1
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Denham J, Bliss ES, Bryan TM, O'Brien BJ, Mills D. Exercise to combat cancer: focusing on the ends. Physiol Genomics 2024; 56:869-875. [PMID: 39374082 DOI: 10.1152/physiolgenomics.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care.
Collapse
Affiliation(s)
- Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Edward S Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Brendan J O'Brien
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, Victoria, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| |
Collapse
|
3
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Gupta M, Rathored J. Hyperbaric oxygen therapy: future prospects in regenerative therapy and anti-aging. FRONTIERS IN AGING 2024; 5:1368982. [PMID: 38757145 PMCID: PMC11097100 DOI: 10.3389/fragi.2024.1368982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Hyperbaric Oxygen Therapy (HBOT) utilizes 100% oxygen at high atmospheric pressure for clinical applications. HBOT has proven to be an effective supplementary treatment for a variety of clinical and pathological disorders. HBOT's therapeutic results are based on the physiological effects of increased tissue oxygenation, or improved oxygen bioavailability. HBOT's current indications in illnesses like as wound healing, thermal or radiation burns, and tissue necrosis point to its function in facilitating the regeneration process. Various research has revealed that HBOT plays a function in vascularization, angiogenesis, and collagen production augmentation. Individual regeneration capacity is influenced by both environmental and genetic factors. Furthermore, the regenerating ability of different types of tissues varies, and this ability declines with age. HBOT affects physiological processes at the genetic level by altering gene expression, delaying cell senescence, and assisting in telomere length enhancement. The positive results in a variety of indications, ranging from tissue regeneration to better cognitive function, indicate that it has enormous potential in regenerative and anti-aging therapy.
Collapse
Affiliation(s)
- Manoj Gupta
- Datta Meghe Institute of Medical Sciences, Wardha, India
| | - Jaishriram Rathored
- Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
5
|
Rivosecchi J, Jurikova K, Cusanelli E. Telomere-specific regulation of TERRA and its impact on telomere stability. Semin Cell Dev Biol 2024; 157:3-23. [PMID: 38088000 DOI: 10.1016/j.semcdb.2023.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/08/2024]
Abstract
TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3' end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy; Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
6
|
Chen M, Wang Z, Xu H, Teng P, Li W, Ma L. Association between modifiable lifestyle factors and telomere length: a univariable and multivariable Mendelian randomization study. J Transl Med 2024; 22:160. [PMID: 38365769 PMCID: PMC10870665 DOI: 10.1186/s12967-024-04956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Telomere length has long been recognized as a valuable biomarker of aging and is inversely correlated with chronological age. Various lifestyle factors have been implicated in telomere shortening or preservation; however, the association between lifestyle factors and telomere length remains controversial. To address this issue, we conducted a Mendelian randomization (MR) analysis to investigate the potential causal associations between multiple lifestyle factors and telomere length. METHODS Independent genetic variants strongly associated with lifestyle factors (tobacco smoking, sleep duration, insomnia, and physical activity) were selected as instrumental variables from corresponding genome-wide association studies (GWASs). Summary-level data for telomere length was obtained from a GWAS comprising 472,174 European ancestries. Univariable and multivariable MR analyses were performed to assess the relationships. RESULTS The genetic liability to lifetime smoking was robustly associated with shorter telomere length (odd ratio [OR]: 0.882; 95% confidence interval [CI]: 0.847-0.918). Genetically predicted insomnia was also linked to shorter telomere length (OR: 0.972; 95% CI: 0.959-0.985), while no significant association was observed between sleep duration and telomere length. Furthermore, a suggestive association was found between moderate-to-vigorous physical activity and longer telomere length (OR: 1.680; 95% CI: 1.115-2.531). In multivariable MR analyses, adjusting for potential mediators such as body mass index, type 2 diabetes, alcohol consumption, and alcohol use disorder, the associations of lifetime smoking and insomnia with telomere length remained robust. CONCLUSION Our findings suggest that smoking and insomnia may contribute to telomere shortening, while physical activity may play a role in telomere length maintenance. These findings underscore the importance of managing positive risk factors and adopting a healthy lifestyle to promote telomere health.
