1
|
Jain A, Northfield H, Karimi E, Berini P, Bhardwaj R. Selective and Tunable Absorption of Twisted Light in Achiral and Chiral Plasmonic Metasurfaces. ACS NANO 2024; 18:27383-27392. [PMID: 39344167 DOI: 10.1021/acsnano.4c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The symmetry of achiral metasurfaces suggests selective absorption is nonexistent when irradiated either by circularly polarized Gaussian or twisted light beams carrying orbital angular momentum (OAM). In chiral metasurfaces, the lack of symmetry leads to differential absorption when probed with chiral light either in the form of circular polarization (circular dichroism) or helical phase fronts (helical dichroism). Here, we demonstrate differential absorption of asymmetric twisted light beams, known as helical dichroism, which exist in an array and a single achiral structure and can be controlled. When extended to chiral structures, these asymmetrical chiral light modes enable to enhance and tune chiroptical sensitivity. Our technique offers more control parameters than just changing the OAM value, as presented in previous studies. Selective response to asymmetric helical light beams is qualitatively explained in terms of induced multipole moments. The presence of dichroism in achiral nanostructures offers a significant fabrication advantage over complex chiral structures and enables the development of next-generation plasmonic-based chiroptical spectroscopy and molecular sensing.
Collapse
Affiliation(s)
- Ashish Jain
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Howard Northfield
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Ebrahim Karimi
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Pierre Berini
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ravi Bhardwaj
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Cheng AC, Pin C, Sunaba Y, Sugiyama T, Sasaki K. Nanoscale Helical Optical Force for Determining Crystal Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312174. [PMID: 38586919 DOI: 10.1002/smll.202312174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.
Collapse
Affiliation(s)
- An-Chieh Cheng
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Christophe Pin
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuji Sunaba
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu, 300093, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
3
|
McCarter MR, De Long LE, Todd Hastings J, Roy S. Generation and applications of x-ray and extreme ultraviolet beams carrying orbital angular momentum. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:423003. [PMID: 38830374 DOI: 10.1088/1361-648x/ad53b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
In addition to spin angular momentum, light can carry orbital angular momentum. The orbital angular momentum degree of freedom in the extreme ultraviolet and x-ray regimes enables fundamental studies of light-matter interactions and new methods to study materials. Advances in x-ray optics, as well as undulator radiation and high harmonic generation techniques, lead to the creation of beams with non-trivial phase structure, such as a helical phase structure, creating new possibilities for the use of extreme ultraviolet and x-ray photons with orbital angular momentum in probing complex electronic structures in matter. In this article, we review the generation and applications of orbital angular momentum beams in the x-ray and extreme ultraviolet regime. We discuss several recent works that exploit the orbital angular momentum degree of freedom and showcase the potential advantages of using these beams.
Collapse
Affiliation(s)
- Margaret R McCarter
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Lance E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, United States of America
| | - J Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, United States of America
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
4
|
Hashiyada S, Tanaka YY. Rapid modulation of left- and right-handed optical vortices for precise measurements of helical dichroism. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053101. [PMID: 38690981 DOI: 10.1063/5.0203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Helical dichroism (HD), which is defined as the difference in optical absorption between chiral pairs of lights involving left-handed (LH) and right-handed (RH) optical vortices (OVs) carrying orbital angular momentum (OAM), is a promising way to characterize chiral materials. In the current major methods of OV generation using spatial light modulators (SLMs), the speed of OAM switching is typically as slow as 100 Hz, which is comparable to low-frequency noise, making precise chiral detection difficult. Here, we theoretically propose and experimentally demonstrate a rapid modulation of the LH and RH OVs at around 50 kHz. This modulation is achieved through a rapid modulation of circularly polarized lights carrying spin angular momentum (SAM), combined with a SAM-OAM conversion technique. We establish a theory not only for rapid OV modulation but also for HD measurements using the modulated OVs. We experimentally verify the theory using helical phase holograms drawn on a SLM as a pseudo-HD active sample. Our work addresses the limitations of current methods and offers a new avenue for precise HD measurements, paving the way for the development of sensitive chiral-optical spectroscopy techniques.
Collapse
|
5
|
Ouyang X, Du K, Zeng Y, Song Q, Xiao S. Nanostructure-based orbital angular momentum encryption and multiplexing. NANOSCALE 2024. [PMID: 38616650 DOI: 10.1039/d4nr00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.
Collapse
Affiliation(s)
- Xu Ouyang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| |
Collapse
|
6
|
Jain A, Bégin JL, Corkum P, Karimi E, Brabec T, Bhardwaj R. Intrinsic dichroism in amorphous and crystalline solids with helical light. Nat Commun 2024; 15:1350. [PMID: 38355638 PMCID: PMC10867019 DOI: 10.1038/s41467-024-45735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Amorphous solids do not exhibit long-range order due to the disordered arrangement of atoms. They lack translational and rotational symmetry on a macroscopic scale and are therefore isotropic. As a result, differential absorption of polarized light, called dichroism, is not known to exist in amorphous solids. Using helical light beams that carry orbital angular momentum as a probe, we demonstrate that dichroism is intrinsic to both amorphous and crystalline solids. We show that in the nonlinear regime, helical dichroism is responsive to the short-range order and its origin is explained in terms of interband multiphoton assisted tunneling. We also demonstrate that the helical dichroism signal is sensitive to chirality and its strength can be controlled and tuned using a superposition of OAM and Gaussian beams. Our research challenges the conventional knowledge that dichroism does not exist in amorphous solids and enables to manipulate the optical properties of solids.
Collapse
Affiliation(s)
- Ashish Jain
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Jean-Luc Bégin
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Paul Corkum
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ebrahim Karimi
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Thomas Brabec
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ravi Bhardwaj
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
7
|
Kapahi C, Silva AE, Cory DG, Kulmaganbetov M, Mungalsingh MA, Pushin DA, Singh T, Thompson B, Sarenac D. Measuring the visual angle of polarization-related entoptic phenomena using structured light. BIOMEDICAL OPTICS EXPRESS 2024; 15:1278-1287. [PMID: 38404299 PMCID: PMC10890886 DOI: 10.1364/boe.507519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
The ability to perceive polarization-related entoptic phenomena arises from the dichroism of macular pigments held in Henle's fiber layer of the retina and can be inhibited by retinal diseases, such as age-related macular degeneration, which alters the structure of the macula. Structured light tools enable the direct probing of macular pigment density and retinal structure through the perception of polarization-dependent entoptic patterns. Here, we directly measure the visual angle of an entoptic pattern created through the illumination of the retina with a structured state of light and a perception task that is insensitive to corneal birefringence. The central region of the structured light stimuli was obstructed, with the size of the obstruction varying according to a psychophysical staircase. Two stimuli, one producing 11 azimuthal fringes and the other three azimuthal fringes, were presented to 24 healthy participants. The pattern with 11 azimuthal fringes produced an average visual angle threshold of 10° ± 1° and a 95% confidence interval (C.I.) of [6°, 14°]. For the pattern with three azimuthal fringes, a threshold extent of 3.6° ± 0.3° C.I. = [1.3°, 5.8°] was measured, a value similar to the published extent of Haidinger's brush (4°). The increase in apparent size and clarity of entoptic phenomena produced by the presented structured light stimuli offers the potential to detect the early signs of macular disease over perception tasks using uniform polarization stimuli.
