMCID: PMC4993235 DOI: 10.1016/j.gca.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04-0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ~500 ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg*) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ~5 × 10-5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5 ± 4.0) × 10-6 to (2.2 ± 0.4) × 10-5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from CV and CR chondrites suggest that the matrix and chondrules did not necessarily formed from the same reservoir. The coupled μ26Mg* and μ54Cr systematics of CR chondrules establishes that these objects formed from a thermally unprocessed and 26Al-poor source reservoir distinct from most inner Solar System asteroids and planetary bodies, possibly located beyond the orbits of the gas giants. In contrast, a large fraction of the CV chondrules plot on the inner Solar System correlation line, indicating that these objects predominantly formed from thermally-processed, 26Al-bearing precursor material akin to that of inner Solar System solids, asteroids and planets.
Collapse
Affiliation(s)
- Mia B. Olsen
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Denmark
| | - Daniel Wielandt
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Denmark
| | - Martin Schiller
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Denmark
| | - Elishevah M.M.E. Van Kooten
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Denmark
| | - Martin Bizzarro
- Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Denmark
| |
Collapse
|
35
|
Bec J, Ray SS, Saw EW, Homann H. Abrupt growth of large aggregates by correlated coalescences in turbulent flow. Phys Rev E 2016; 93:031102. [PMID: 27078283 DOI: 10.1103/physreve.93.031102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/07/2022]
Abstract
Smoluchowski's coagulation kinetics is here shown to fail when the coalescing species are dilute and transported by a turbulent flow. The intermittent Lagrangian motion involves correlated violent events that lead to an unexpected rapid occurrence of the largest particles. This new phenomena is here quantified in terms of the anomalous scaling of turbulent three-point motion, leading to significant corrections in macroscopic processes that are critically sensitive to the early-stage emergence of large embryonic aggregates, as in planet formation or rain precipitation.
Collapse
Affiliation(s)
- Jérémie Bec
- Laboratoire J.-L. Lagrange, Université Côte d'Azur, OCA, CNRS, Bd. de l'Observatoire, 06300 Nice, France
| | - Samriddhi Sankar Ray
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India
| | - Ewe Wei Saw
- Laboratoire J.-L. Lagrange, Université Côte d'Azur, OCA, CNRS, Bd. de l'Observatoire, 06300 Nice, France.,Laboratoire SPHYNX, SPEC, CEA Saclay, CNRS, 91191 Gif-sur-Yvette, France
| | - Holger Homann
- Laboratoire J.-L. Lagrange, Université Côte d'Azur, OCA, CNRS, Bd. de l'Observatoire, 06300 Nice, France
| |
Collapse
|
36
|
Abstract
AbstractThe asteroids (more precisely: objects of the main asteroid belt) and Kuiper Belt objects (more precisely: objects of the cold classical Kuiper Belt) are leftovers of the building material for our earth and all other planets in our solar system from more than 4.5 billion years ago. At the time of their formation those were typically 100 km large objects. They were called planetesimals, built up from icy and dusty grains. In our current paradigm of planet formation it was turbulent flows and metastable flow patterns, like zonal flows and vortices, that concentrated mm to cm sized icy dust grains in sufficient numbers that a streaming instability followed by a gravitational collapse of these particle clump was triggered. The entire picture is sometimes referred to as gravoturbulent formation of planetesimals. What was missing until recently, was a physically motivated prediction on the typical sizes at which planetesimals should form via this process. Our numerical simulations in the past had only shown a correlation between numerical resolution and planetesimal size and thus no answer was possible (Johansen et al.2011). But with the lastest series of simulations on JUQUEEN (Stephan & Doctor 2015), covering all the length scales down to the physical size of actual planetesimals, we were able to obtain values for the turbulent particle diffusion as a function of the particle load in the gas. Thus, we have all necessary data at hand to feed a 'back of the envelope' calculation that predicts the size of planetesimals as result of a competition between gravitational concentration and turbulent diffusion. Using the diffusion values obtained in the numerical simulations it predicts planetesimal sizes on the order of 100 km, which suprisingly coincides with the measured data from both asteroids (Bottke et al.2005) as well from Kuiper Belt objects (Nesvorny et al.2011).