Collapse
Affiliation(s)
- Miao Chen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Zhen Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Hongfei Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Peng Teng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Weidong Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Zhejiang University School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
7
|
Liu K, Li W, Xiao Y, Lei M, Zhang M, Min J. Molecular mechanism of specific DNA sequence recognition by NRF1. Nucleic Acids Res 2024; 52:953-966. [PMID: 38055835 PMCID: PMC10810270 DOI: 10.1093/nar/gkad1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
8
|
Canale P, Campolo J, Borghini A, Andreassi MG. Long Telomeric Repeat-Containing RNA (TERRA): Biological Functions and Challenges in Vascular Aging and Disease. Biomedicines 2023; 11:3211. [PMID: 38137431 PMCID: PMC10740775 DOI: 10.3390/biomedicines11123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Telomere dysfunction is implicated in vascular aging and shorter leucocyte telomeres are associated with an increased risk of atherosclerosis, myocardial infarction, and heart failure. Another pathophysiological mechanism that explains the causal relationship between telomere shortening and atherosclerosis development focuses on the clonal hematopoiesis of indeterminate potential (CHIP), which represents a new and independent risk factor in atherosclerotic cardiovascular diseases. Since telomere attrition has a central role in driving vascular senescence, understanding telomere biology is essential to modulate the deleterious consequences of vascular aging and its cardiovascular disease-related manifestations. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for "TElomeric Repeat-containing RNA", actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the multiple biological functions of TERRA remain to be largely elucidated. In particular, the role of TERRA in vascular biology is surprisingly unknown. In this review, we discuss the current knowledge of TERRA and its roles in telomere biology. Additionally, we outline the pieces of evidence that exist regarding the relationship between TERRA dysregulation and disease. Finally, we speculate on how a comprehensive understanding of TERRA transcription in the cardiovascular system may provide valuable insights into telomere-associated vascular aging, offering great potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milano, Italy;
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
| | | |
Collapse
|
9
|
Qin B. Can Antidiabetic Medications Affect Telomere Length in Patients with Type 2 Diabetes? A Mini-Review. Diabetes Metab Syndr Obes 2023; 16:3739-3750. [PMID: 38028989 PMCID: PMC10676684 DOI: 10.2147/dmso.s428560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
The fight against aging is an eternal pursuit of humankind. The aging rate of patients with type 2 diabetes mellitus (T2DM) is higher than that of healthy individuals. Reducing the aging rate of patients with T2DM and extending their life expectancy are challenges that endocrinologists are eager to overcome. Many studies have shown that antidiabetic medications have potent anti-aging potential. Telomeres are repetitive DNA sequences located at the ends of chromosomes, and telomere shortening is a hallmark of aging. This review summarizes clinical trials that have explored the association between antidiabetic medications and telomere length (TL) in patients with T2DM and explore the mystery of delaying aging in patients with T2DM from the perspective of telomeres. Various antidiabetic medications may have different effects on TL in patients with T2DM. Metformin and sitagliptin may protect telomeres in patients with T2DM, while exogenous insulin may promote telomere shortening in patients with T2DM. The effect of acarbose and glyburide on TL in patients with T2DM is still uncertain due to the absence of evidence from longitudinal studies.