Collapse
Affiliation(s)
- C Kapahi
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Department of Physics, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - A E Silva
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - D G Cory
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | | | - M A Mungalsingh
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - D A Pushin
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Department of Physics, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Centre for Eye and Vision Research, Hong Kong, SAR, China
| | - T Singh
- Centre for Eye and Vision Research, Hong Kong, SAR, China
| | - B Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Centre for Eye and Vision Research, Hong Kong, SAR, China
| | - D Sarenac
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, N2L3G1, Canada
- Centre for Eye and Vision Research, Hong Kong, SAR, China
- Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
8
|
Vimal M, Natile M, Lupi JF, Guichard F, Descamps D, Hanna M, Georges P. Nonlinear post-compression of a hybrid vortex mode in a gas-filled capillary. OPTICS LETTERS 2024; 49:117-120. [PMID: 38134166 DOI: 10.1364/ol.506009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
We demonstrate nonlinear temporal compression of a vortex beam by propagation in a gas-filled capillary. Starting from an ytterbium-based laser delivering 700 μJ 640 fs pulses at a 100 kHz repetition rate, the vortex beam is generated using a spiral phase plate and coupled to a capillary where it excites a set of four modes that have an overlap integral of 97% with a Laguerre-Gauss LG10 mode. Nonlinear propagation of this hybrid, orbital angular momentum (OAM)-carrying mode results in temporal compression down to 74 fs at the output. Beam and pulse characterizations are carried out to determine the spatial profile and temporal duration of compressed pulses. This result in multimode nonlinear optics paves the way towards the generation of OAM-carrying few-cycle pulses, isolated attosecond XUV pulses, and tunable UV pulses through resonant dispersive wave emission.
Collapse
|
9
|
Han J, Tang X, Fu Y, Wang B, Yin Z, Jin C. Control of the annular spatial profile of high harmonics using a Bessel-Gaussian beam carrying the nonzero orbital angular momentum. OPTICS EXPRESS 2023; 31:43732-43747. [PMID: 38178463 DOI: 10.1364/oe.502772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
We propose to generate vortex high harmonics in the extreme ultraviolet (XUV) with a controllable spatial profile by using a Bessel-Gaussian (BG) beam carrying a nonzero orbital angular momentum (OAM). Such BG beam has quite a different intensity profile at the focus compared to the generally used BG beam without carrying the OAM. We show that the BG beam is capable of generating single-ring structured high harmonics, which is quite different from an Laguerre-Gaussian (LG) beam with a similar intensity distribution at the laser focus. We reveal that favorable phase-matching conditions can be achieved off-axis and away from the laser focus because a single-atom intrinsic phase due to the short electron trajectory can be well compensated by a geometric phase of the BG beam. We thus give a general rule that vortex high harmonics with a single annular profile can be efficiently generated when a gas medium is located at 1.5zred to 2.0zred before or after the laser focus of the BG beam, here zred is a reduced length. We also show the validity of this rule when the BG beam carries a higher OAM. This work is expected to be useful for synthesizing attosecond vortex pulses.
Collapse
|
10
|
Deng D, Liu X, Yang Z, Li Y. Reconfigurable generation of chiral optical fields with multiple selective degrees of freedom. OPTICS EXPRESS 2023; 31:39546-39556. [PMID: 38041273 DOI: 10.1364/oe.506660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Chiral optical fields caused by vortex beams possessing orbital angular momentum (OAM) can be used to fabricate helically structured materials and identify chiral molecules, in which the materials or molecules are associated with the character of the irradiated light. However, previously reported chiral optical fields can control only some of the parameters including the number of fringes, size, ellipticity, orientation, and local intensity distribution, which may hamper their applications. Thus, in this work, we propose both theoretically and experimentally an approach to fabricate chiral optical fields with five separately controllable degrees of freedom by overlapping two anisotropic vortices whose wavefronts have a nonlinear phase variation with the azimuthal angle. The local intensity distribution, number of fringes, size, orientation, and ellipticity of the chiral optical field can be dynamically controlled by adjusting the nonlinear coefficient, topological charges, axicon parameter, rotation angle, and stretching factor of the anisotropic vortices. Furthermore, the OAM density was investigated and proven to be continuously enhanced with the variation of the field's local intensity distribution, which gives the proposed approach the ability to continuously manipulate the OAM density of chiral optical fields. This work, supporting chiral optical fields by five separately controllable parameters, may make the applications of chiral optical fields in the fields of nanostructure fabrication and optical tweezers more flexible.
Collapse
|
11
|
Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu MH, Fu Y. Maximum helical dichroism enabled by an exceptional point in non-Hermitian gradient metasurfaces. Sci Bull (Beijing) 2023; 68:2555-2563. [PMID: 37798177 DOI: 10.1016/j.scib.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Helical dichroism (HD) utilizing unbounded orbital angular momentum degree of freedom, has provided an important means of exploring chiral effects in diverse wave systems, surpassing the two-state constraint in circular dichroism that relies on intrinsic spin. However, the naturally feeble chiral signals that arise during wave-matter interactions pose significant challenges to the effective enlargement of HD. Here, we introduce a new paradigm for realizing maximum HD through non-Hermitian gradient metasurfaces by engineering a chiral exceptional point (EP) in intrinsic topological charge. The non-Hermitian gradient metasurfaces are empowered by the asymmetric coupling feature at the EP, enabling flexible construction to realize versatile chirality control in extreme circumstances where one chiral vortex is totally reflected and the opposite counterpart is completely absorbed or transmitted into the customized vortex modes. As the manifestation of the maximum HD, we present the first experimental demonstration of perfect chirality-selected vortex transmission in acoustics. Our findings open new venues to achieve maximum chirality and explore chiral physics of wave-matter interactions, which can boost many vortical applications in asymmetric chirality manipulation, one-way propagation, and information multiplexing.
Collapse
Affiliation(s)
- Xiao Li
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing 211106, China
| | - Chuanjie Hu
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuan Tian
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Youwen Liu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing 211106, China.
| | - Huanyang Chen
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yadong Xu
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Ming-Hui Lu
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yangyang Fu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology, Nanjing 211106, China; State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
12
|
Andrews DL. Fundamental symmetry origins in the chiral interactions of optical vortices. Chirality 2023; 35:899-913. [PMID: 37403618 DOI: 10.1002/chir.23604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Recently, a variety of mechanisms have been discovered that extend the range of optical techniques for identifying and characterizing molecular chirality, beyond those associated with optical polarization. It is now evident that beams of light with a twisted wavefront, known as optical vortices, can also interact with chiral matter with a specificity determined by relative handedness. Exploring this chiral sensitivity of vortex light in its interactions with matter requires careful consideration of the symmetry properties that engage in such processes. Most of the familiar measures of chirality are directly applicable to either matter, or to light itself-but only to one or the other. To elicit the principles that determine the viability of distinctly optical vortex-based forms of chiral discrimination invites a more universal approach to symmetry analysis, as is afforded by the common, fundamental physics of CPT symmetry. Taking this approach supports a comprehensive and straightforward analysis to identify the mechanistic origins of vortex chiroptical interactions. Careful inspection of selection rules for absorption also elicits the principles governing any identifiable engagement with vortex structures, providing a reliable basis to ascertain the viability of other forms of enantioselective vortex interaction.