Collapse
|
37
|
Larsen K, Schiller M, Bizzarro M. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. GEOCHIMICA ET COSMOCHIMICA ACTA 2016; 176:295-315. [PMID: 27445415 PMCID: PMC4950964 DOI: 10.1016/j.gca.2015.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The decay of radioactive 26Al to 26Mg (half-life of 730,000 years) is postulated to have been the main energy source promoting asteroidal melting and differentiation in the nascent solar system. High-resolution chronological information provided by the 26Al-26Mg decay system is, therefore, intrinsically linked to the thermal evolution of early-formed planetesimals. In this paper, we explore the timing and style of asteroidal differentiation by combining high-precision Mg isotope measurements of meteorites with thermal evolution models for planetesimals. In detail, we report Mg isotope data for a suite of olivine-rich [Al/Mg ~ 0] achondritic meteorites, as well as a few chondrites. Main Group, pyroxene and the Zinder pallasites as well as the lodranite all record deficits in the mass-independent component of μ26Mg (μ26Mg*) relative to chondrites and Earth. This isotope signal is expected for the retarded ingrowth of radiogenic 26Mg* in olivine-rich residues produced through partial silicate melting during 26Al decay and consistent with their marginally heavy Mg isotope composition relative to ordinary chondrites, which may reflect the early extraction of isotopically light partial melts from the source rock. We propose that their parent planetesimals started forming within ~250,000 years of solar system formation from a hot (>~500 K) inner protoplanetary disk region characterized by a reduced initial (26Al/27Al)0 abundance (~1-2 × 10-5) relative to the (26Al/27Al)0 value in CAIs of 5.25 × 10-5. This effectively reduced the total heat production and allowed for the preservation of solid residues produced through progressive silicate melting with depth within the planetesimals. These 'non-carbonaceous' planetesimals acquired their mass throughout an extended period (>3 Myr) of continuous accretion, thereby generating onion-shell structures of incompletely differentiated zones, consisting of olivine-rich residues, overlaid by metachondrites and undifferentiated chondritic crusts. In contrast, individual olivine crystals from Eagle Station pallasites record variable μ26Mg* excesses, suggesting that these crystals captured the 26Mg* evolution of a magmatic reservoir controlled by fractional crystallization processes during the lifespan of 26Al. Similar to previous suggestions based on isotopic evidence, we suggest that Eagle Station pallasites formed from precursor material similar in composition to carbonaceous chondrites from a cool outer protoplanetary disk region characterized by (26Al/27Al)0 ≥ 2.7 × 10-5. Protracted planetesimal accretion timescales at large orbital distances, with onset of accretion 0.3-1 Myr post-CAIs, may have resulted in significant radiative heat loss and thus efficient early interior cooling of slowly accreting 'carbonaceous' planetesimals.
Collapse
|
38
|
Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 2015; 528:241-4. [DOI: 10.1038/nature16172] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 11/08/2022]
|
39
|
Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc Natl Acad Sci U S A 2015; 112:14180-5. [PMID: 26512109 DOI: 10.1073/pnas.1513364112] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Building the terrestrial planets has been a challenge for planet formation models. In particular, classical theories have been unable to reproduce the small mass of Mars and instead predict that a planet near 1.5 astronomical units (AU) should roughly be the same mass as Earth. Recently, a new model called Viscously Stirred Pebble Accretion (VSPA) has been developed that can explain the formation of the gas giants. This model envisions that the cores of the giant planets formed from 100- to 1,000-km bodies that directly accreted a population of pebbles-submeter-sized objects that slowly grew in the protoplanetary disk. Here we apply this model to the terrestrial planet region and find that it can reproduce the basic structure of the inner solar system, including a small Mars and a low-mass asteroid belt. Our models show that for an initial population of planetesimals with sizes similar to those of the main belt asteroids, VSPA becomes inefficient beyond ∼ 1.5 AU. As a result, Mars's growth is stunted, and nothing large in the asteroid belt can accumulate.
Collapse
|