Collapse
Affiliation(s)
- Baoding Qin
- Department of Endocrinology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Manzato C, Larini L, Oss Pegorar C, Dello Stritto MR, Jurikova K, Jantsch V, Cusanelli E. TERRA expression is regulated by the telomere-binding proteins POT-1 and POT-2 in Caenorhabditis elegans. Nucleic Acids Res 2023; 51:10681-10699. [PMID: 37713629 PMCID: PMC10602879 DOI: 10.1093/nar/gkad742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several aspects of telomere biology are regulated by the telomeric repeat-containing RNA TERRA. While TERRA expression is conserved through evolution, species-specific mechanisms regulate its biogenesis and function. Here we report on the expression of TERRA in Caenorhabditis elegans. We show that C. elegans TERRA is regulated by the telomere-binding proteins POT-1 and POT-2 which repress TERRA in a telomere-specific manner. C. elegans TERRA transcripts are heterogeneous in length and form discrete nuclear foci, as detected by RNA FISH, in both postmitotic and germline cells; a fraction of TERRA foci localizes to telomeres. Interestingly, in germ cells, TERRA is expressed in all stages of meiotic prophase I, and it increases during pachytene, a stage in meiosis when homologous recombination is ongoing. We used the MS2-GFP system to study the spatiotemporal dynamics of single-telomere TERRA molecules. Single particle tracking revealed different types of motilities, suggesting complex dynamics of TERRA transcripts. Finally, we unveiled distinctive features of C. elegans TERRA, which is regulated by telomere shortening in a telomere-specific manner, and it is upregulated in the telomerase-deficient trt-1; pot-2 double mutant prior to activation of the alternative lengthening mechanism ALT. Interestingly, in these worms TERRA displays distinct dynamics with a higher fraction of fast-moving particles.
Collapse
Affiliation(s)
- Caterina Manzato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Luca Larini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Claudio Oss Pegorar
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| | - Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina 84215, Bratislava, Slovakia
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter 1030, Vienna, Austria
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, 38123, Trento, Italy
| |
Collapse
|
11
|
Quttina M, Waiters KD, Khan AF, Karami S, Peidl AS, Babajide MF, Pennington J, Merchant FA, Bawa-Khalfe T. Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer. Cells 2023; 12:2495. [PMID: 37887339 PMCID: PMC10605189 DOI: 10.3390/cells12202495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly for lncRNA telomeric repeat-containing RNA (TERRA), as the TERRA-telomere R-loops dictate cell cycle progression and genomic stability. We now report that the exosome complex component Exosc9 degrades lncRNA TERRA in human mammary epithelial cells. Heterochromatin protein 1 alpha (HP1α) recruits Exosc9 to the telomeres; specifically, the SUMO-modified form of HP1α supports interaction with Exosc9 and, as previously reported, lncRNA TERRA. The telomeric enrichment of Exosc9 is cell cycle-dependent and consistent with the loss of telomeric TERRA in the S/G2 phase. Elevated Exosc9 is frequently observed and drives the growth of endocrine therapy-resistant (ET-R) HR+ breast cancer (BCa) cells. Specifically, the knockdown of Exosc9 inversely impacts telomeric R-loops and the integrity of the chromosome ends of ET-R cells. Consistently, Exosc9 levels dictate DNA damage and the sensitivity of ET-R BCa cells to PARP inhibitors. In this regard, Exosc9 may serve as a promising biomarker for predicting the response to PARP inhibitors as a targeted monotherapy for ET-R HR+ BCa.
Collapse
Affiliation(s)
- Maram Quttina
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Kacie D. Waiters
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Ashfia Fatima Khan
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Samaneh Karami
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Anthony S. Peidl
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Mariam Funmi Babajide
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Justus Pennington
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Fatima A. Merchant
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| |
Collapse
|
12
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
13
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
14
|
Schellnegger M, Lin AC, Hammer N, Kamolz LP. Physical Activity on Telomere Length as a Biomarker for Aging: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:111. [PMID: 36057868 PMCID: PMC9441412 DOI: 10.1186/s40798-022-00503-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