Collapse
Affiliation(s)
- David L Andrews
- Centre for Photonics and Quantum Science, School of Chemistry, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Jiang X, Nam Y, Rouxel JR, Yong H, Mukamel S. Time-resolved enantiomer-exchange probed by using the orbital angular momentum of X-ray light. Chem Sci 2023; 14:11067-11075. [PMID: 37860657 PMCID: PMC10583748 DOI: 10.1039/d3sc02807k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Molecular chirality, a geometric property of utmost importance in biochemistry, is now being investigated in the time-domain. Ultrafast chiral techniques can probe the formation or disappearance of stereogenic centers in molecules. The element-sensitivity of X-rays adds the capability to probe chiral nuclear dynamics locally within the molecular system. However, the implementation of ultrafast techniques for measuring transient chirality remains a challenge because of the intrinsic weakness of chiral-sensitive signals based on circularly polarized light. We propose a novel approach for probing the enantiomeric dynamics by using the orbital angular momentum (OAM) of X-ray light, which can directly monitor the real-time chirality of molecules. Our simulations probe the oscillations in excited chiral formamide on different potential energy surfaces and demonstrate that using the X-ray OAM can increase the measured asymmetry ratio. Moreover, combining the OAM and SAM (spin angular momentum) provides stronger dichroic signals than linearly polarized light, and offers a powerful scheme for chiral discrimination.
Collapse
Affiliation(s)
- Xiang Jiang
- Department of Chemistry, Department of Physics & Astronomy, University of California Irvine California 92697 USA
| | - Yeonsig Nam
- Department of Chemistry, Department of Physics & Astronomy, University of California Irvine California 92697 USA
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont Illinois 60439 USA
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Shaul Mukamel
- Department of Chemistry, Department of Physics & Astronomy, University of California Irvine California 92697 USA
| |
Collapse
|
14
|
Liu H, Yan L, Chen H, Liu X, Liu H, Chew SH, Gliserin A, Wang Q, Zhang J. High-order femtosecond vortices up to the 30th order generated from a powerful mode-locked Hermite-Gaussian laser. LIGHT, SCIENCE & APPLICATIONS 2023; 12:207. [PMID: 37648767 PMCID: PMC10469186 DOI: 10.1038/s41377-023-01241-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Femtosecond vortex beams are of great scientific and practical interest because of their unique phase properties in both the longitudinal and transverse modes, enabling multi-dimensional quantum control of light fields. Until now, generating femtosecond vortex beams for applications that simultaneously require ultrashort pulse duration, high power, high vortex order, and a low cost and compact laser source has been very challenging due to the limitations of available generation methods. Here, we present a compact apparatus that generates powerful high-order femtosecond vortex pulses via astigmatic mode conversion from a mode-locked Hermite-Gaussian Yb:KGW laser oscillator in a hybrid scheme using both the translation-based off-axis pumping and the angle-based non-collinear pumping techniques. This hybrid scheme enables the generation of femtosecond vortices with a continuously tunable vortex order from the 1st up to the 30th order, which is the highest order obtained from any femtosecond vortex laser source based on a mode-locked oscillator. The average powers and pulse durations of all resulting vortex pulses are several hundred milliwatts and <650 fs, respectively. In particular, 424-fs 11th-order vortex pulses have been achieved with an average power of 1.6 W, several times more powerful than state-of-the-art oscillator-based femtosecond vortex sources.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lisong Yan
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongshan Chen
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Liu
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Heyan Liu
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Soo Hoon Chew
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, South Korea
- Max Planck Center for Attosecond Science, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, South Korea
| | - Alexander Gliserin
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, South Korea
- Max Planck Center for Attosecond Science, Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, South Korea
| | - Qing Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jinwei Zhang
- School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Zhang Q, Liu Z, Cheng Z. Chiral Mechanical Effect of the Tightly Focused Chiral Vector Vortex Fields Interacting with Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2251. [PMID: 37570568 PMCID: PMC10421227 DOI: 10.3390/nano13152251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The coupling of the spin-orbit angular momentum of photons in a focused spatial region can enhance the localized optical field's chirality. In this paper, a scheme for producing a superchiral optical field in a 4π microscopic system is presented by tightly focusing two counter-propagating spiral wavefronts. We calculate the optical forces and torques exerted on a chiral dipole by the chiral light field and reveal the chiral forces by combining the light field and dipoles. Results indicate that, in addition to the general optical force, particles' motion would be affected by a chiral force that is directly related to the particle chirality. This chiral mechanical effect experienced by the electromagnetic dipoles excited on a chiral particle could be characterized by the behaviors of chirality density and flux, which are, respectively, associated with the reactive and dissipative components of the chiral forces. This work facilitates the advancement of optical separation and manipulation techniques for chiral particles.
Collapse
Affiliation(s)
| | - Zhirong Liu
- Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
| | | |
Collapse
|
16
|
Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. Ultrafast X-Ray Probes of Elementary Molecular Events. Annu Rev Phys Chem 2023; 74:73-97. [PMID: 37093660 DOI: 10.1146/annurev-physchem-062322-051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.
Collapse
Affiliation(s)
- Daniel Keefer
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
- Current affiliation: Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, IOGS, Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Haiwang Yong
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| |
Collapse
|
17
|
Liu S, Wang X, Ni J, Cao Y, Li J, Wang C, Hu Y, Chu J, Wu D. Optical Encryption in the Photonic Orbital Angular Momentum Dimension via Direct-Laser-Writing 3D Chiral Metahelices. NANO LETTERS 2023; 23:2304-2311. [PMID: 36880306 DOI: 10.1021/acs.nanolett.2c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vortex beams, which intrinsically possess optical orbital angular momentum (OAM), are considered as one of the promising chiral light waves for classical optical communications and quantum information processing. For a long time, it has been an expectation to utilize artificial three-dimensional (3D) chiral metamaterials to manipulate the transmission of vortex beams for practical optical display applications. Here, we demonstrate the concept of selective transmission management of vortex beams with opposite OAM modes assisted by the designed 3D chiral metahelices. Utilizing the integrated array of the metahelices, a series of optical operations, including display, hiding, and even encryption, can be realized by the parallel processing of multiple vortex beams. The results open up an intriguing route for metamaterial-dominated optical OAM processing, which fosters the development of photonic angular momentum engineering and high-security optical encryption.
Collapse
Affiliation(s)
- Shunli Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xinghao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jincheng Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yang Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
19
|
Wu F, Cui Z, Guo S, Ma W, Wang J. Chirality of optical vortex beams reflected from an air-chiral medium interface. OPTICS EXPRESS 2022; 30:21687-21697. [PMID: 36224882 DOI: 10.1364/oe.459024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/22/2022] [Indexed: 06/16/2023]
Abstract
Chirality plays an important role in understanding of the chiral light-matter interaction. In this work, we study theoretically and numerically the chirality of optical vortex beams reflected from an air-chiral medium interface. A theoretical model that takes into full account the vectorial nature of electromagnetic fields is developed to describe the reflection of optical vortex beams at an interface between air and a chiral medium. Some numerical simulations are performed and discussed. The results show that the chirality of the reflected vortex beams can be well controlled by the relative chiral parameter of the medium and is significantly affected by the incidence angle, topological charge, and polarization state of the incident beam. Our results provide new, to the best of our knowledge, insights into the interactions between optical vortex beams with chiral matter, and may have potential application in optical chirality manipulation.
Collapse
|
20
|
Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič PR, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu IL, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T. Observation of Magnetic Helicoidal Dichroism with Extreme Ultraviolet Light Vortices. PHYSICAL REVIEW LETTERS 2022; 128:077401. [PMID: 35244431 DOI: 10.1103/physrevlett.128.077401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
We report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.
Collapse
Affiliation(s)
- Mauro Fanciulli
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
| | - Matteo Pancaldi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | - Mekha Vimal
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - David Bresteau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Martin Luttmann
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Dario De Angelis
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | | | | | - Carlo Spezzani
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Ricardo Sousa
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Ioan-Lucian Prejbeanu
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Laurent Vila
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Bernard Dieny
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Giovanni De Ninno
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | - Flavio Capotondi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Maurizio Sacchi
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B. P. 48, 91192 Gif-sur-Yvette, France
| | - Thierry Ruchon
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Qiao Z, Gong C, Liao Y, Wang C, Chan KK, Zhu S, Kim M, Chen YC. Tunable Optical Vortex from a Nanogroove-Structured Optofluidic Microlaser. NANO LETTERS 2022; 22:1425-1432. [PMID: 34817181 DOI: 10.1021/acs.nanolett.1c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical vortices with tunable properties in multiple dimensions are highly desirable in modern photonics, particularly for broadly tunable wavelengths and topological charges at the micrometer scale. Compared to solid-state approaches, here we demonstrate tunable optical vortices through the fusion of optofluidics and vortex beams in which the handedness, topological charges, and lasing wavelengths could be fully adjusted and dynamically controlled. Nanogroove structures inscribed in Fabry-Pérot optofluidic microcavities were proposed to generate optical vortices by converting Hermite-Gaussian laser modes. Topological charges could be controlled by tuning the lengths of the nanogroove structures. Vortex laser beams spanning a wide spectral band (430-630 nm) were achieved by alternating different liquid gain materials. Finally, dynamic switching of vortex laser wavelengths in real-time was realized through an optofluidic vortex microlaser device. The findings provide a robust yet flexible approach for generating on-chip vortex sources with multiple dimensions, high tunability, and reconfigurability.
Collapse
Affiliation(s)
- Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chaoyang Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chenlu Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
22
|
Hurtado-Aviles EA, Vila M, Vilatela JJ, Martines-Arano H, Bornacelli J, García-Merino JA, Cervantes-Sodi F, Torres-Torres C. Structured light using carbon nanostructures driven by Kerr nonlinearities and a magnetic field. Phys Chem Chem Phys 2022; 24:1081-1090. [PMID: 34927649 DOI: 10.1039/d1cp05195d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A substantial influence of a magnetic field on the third-order nonlinear optical properties exhibited by aggregated networks of aligned carbon nanotubes (CNT) is reported by systematic measurements. A two-wave mixing was employed to explore and modulate the refractive index in the nanostructures in the nanosecond and picosecond regime. The presence of a magnetic field was able to modify the optical transmittance in the sample and the potentiality to generate structured light was proposed. Numerical simulations were conducted to analyze the magnetic field phenomena and the oscillations of the electric field in the studied sample. We discussed theoretical concepts, experimental methods, and computational tools employed to evaluate the third-order nonlinear optical properties of CNT in film form. Immediate applications of the system to modulate structured light can be contemplated.
Collapse
Affiliation(s)
- Eric Abraham Hurtado-Aviles
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738, Ciudad de México, Mexico.
| | - María Vila
- IMDEA Materials Institute, c/Eric Kandel 2, Getafe, 28960, Madrid, Spain.,Escuela Técnica Superior de Ingeniería de Telecomunicación (ETSIT), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain
| | - Juan José Vilatela
- IMDEA Materials Institute, c/Eric Kandel 2, Getafe, 28960, Madrid, Spain
| | - Hilario Martines-Arano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738, Ciudad de México, Mexico.
| | - Jhovani Bornacelli
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738, Ciudad de México, Mexico.
| | - José Antonio García-Merino
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Santiago, Chile.,Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Av. Vicuña Mackenna, 4860, Santiago, Chile
| | - Felipe Cervantes-Sodi
- Depto. Física y Matemáticas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, 01219, Ciudad de México, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, 07738, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Li M, Yan S, Zhang Y, Chen X, Yao B. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum. NANOSCALE ADVANCES 2021; 3:6897-6902. [PMID: 36132368 PMCID: PMC9418904 DOI: 10.1039/d1na00530h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/24/2021] [Indexed: 06/15/2023]
Abstract
Chirality describes a reduced symmetry and abounds in nature. The handedness-dependent response usually occurs only when a chiral object interacts with another chiral entity. Light carrying orbital angular momentum (OAM) is inherently chiral due to the helical wave front. Here, we put forward a scheme that enables optical separation and simultaneous discrimination of single chiral particles using focused vector beams with OAM. Such focused vector vortex beams carrying radial-splitting optical chirality can selectively trap one enantiomer inside or outside the intensity maxima depending on the sign of the OAM. The particles with different chirality parameters can be trapped on different orbits and experience enhanced orbital motion. Moreover, the magnitude of OAM as well as the size of particle plays an important role in the chiral separation and discrimination. In addition to particle manipulation, the discussion of OAM in chiral light-matter interactions has potential application in, for example, optical enantioseparation or chiral detection.
Collapse
Affiliation(s)
- Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi'an 710119 China
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi'an 710119 China
| | - Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi'an 710119 China
| | - Xu Chen
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi'an 710119 China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences Xi'an 710119 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University Taiyuan 030006 China
| |
Collapse
|
24
|
Dorrah AH, Rubin NA, Tamagnone M, Zaidi A, Capasso F. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics. Nat Commun 2021; 12:6249. [PMID: 34716326 PMCID: PMC8556329 DOI: 10.1038/s41467-021-26253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
Recent advances in wavefront shaping have enabled complex classes of Structured Light which carry spin and orbital angular momentum, offering new tools for light-matter interaction, communications, and imaging. Controlling both components of angular momentum along the propagation direction can potentially extend such applications to 3D. However, beams of this kind have previously been realized using bench-top setups, requiring multiple interaction with light of a fixed input polarization, thus impeding their widespread applications. Here, we introduce two classes of metasurfaces that lift these constraints, namely: i) polarization-switchable plates that couple any pair of orthogonal polarizations to two vortices in which the magnitude and/or sense of vorticity vary locally with propagation, and ii) versatile plates that can structure both components of angular momentum, spin and orbital, independently, along the optical path while operating on incident light of any polarization. Compact and integrated devices of this type can advance light-matter interaction and imaging and may enable applications that are not accessible via other wavefront shaping tools. Creating complex forms of structured light typically requires bulky optics and multiple interactions with incident light. Here the authors demonstrate versatile control over light’s polarization and orbital angular momentum along the propagation direction with a single metasurface.
Collapse
Affiliation(s)
- Ahmed H Dorrah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Noah A Rubin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Michele Tamagnone
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Aun Zaidi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
25
|
Ni J, Huang C, Zhou LM, Gu M, Song Q, Kivshar Y, Qiu CW. Multidimensional phase singularities in nanophotonics. Science 2021; 374:eabj0039. [PMID: 34672745 DOI: 10.1126/science.abj0039] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Can Huang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lei-Ming Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.,Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qinghai Song
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi, China
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
26
|
Abstract
Optical vortices are beams of laser light with screw symmetry in their wavefront. With a corresponding azimuthal dependence in optical phase, they convey orbital angular momentum, and their methods of production and applications have become one of the most rapidly accelerating areas in optical physics and technology. It has been established that the quantum nature of electromagnetic radiation extends to properties conveyed by each individual photon in such beams. It is therefore of interest to identify and characterize the symmetry aspects of the quantized fields of vortex radiation that relate to the beam and become manifest in its interactions with matter. Chirality is a prominent example of one such aspect; many other facets also invite attention. Fundamental CPT symmetry is satisfied throughout the field of optics, and it plays significantly into manifestations of chirality where spatial parity is broken; duality symmetry between electric and magnetic fields is also involved in the detailed representation. From more specific considerations of spatial inversion, amongst which it emerges that the topological charge has the character of a pseudoscalar, other elements of spatial symmetry, beyond simple parity inversion, prove to repay additional scrutiny. A photon-based perspective on these features enables regard to be given to the salient quantum operators, paying heed to quantum uncertainty limits of observables. The analysis supports a persistence in features of significance for the material interactions of vortex beams, which may indicate further scope for suitably tailored experimental design.