Background Overall life expectancy continues to rise, approaching 80 years of age in several developed countries. However, healthy life expectancy lags far behind, which has, in turn, contributed to increasing costs in healthcare. One way to improve health and attenuate the socio-economic impact of an aging population is to increase overall fitness through physical activity. Telomere attrition or shortening is a well-known molecular marker in aging. As such, several studies have focused on whether exercise influences health and aging through telomere biology. This systematic review examines the recent literature on the effect of physical activity on telomere length (TL) and/or telomerase activity as molecular markers of aging. Methods A focused search was performed in the databases PubMed and Web of Science for retrieving relevant articles over the past ten years. The search contained the following keywords: exercise, sport, physical activity, fitness, sedentary, physical inactivity, telomere, telomere length, t/s ratio, and telomerase. PRISMA guidelines for systematic reviews were observed. Results A total of 43 articles were identified and categorized into randomized controlled trials (RCT), observational or interventional studies. RCTs (n = 8) showed inconsistent findings of increased TL length with physical activity in, e.g. obese, post-menopausal women. In comparison with a predominantly sedentary lifestyle, observational studies (n = 27) showed significantly longer TL with exercise of moderate to vigorous intensity; however, there was no consensus on the duration and type of physical activity and training modality. Interventional studies (n = 8) also showed similar findings of significantly longer TL prior to exercise intervention; however, these studies had smaller numbers of enrolled participants (mostly of high-performance athletes), and the physical activities covered a range of exercise intensities and duration. Amongst the selected studies, aerobic training of moderate to vigorous intensity is most prevalent. For telomere biology analysis, TL was determined mainly from leukocytes using qPCR. In some cases, especially in RCT and interventional studies, different sample types such as saliva, sperm, and muscle biopsies were analyzed; different leukocyte cell types and potential genetic markers in regulating telomere biology were also investigated. Conclusions Taken together, physical activity with regular aerobic training of moderate to vigorous intensity appears to help preserve TL. However, the optimal intensity, duration of physical activity, as well as type of exercise still need to be further elucidated. Along with TL or telomerase activity, participants’ fitness level, the type of physical activity, and training modality should be assessed at different time points in future studies, with the plan for long-term follow-up. Reducing the amount of sedentary behavior may have a positive effect of preserving and increasing TL. Further molecular characterization of telomere biology in different cell types and tissues is required in order to draw definitive causal conclusions on how physical activity affects TL and aging.
Collapse
|
15
|
Sanchez C, Zappia J, Lambert C, Foguenne J, Dierckxsens Y, Dubuc JE, Delcour JP, Gothot A, Henrotin Y. Curcuma longa and Boswellia serrata Extracts Modulate Different and Complementary Pathways on Human Chondrocytes In Vitro: Deciphering of a Transcriptomic Study. Front Pharmacol 2022; 13:931914. [PMID: 36034822 PMCID: PMC9403192 DOI: 10.3389/fphar.2022.931914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Objectives:Curcuma longa (CL) and Boswellia serrata (BS) extracts are used to relieve osteoarthritis symptoms. The aim of this in vitro study was to investigate their mechanisms of action at therapeutic plasmatic concentrations on primary human osteoarthritic (OA) chondrocytes. Methods: BS (10–50 μg/ml) and CL (0.4–2 μg/ml corresponding to 1–5 µM of curcumin) were evaluated separately or in combination on primary chondrocytes isolated from 17 OA patients and cultured in alginate beads. Ten patients were used for RNA-sequencing analysis. Proteomic confirmation was performed either by immunoassays in the culture supernatant or by flow cytometry for cell surface markers after 72 h of treatment. Results: Significant gene expression modifications were already observed after 6 h of treatment at the highest dose of CL (2 μg/ml) while BS was significantly effective only after 24 h of treatment irrespective of the concentration tested. The most over-expressed genes by CL were anti-oxidative, detoxifying, and cytoprotective genes involved in the Nrf2 pathway. Down-regulated genes were principally pro-inflammatory cytokines and chemokines. Inversely, BS anti-oxidant/detoxifying activities were related to the activation of Nrf1 and PPARα pathways. BS anti-inflammatory effects were associated with the increase in GDF15, decrease in cholesterol cell intake and fatty acid metabolism-involved genes, and down-regulation of Toll-like receptors (TLRs) activation. Similar to CL, BS down-regulated ADAMTS1, 5, and MMP3, 13 genes expression. The combination of both CL and BS was significantly more effective than CL or BS alone on many genes such as IL-6, CCL2, ADAMTS1, and 5. Conclusion: BS and CL have anti-oxidative, anti-inflammatory, and anti-catabolic activities, suggesting a protective effect of these extracts on cartilage. Even if they share some mechanism of action, the two extracts act mainly on distinct pathways, and with different time courses, justifying their association to treat osteoarthritis.