Collapse
|
27
|
Ducharme RJ, da Paz IG, Hayrapetyan AG. Fractional Angular Momenta, Gouy and Berry Phases in Relativistic Bateman-Hillion-Gaussian Beams of Electrons. PHYSICAL REVIEW LETTERS 2021; 126:134803. [PMID: 33861110 DOI: 10.1103/physrevlett.126.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
A new Bateman-Hillion solution to the Dirac equation for a relativistic Gaussian electron beam taking explicit account of the four-position of the beam waist is presented. This solution has a pure Gaussian form in the paraxial limit but beyond it contains higher order Laguerre-Gaussian components attributable to the tighter focusing. One implication of the mixed mode nature of strongly diffracting beams is that the expectation values for spin and orbital angular momenta are fractional and are interrelated to each other by intrinsic spin-orbit coupling. Our results for these properties align with earlier work on Bessel beams [Bliokh et al., Phys. Rev. Lett. 107, 174802 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.174802] and show that fractional angular momenta can be expressed by means of a Berry phase. The most significant difference arises, though, due to the fact that Laguerre-Gaussian beams naturally contain Gouy phase, while Bessel beams do not. We show that Gouy phase is also related to Berry phase and that Gouy phase fronts that are flat in the paraxial limit become curved beyond it.
Collapse
Affiliation(s)
- Robert J Ducharme
- L3Harris Technologies, Link Training & Simulation Division, 2200 Arlington Downs Road, Arlington, Texas 76011, USA
| | - Irismar G da Paz
- Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550 Teresina, PI, Brazil
| | - Armen G Hayrapetyan
- d-fine GmbH, Bavariafilmplatz 8, 82031 Grünwald, Germany
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
28
|
Ye L, Yang L, Zheng X, Mukamel S. Enhancing Circular Dichroism Signals with Vector Beams. PHYSICAL REVIEW LETTERS 2021; 126:123001. [PMID: 33834806 DOI: 10.1103/physrevlett.126.123001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Circular dichroism (CD) is broadly employed for distinguishing molecular chiralities. However, its practical application is often limited by the weak magnitude of chiral signal. We propose to use azimuthally and radially polarized vector beams to probe CD spectra. By taking advantage of the strong longitudinal components of the vector beams, the transmitted light can be detected in the radial direction. The resulting CD signal is several orders of magnitude stronger than conventional CD signal with plane waves. Quantitative analysis and numerical simulations show that the enhancement factor is independent of molecular properties and can be increased by decreasing the path length of the sample cuvette and the interaction cross section between the light beam and molecular sample. The proposed novel CD spectroscopy is feasible with the current optical technology.
Collapse
Affiliation(s)
- Lyuzhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
29
|
Simbulan KB, Huang TD, Peng GH, Li F, Gomez Sanchez OJ, Lin JD, Lu CI, Yang CS, Qi J, Cheng SJ, Lu TH, Lan YW. Selective Photoexcitation of Finite-Momentum Excitons in Monolayer MoS 2 by Twisted Light. ACS NANO 2021; 15:3481-3489. [PMID: 33566571 DOI: 10.1021/acsnano.0c10823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Twisted light carries a well-defined orbital angular momentum (OAM) of lℏ per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied via experiments. In this work, photoluminescence (PL) spectroscopy studies of monolayer molybdenum disulfide (MoS2), a material with ultrastrong light-matter interaction due to reduced dimensionality, are carried out under photoexcitation of twisted light. It is observed that the measured spectral peak energy increases for every increment of l of the incident light. The nonlinear l-dependence of the spectral blue shifts is well accounted for by the analysis and computational simulation of this work. More excitingly, the twisted light excitation revealed the unusual lightlike exciton band dispersion of valley excitons in monolayer transition metal dichalcogenides. This linear exciton band dispersion is predicted by previous theoretical studies and evidenced via this work's experimental setup.
Collapse
Affiliation(s)
- Kristan Bryan Simbulan
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Mathematics and Physics, University of Santo Tomas, Manila 1008, Philippines
| | - Teng-De Huang
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guan-Hao Peng
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Feng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | | | - Jhen-Dong Lin
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-I Lu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chan-Shan Yang
- Graduate Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Junjie Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Shun-Jen Cheng
- Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Hua Lu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yann-Wen Lan
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
30
|
Ni J, Liu S, Hu G, Hu Y, Lao Z, Li J, Zhang Q, Wu D, Dong S, Chu J, Qiu CW. Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum. ACS NANO 2021; 15:2893-2900. [PMID: 33497201 DOI: 10.1021/acsnano.0c08941] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical activity, demonstrating the chiral light-matter interaction, has attracted tremendous attention in both fundamental theoretical research and advanced applications of high-efficiency enantioselective sensing and next-generation chiroptical spectroscopic techniques. However, conventional chiroptical responses are normally limited in large assemblies of chiral materials by circularly polarized light, exhibiting extremely weak chiroptical signals in a single chiral nanostructure. Here, we demonstrate that an alternative chiral freedom of light-orbital angular momentum-can be utilized for generating strong helical dichroism in single chiral nanostructures. The helical dichroism by monochromatic vortex beams can unambiguously distinguish the intrinsic chirality of nanostructures, in an excellent agreement with theoretical predictions. The single planar-chiral nanostructure can exhibit giant helical dichroism of ∼20% at the visible wavelength. The vortex-dependent helical dichroism, expanding to single nanostructures and two-dimensional space, has implications for high-efficiency chiroptical detection of planar-chiral nanostructures in chiral optics and nanophotonic systems.
Collapse
Affiliation(s)
- Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Shunli Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhaoxin Lao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qing Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shaohua Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
31
|
Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc Natl Acad Sci U S A 2021; 118:2020055118. [PMID: 33372145 DOI: 10.1073/pnas.2020055118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spin angular momentum of light is vital to investigate enantiomers characterized by circular dichroism (CD), widely adopted in biology, chemistry, and material science. However, to discriminate chiral materials with multiscale features, CD spectroscopy normally requires wavelength-swept laser sources as well as wavelength-specific optical accessories. Here, we experimentally demonstrate an orbital-angular-momentum-assisted approach to yield chiroptical signals with monochromatic light. The gigantic vortical differential scattering (VDS) of ∼120% is achieved on intrinsically chiral microstructures fabricated by femtosecond laser. The VDS measurements can robustly generate chiroptical properties on microstructures with varying geometric features (e.g., diameters and helical pitches) and detect chiral molecules with high sensitivity. This VDS scheme lays a paradigm-shift pavement toward efficiently chiroptical discrimination of multiscale chiral structures with photonic orbital angular momentum. It simplifies and complements the conventional CD spectroscopy, opening possibilities for measuring weak optical chirality, especially on mesoscale chiral architectures and macromolecules.
Collapse
|
32
|
Delabie J, De Winter J, Deschaume O, Bartic C, Gerbaux P, Verbiest T, Koeckelberghs G. Development of a Layered Hybrid Nanocomposite Material Using α,ω-Bifunctionalized Polythiophenes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Delabie
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Materials Science and Engineering, University of Mons—UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Box 2416, B-3001 Heverlee, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Box 2416, B-3001 Heverlee, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Materials Science and Engineering, University of Mons—UMONS, 23 Place de Parc, B-7000 Mons, Belgium
| | - Thierry Verbiest
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, Box 2425, B-3001 Heverlee, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, B-3001 Heverlee, Belgium
| |
Collapse
|
33
|
Mun J, Moon SW, Rho J. Multipole decomposition for interactions between structured optical fields and meta-atoms. OPTICS EXPRESS 2020; 28:36756-36770. [PMID: 33379762 DOI: 10.1364/oe.409775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Interactions between structured optical fields (SOFs) and meta-atoms have been intensively studied, and stimulated by recent advancements on the generation of SOFs and on the synthesis of exotic meta-atoms. Multipole expansion is an efficient and accurate theoretical framework for studying such problems. In this work, explicit expressions of SOFs and their beam-shape coefficients are provided, and their properties are also briefly discussed; the considered SOFs include Laguerre-Gaussian (LG) beams, tightly-focused LG beams, Bessel beams, and cylindrical vector beams. Using the multipole expansion, selective excitations of multipolar resonances of a sphere is discussed. In addition, angular momentum dichroisms of a chiral sphere and an anisotropically chiral meta-atom are calculated to demonstrate selective excitation of multipoles with the desired order, parity, and orientation using engineered SOFs with angular momentum.
Collapse
|
34
|
Mun J, Kim M, Yang Y, Badloe T, Ni J, Chen Y, Qiu CW, Rho J. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. LIGHT, SCIENCE & APPLICATIONS 2020; 9:139. [PMID: 32922765 PMCID: PMC7463035 DOI: 10.1038/s41377-020-00367-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 05/05/2023]
Abstract
Chirality arises universally across many different fields. Recent advancements in artificial nanomaterials have demonstrated chiroptical responses that far exceed those found in natural materials. Chiroptical phenomena are complicated processes that involve transitions between states with opposite parities, and solid interpretations of these observations are yet to be clearly provided. In this review, we present a comprehensive overview of the theoretical aspects of chirality in light, nanostructures, and nanosystems and their chiroptical interactions. Descriptions of observed chiroptical phenomena based on these fundamentals are intensively discussed. We start with the strong intrinsic and extrinsic chirality in plasmonic nanoparticle systems, followed by enantioselective sensing and optical manipulation, and then conclude with orbital angular momentum-dependent responses. This review will be helpful for understanding the mechanisms behind chiroptical phenomena based on underlying chiral properties and useful for interpreting chiroptical systems for further studies.
Collapse
Affiliation(s)
- Jungho Mun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Minkyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Yang Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Korea
| |
Collapse
|
35
|
Ma H, Zhang Y, Min C, Yuan X. Controllable propagation and transformation of chiral intensity field at focus. OPTICS LETTERS 2020; 45:4823-4826. [PMID: 32870867 DOI: 10.1364/ol.401951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
As an intrinsic feature of the optical field, chirality could induce many novel phenomena due to the interaction between chiral light and matter. Thus, the generation of optical fields possessing 2D or 3D chiral intensity patterns, called chiral intensity fields, has been widely studied. However, the control of chiral intensity field along the optical axis is still a challenge. Here, we propose a method to manipulate the axial propagation property of a focused chiral intensity field. Two modulation effects are realized: extended chiral intensity field with a focal depth >2λ at 90% mode correlation and tunable transformation of chirality during the axial propagation. This method is simple, stable, and easy to perform and therefore offers broad applications especially in optical tweezers and metamaterial fabrication.
Collapse
|
36
|
Transmission of Orbital Angular Momentum and Cylindrical Vector Beams in a Large-Bandwidth Annular Core Photonic Crystal Fiber. FIBERS 2020. [DOI: 10.3390/fib8040022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stable propagation of orbital angular momentum and cylindrical vector beams in a newly designed annular core photonic crystal fiber (AC-PCF) tailored for the broadband single-radial order beam transmission (within the so-called “endlessly mono-radial” guiding regime) is demonstrated for the first time. It is shown that the vector-vortex beams can maintain high mode purities above 18 dB after propagation in the fiber under test over all of the wavelength range from 805 to 845 nm (over 17 THz bandwidth) investigated with the help of a tunable laser and an S-plate for the generation of singular beams in free space. Our results confirm that the AC-PCF is a promising design for the broadband transmission of vector-vortex beams that have potential applications in space-division multiplexing, quantum communications, optical sensing and trapping.
Collapse
|
37
|
Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. NANOSCALE 2020; 12:58-66. [PMID: 31815994 DOI: 10.1039/c9nr08433a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plasmonic metamaterials are artificially designed materials which exhibit optical properties that cannot be found in nature. They have unique and special abilities related to electromagnetic wave control, including strong field enhancement in the vicinity of the surfaces. Over the years, scientists have succeeded in dramatically improving the detection limit of molecular chirality utilizing a variety of plasmonic metamaterial platforms. In this mini-review, we will discuss the principles of most recent issues in chiral sensing applications of plasmonic metamaterials, including suggested formulas for signal enhancement of chiroptical plasmonic sensors, and studies on various platforms that employ different sensing mechanisms.
Collapse
Affiliation(s)
- Yoon Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
38
|
Sarenac D, Kapahi C, Chen W, Clark CW, Cory DG, Huber MG, Taminiau I, Zhernenkov K, Pushin DA. Generation and detection of spin-orbit coupled neutron beams. Proc Natl Acad Sci U S A 2019; 116:20328-20332. [PMID: 31548384 PMCID: PMC6789912 DOI: 10.1073/pnas.1906861116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spin-orbit coupling of light has come to the fore in nanooptics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. The 3He neutron spin filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependent intensity profiles. These correlations can be tailored to particular applications, such as neutron studies of topological materials.
Collapse
Affiliation(s)
- Dusan Sarenac
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Connor Kapahi
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Wangchun Chen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742
| | - Charles W Clark
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, MD 20742
| | - David G Cory
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael G Huber
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Ivar Taminiau
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kirill Zhernenkov
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85748 Garching, Germany
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
| | - Dmitry A Pushin
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
39
|
Ye L, Rouxel JR, Asban S, Rösner B, Mukamel S. Probing Molecular Chirality by Orbital-Angular-Momentum-Carrying X-ray Pulses. J Chem Theory Comput 2019; 15:4180-4186. [PMID: 31125229 DOI: 10.1021/acs.jctc.9b00346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A twisted X-ray beam with orbital angular momentum is employed in a theoretical study to probe molecular chirality. A nonlocal response description of the matter-field coupling is adopted to account for the field short wavelength and the structured spatial profile. We use the minimal-coupling Hamiltonian, which implicitly takes into account the multipole contributions to all orders. The combined interactions of the spin and orbital angular momentum of the X-ray beam give rise to circular-helical dichroism signals, which are stronger than ordinary circular dichroism signals, and may serve as a useful tool for the study of molecular chirality in the X-ray regime.