Collapse
Affiliation(s)
- Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
- *Correspondence: Christelle Sanchez,
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
| | - Cécile Lambert
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
| | - Jacques Foguenne
- Department of Laboratory Hematology, Liege University Hospital, Liege, Belgium
| | | | - Jean-Emile Dubuc
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Cliniques Universitaires de St Luc, Brussels, Belgium
| | | | - André Gothot
- Department of Laboratory Hematology, Liege University Hospital, Liege, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Marche-en-Famenne, Belgium
| |
Collapse
|
16
|
Andresen B, de Marees M, Schiffer T, Bloch W, Suhr F. Skeletal muscle fiber type-specific expressions of mechanosensors integrin-linked kinase, talin, and vinculin and their modulation by loading and environmental conditions in humans. FASEB J 2022; 36:e22458. [PMID: 35867073 DOI: 10.1096/fj.202101377rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Mechanosensors control muscle integrity as demonstrated in mice. However, no information is available in human muscle about the distribution of mechanosensors and their adaptations to mechanical loading and environmental conditions (hypoxia). Here, we hypothesized that mechanosensors show fiber-type-specific distributions and that loading and environmental conditions specifically regulate mechanosensors. We randomly subjected 28 healthy males to one of the following groups (n = 7 each) consisting of nine loading sessions within 3 weeks: normoxia moderate (NM), normoxia intensive (NI), hypoxia moderate (HM), and hypoxia intensive (HI). We took six biopsies: pre (T0), 4 h (T1), and 24 h (T2) after the third as well as 4 h (T3), 24 h (T4), and 72 h (T5) after the ninth training session. We analyzed subjects' maximal oxygen consumption (V̇O2 max), maximal power output (Pmax), muscle fiber types and cross-sectional areas (CSA), fiber-type-specific integrin-linked kinase (ILK) localizations as well as ILK, vinculin and talin protein and gene expressions in dependence on loading and environmental conditions. V̇O2 max increased upon NM and HM, Pmax upon all interventions. Fiber types did not change, whereas CSA increased upon NI and HI, but decreased upon HM. ILK showed a type 2-specific fiber type localization. ILK, vinculin, and talin protein and gene expressions differed depending on loading and environmental conditions. Our data demonstrate that mechanosensors show fiber type-specific distributions and that exercise intensities rather than environmental variables influence their profiles in human muscles. These data are the first of their kind in human muscle and indicate that mechanosensors manage the mechanosensing at a fiber-type-specific resolution and that the intensity of mechanical stimulation has a major impact.
Collapse
Affiliation(s)
- Bernhard Andresen
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Markus de Marees
- Institute of Sports Medicine and Sports Nutrition, Ruhr University Bochum, Bochum, Germany
| | - Thorsten Schiffer
- Outpatient Clinic for Sports Traumatology and Public Health Consultation, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Frank Suhr
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Rothschild JA, Islam H, Bishop DJ, Kilding AE, Stewart T, Plews DJ. Factors Influencing AMPK Activation During Cycling Exercise: A Pooled Analysis and Meta-Regression. Sports Med 2022; 52:1273-1294. [PMID: 34878641 DOI: 10.1007/s40279-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that is activated by increases in the cellular AMP/adenosine diphosphate:adenosine triphosphate (ADP:ATP) ratios and plays a key role in metabolic adaptations to endurance training. The degree of AMPK activation during exercise can be influenced by many factors that impact on cellular energetics, including exercise intensity, exercise duration, muscle glycogen, fitness level, and nutrient availability. However, the relative importance of these factors for inducing AMPK activation remains unclear, and robust relationships between exercise-related variables and indices of AMPK activation have not been established. OBJECTIVES The purpose of this analysis was to (1) investigate correlations between factors influencing AMPK activation and the magnitude of change in AMPK activity during cycling exercise, (2) investigate correlations between commonly reported measures of AMPK activation (AMPK-α2 activity, phosphorylated (p)-AMPK, and p-acetyl coenzyme A carboxylase (p-ACC), and (3) formulate linear regression