Collapse
Affiliation(s)
- Lyuzhou Ye
- Department of Chemistry and Department of Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | - Jérémy R Rouxel
- Laboratory of Ultrafast Spectroscopy , École Polytechnique Fédérale de Lausanne , Lausanne CH-1015 , Switzerland.,Paul Scherrer Institut , Villigen-PSI 5232 , Switzerland
| | - Shahaf Asban
- Department of Chemistry and Department of Physics and Astronomy , University of California , Irvine , California 92697 , United States
| | | | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy , University of California , Irvine , California 92697 , United States
| |
Collapse
|
40
|
Abstract
Optical polarization features associated with the fundamental processes of molecular fluorescence and resonance energy transfer are in general studied with reference to plane polarizations. When any of the species involved is chiral, the associated emission processes may exhibit an element of circular polarization-a degree of optical helicity. Although usually a minor effect, some systems can exhibit a sizeable component of circularly polarized luminescence, whose helicity correlates with the enantiomeric form. In studies of multi-component systems, in which initial excitation of a donor species-followed by energy transfer-leads to emission from an acceptor molecule, the handedness of both donor and acceptor may influence output circularity. In systems with an achiral acceptor, a degree of fluorescence circularity may be influenced by the handedness of a chiral donor, but this should not be construed in terms of 'conveying' chirality. Chiral molecules may also play a passive role by inducing helicity in the fluorescence from achiral neighbours, and further tiers of complexity arise if the initial excitation is itself of circular polarization. In all such processes, symmetry principles play a major role in determining a sensitivity to molecular handedness, and their detailed consideration enables a range of new experimental procedures to be identified. Casting the fundamental theory in terms of formal photon-molecule couplings enables the quantum mechanisms involved in all such phenomena to be clearly resolved. The results provide fresh physical insights, and establish connections across a range of indirectly related chiroptical phenomena including induced circular dichroism.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
41
|
Hachtel JA, Cho SY, Davidson RB, Feldman MA, Chisholm MF, Haglund RF, Idrobo JC, Pantelides ST, Lawrie BJ. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. LIGHT, SCIENCE & APPLICATIONS 2019; 8:33. [PMID: 30911382 PMCID: PMC6425011 DOI: 10.1038/s41377-019-0136-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 05/31/2023]
Abstract
Understanding the near-field electromagnetic interactions that produce optical orbital angular momentum (OAM) is crucial for integrating twisted light into nanotechnology. Here, we examine the cathodoluminescence (CL) of plasmonic vortices carrying OAM generated in spiral nanostructures. The nanospiral geometry defines a photonic local density of states that is sampled by the electron probe in a scanning transmission electron microscope (STEM), thus accessing the optical response of the plasmonic vortex with high spatial and spectral resolution. We map the full spectral dispersion of the plasmonic vortex in spiral structures designed to yield increasing topological charge. Additionally, we fabricate nested nanospirals and demonstrate that OAM from one nanospiral can be coupled to the nested nanospiral, resulting in enhanced luminescence in concentric spirals of like handedness with respect to concentric spirals of opposite handedness. The results illustrate the potential for generating and coupling plasmonic vortices in chiral nanostructures for sensitive detection and manipulation of optical OAM.
Collapse
Affiliation(s)
- Jordan A. Hachtel
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sang-Yeon Cho
- Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003 USA
| | - Roderick B. Davidson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 USA
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375 USA
| | - Matthew A. Feldman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 USA
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Matthew F. Chisholm
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Richard F. Haglund
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sokrates T. Pantelides
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University Nashville, Nashville, TN 37235 USA
| | - Benjamin J. Lawrie
- Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
42
|
Forbes KA. Raman Optical Activity Using Twisted Photons. PHYSICAL REVIEW LETTERS 2019; 122:103201. [PMID: 30932650 DOI: 10.1103/physrevlett.122.103201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Raman optical activity underpins a powerful vibrational spectroscopic technique for obtaining detailed structural information about chiral molecular species. The effect centers on the discriminatory interplay between the handedness of material chirality with that of circularly polarized light. Twisted light possessing an optical orbital angular momentum carries helical phase fronts that screw either clockwise or anticlockwise and, thus, possess a handedness that is completely distinct from the polarization. Here a novel form of Raman optical activity that is sensitive to the handedness of the incident twisted photons through a spin-orbit interaction of light is identified, representing a new chiroptical spectroscopic technique.
Collapse
Affiliation(s)
- Kayn A Forbes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
43
|
Questions of Mirror Symmetry at the Photoexcited and Ground States of Non-Rigid Luminophores Raised by Circularly Polarized Luminescence and Circular Dichroism Spectroscopy. Part 2: Perylenes, BODIPYs, Molecular Scintillators, Coumarins, Rhodamine B, and DCM. Symmetry (Basel) 2019. [DOI: 10.3390/sym11030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated whether semi-rigid and non-rigid π-conjugated fluorophores in the photoexcited (S1) and ground (S0) states exhibited mirror symmetry by circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy using a range of compounds dissolved in achiral liquids. The fluorophores tested were six perylenes, six scintillators, 11 coumarins, two pyrromethene difluoroborates (BODIPYs), rhodamine B (RhB), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). All the fluorophores showed negative-sign CPL signals in the ultraviolet (UV)–visible region, suggesting energetically non-equivalent and non-mirror image structures in the S1 state. The dissymmetry ratio of the CPL (glum) increased discontinuously from approximately −0.2 × 10−3 to −2.0 × 10−3, as the viscosity of the liquids increased. Among these liquids, C2-symmetrical stilbene 420 showed glum ≈ −0.5 × 10−3 at 408 nm in H2O and D2O, while, in a viscous alkanediol, the signal was amplified to glum ≈ −2.0 × 10−3. Moreover, BODIPYs, RhB, and DCM in the S0 states revealed weak (−)-sign CD signals with dissymmetry ratios (gabs) ≈ −1.4 × 10−5 at λmax/λext. The origin of the (−)-sign CPL and the (−)-sign CD signals may arise from an electroweak charge at the polyatomic level. Our CPL and CD spectral analysis could be a possible answer to the molecular parity violation hypothesis based on a weak neutral current of Z0 boson origin that could connect to the origin of biomolecular handedness.
Collapse
|
44
|
Abstract
We consider the helicity and chirality of the free electromagnetic field, and advocate the former as a means of characterising the interaction of chiral light with matter. This is in view of the intuitive quantum form of the helicity density operator, and of the dual symmetry transformation generated by its conservation. We go on to review the form of the helicity density and its associated continuity equation in free space, in the presence of local currents and charges, and upon interaction with bulk media, leading to characterisation of both microscopic and macroscopic sources of helicity.
Collapse
|
45
|
Endlessly mono-radial annular core photonic crystal fiber for the broadband transmission and supercontinuum generation of vortex beams. Sci Rep 2019; 9:2488. [PMID: 30792502 PMCID: PMC6385498 DOI: 10.1038/s41598-019-39527-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
We demonstrate a new guiding regime termed endlessly mono-radial, in the proposed annular core photonic crystal fiber (AC-PCF), whereby only modes of the fundamental radial order are supported by the fiber at all input wavelengths. This attribute is of high interest for applications that require the stable and broadband guiding of mono-radial (i.e. doughnut shaped) cylindrical vector beams and vortex beams carrying orbital angular momentum. We further show that one can significantly tailor the chromatic dispersion and optical nonlinearities of the waveguide through proper optimization of the photonic crystal microstructured cladding. The analytical investigation of the remarkable modal properties of the AC-PCF is validated by full-vector simulations. As an example, we performed simulations of the nonlinear fiber propagation of short femtosecond pulses at 835 nm center wavelength and kilowatt-level peak power, which indicate that the AC-PCF represents a promising avenue to investigate the supercontinuum generation of optical vortex light. The proposed fiber design has potential applications in space-division multiplexing, optical sensing and super-resolution microscopy.
Collapse
|
46
|
Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. LIGHT, SCIENCE & APPLICATIONS 2019; 8:90. [PMID: 31645934 PMCID: PMC6804826 DOI: 10.1038/s41377-019-0194-2] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
Thirty years ago, Coullet et al. proposed that a special optical field exists in laser cavities bearing some analogy with the superfluid vortex. Since then, optical vortices have been widely studied, inspired by the hydrodynamics sharing similar mathematics. Akin to a fluid vortex with a central flow singularity, an optical vortex beam has a phase singularity with a certain topological charge, giving rise to a hollow intensity distribution. Such a beam with helical phase fronts and orbital angular momentum reveals a subtle connection between macroscopic physical optics and microscopic quantum optics. These amazing properties provide a new understanding of a wide range of optical and physical phenomena, including twisting photons, spin-orbital interactions, Bose-Einstein condensates, etc., while the associated technologies for manipulating optical vortices have become increasingly tunable and flexible. Hitherto, owing to these salient properties and optical manipulation technologies, tunable vortex beams have engendered tremendous advanced applications such as optical tweezers, high-order quantum entanglement, and nonlinear optics. This article reviews the recent progress in tunable vortex technologies along with their advanced applications.
Collapse
Affiliation(s)
- Yijie Shen
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, 100084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Xuejiao Wang
- National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data (NEL-PSRPC), China Academy of Electronics and Information Technology of CETC, China Electronic Technology Group Corporation, 100041 Beijing, China
| | - Zhenwei Xie
- Nanophotonics Research Center, Shenzhen University, 518060 Shenzhen, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen University, 518060 Shenzhen, China
| | - Xing Fu
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, 100084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Qiang Liu
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, 100084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Mali Gong
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, 100084 Beijing, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen University, 518060 Shenzhen, China
| |
Collapse
|
47
|
Sarenac D, Cory DG, Nsofini J, Hincks I, Miguel P, Arif M, Clark CW, Huber MG, Pushin DA. Generation of a Lattice of Spin-Orbit Beams via Coherent Averaging. PHYSICAL REVIEW LETTERS 2018; 121:183602. [PMID: 30444408 DOI: 10.1103/physrevlett.121.183602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 06/09/2023]
Abstract
We describe a highly robust method, applicable to both electromagnetic and matter-wave beams, that can produce a beam consisting of a lattice of orbital angular momentum (OAM) states coupled to a two-level system. We also define efficient protocols for controlling and manipulating the lattice characteristics. These protocols are applied in an experimental realization of a lattice of optical spin-orbit beams. The novel passive devices we demonstrate here are also a natural alternative to existing methods for producing single-axis OAM and spin-orbit beams. Our techniques provide new tools for investigations of chiral and topological materials with light and particle beams.
Collapse
Affiliation(s)
- D Sarenac
- Department of Physics, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - D G Cory
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L2Y5
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8
| | - J Nsofini
- Department of Physics, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - I Hincks
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Department of Applied Math, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - P Miguel
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - M Arif
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Charles W Clark
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - M G Huber
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Department of Physics, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| |
Collapse
|
48
|
Szedlak R, Hisch T, Schwarz B, Holzbauer M, MacFarland D, Zederbauer T, Detz H, Andrews AM, Schrenk W, Rotter S, Strasser G. Ring quantum cascade lasers with twisted wavefronts. Sci Rep 2018; 8:7998. [PMID: 29789653 PMCID: PMC5964118 DOI: 10.1038/s41598-018-26267-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/09/2018] [Indexed: 11/15/2022] Open
Abstract
We demonstrate the on-chip generation of twisted light beams from ring quantum cascade lasers. A monolithic gradient index metamaterial is fabricated directly into the substrate side of the semiconductor chip and induces a twist of the light's wavefront. This significantly influences the obtained beam pattern, which changes from a central intensity minimum to a maximum depending on the discontinuity count of the metamaterial. Our design principle provides an interesting alternative to recent implementations of microlasers operating at an exceptional point.
Collapse
Affiliation(s)
- Rolf Szedlak
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria.
| | - Thomas Hisch
- Institute for Theoretical Physics, TU Wien, Wiedner-Hauptstraße 8-10/136, 1040, Vienna, Austria
| | - Benedikt Schwarz
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Martin Holzbauer
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Donald MacFarland
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Tobias Zederbauer
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Hermann Detz
- Austrian Academy of Sciences, Dr. Ignaz Seipel-Platz 2, 1010, Vienna, Austria
| | - Aaron Maxwell Andrews
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Werner Schrenk
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| | - Stefan Rotter
- Institute for Theoretical Physics, TU Wien, Wiedner-Hauptstraße 8-10/136, 1040, Vienna, Austria
| | - Gottfried Strasser
- Institute of Solid State Electronics & Center for Micro- and Nanostructures, TU Wien, Floragasse 7, 1040, Vienna, Austria
| |
Collapse
|
49
|
Forbes KA, Andrews DL. Optical orbital angular momentum: twisted light and chirality. OPTICS LETTERS 2018; 43:435-438. [PMID: 29400808 DOI: 10.1364/ol.43.000435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The question of how the orbital angular momentum of structured light might engage with chiral matter is a topic of resurgent interest. By taking account of electric quadrupole transition moments, it is shown that the handedness of the beam can indeed be exhibited in local chiral effects, being dependent on the sign of the topological charge. In the specific case of absorption, a significant interplay of wavefront structure and polarization is resolved, and clear differences in behavior are identified for systems possessing a degree of orientational order and for those that are randomly oriented.
Collapse
|
50
|
Dorrah AH, Zamboni-Rached M, Mojahedi M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. LIGHT, SCIENCE & APPLICATIONS 2018; 7:40. [PMID: 30839632 PMCID: PMC6107032 DOI: 10.1038/s41377-018-0034-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/06/2018] [Accepted: 05/13/2018] [Indexed: 05/22/2023]
Abstract
The index of refraction plays a decisive role in the design and classification of optical materials and devices; therefore, its proper and accurate determination is essential. In most refractive index (RI) sensing schemes, however, there is a trade-off between providing high-resolution measurements and covering a wide range of RIs. We propose and experimentally demonstrate a novel mechanism for sensing the index of refraction of a medium by utilizing the orbital angular momentum (OAM) of structured light. Using a superposition of co-propagating monochromatic higher-order Bessel beams with equally spaced longitudinal wavenumbers, in a comb-like setting, we generate non-diffracting rotating light structures in which the orientation of the beam's intensity profile is sensitive to the RI of the medium (here, a fluid). In principle, the sensitivity of this scheme can exceed ~2700°/RI unit (RIU) with a resolution of ~ 1 0 - 5 RIU. Furthermore, we show how the unbounded degrees of freedom associated with OAM can be deployed to offer a wide dynamic range by generating structured light that evolves into different patterns based on the change in RI. The rotating light structures are generated by a programmable spatial light modulator. This provides dynamic control over the sensitivity, which can be tuned to perform coarse or fine measurements of the RI in real time. This, in turn, allows high sensitivity and resolution to be achieved simultaneously over a very wide dynamic range, which is a typical trade-off in all RI sensing schemes. We thus envision that this method will open new directions in refractometry and remote sensing.
Collapse
Affiliation(s)
- Ahmed H. Dorrah
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
| | - Michel Zamboni-Rached
- School of Electrical and Computer Engineering, University of Campinas, Campinas – SP, 13083-852 Brazil
| | - Mo Mojahedi
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
| |
Collapse
|