models to determine the most important factors for AMPK activation during exercise. METHODS Data were pooled from 89 studies, including 982 participants (93.8% male, maximal oxygen consumption [[Formula: see text]] 51.9 ± 7.8 mL kg-1 min-1). Pearson's correlation analysis was performed to determine relationships between effect sizes for each of the primary outcome markers (AMPK-α2 activity, p-AMPK, p-ACC) and factors purported to influence AMPK signaling (muscle glycogen, carbohydrate ingestion, exercise duration and intensity, fitness level, and muscle metabolites). General linear mixed-effect models were used to examine which factors influenced AMPK activation. RESULTS Significant correlations (r = 0.19-0.55, p < .05) with AMPK activity were found between end-exercise muscle glycogen, exercise intensity, and muscle metabolites phosphocreatine, creatine, and free ADP. All markers of AMPK activation were significantly correlated, with the strongest relationship between AMPK-α2 activity and p-AMPK (r = 0.56, p < 0.001). The most important predictors of AMPK activation were the muscle metabolites and exercise intensity. CONCLUSION Muscle glycogen, fitness level, exercise intensity, and exercise duration each influence AMPK activity during exercise when all other factors are held constant. However, disrupting cellular energy charge is the most influential factor for AMPK activation during endurance exercise.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
18
|
Expression of Cellular and Extracellular TERRA, TERC and TERT in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23116183. [PMID: 35682861 PMCID: PMC9181112 DOI: 10.3390/ijms23116183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs are transcribed from telomeres and the telomeric repeat-containing RNAs (TERRA) are implicated in telomere homeostasis and in cancer. In this study, we aimed to assess in hepatocellular carcinoma (HCC) the cellular and extracellular expression of TERRA, the telomerase RNA subunit (TERC) and the telomerase catalytic subunit (TERT). We determined by qPCR the expression level of TERRA 1_2_10_13q, TERRA 15q, TERRA XpYp, TERC and of TERT mRNA in HCC tissues and in the plasma of HCC patients. Further, we profiled the same transcripts in the HCC cell lines, HA22T/VGH and SKHep1C3, and in the extracellular vesicles (EVs) derived from their secretomes. We found that the expression of TERRA and TERT mRNA was significantly deregulated in HCC, being TERRA downregulated and TERT mRNA upregulated in HCC tissues vs. the peritumoral (PT) ones, and the receiver operating characteristic (ROC) curve analyses revealed a significant ability in discriminating HCC from PT tissue. Further, the determinations of circulating TERRA and TERC showed higher amounts of these transcripts in the plasma of HCC patients vs. controls and ROC analyses gave significant results. The expression characterization of the cultured HCC cells showed their ability to produce and secrete TERRA and TERC into the EVs; the ability to produce TERT mRNA that was not detectable in the EVs; and the ability to respond to sorafenib treatment increasing TERRA expression. Our results highlight that: (i) both cellular and extracellular expressions of TERRA and TERC are dysregulated in HCC as well as the cellular expression of TERT mRNA and (ii) the combined detection of TERRA and TERC in plasma may represent a promising approach for non-invasive diagnostic molecular indicators of HCC.
Collapse
|
19
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
20
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
21
|
He K, Zhang J, Zhang W, Wang S, Li D, Ma X, Wu X, Chai X, Liu Q. Hippocampus-Based Mitochondrial Respiratory Function Decline Is Responsible for Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 14:772066. [PMID: 35221986 PMCID: PMC8865419 DOI: 10.3389/fnagi.2022.772066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are a type of cognitive dysfunction occurring with a higher incidence in elderly patients. However, the pathological mechanism of PND and effective treatment remain elusive. We generated a PND mouse model by providing wild-type mice with surgical trauma; in our case, we used tibial fracture to investigate PND pathology. Mice aged 7–8 months were randomly divided into two groups: the surgery (tibial fracture) group and the control (sham) group. All mice were subjected to anesthesia. We examined the transcriptome-wide response in the hippocampus, a brain region that is tightly associated with memory formation, of control mice and mice subjected to surgical trauma at day 1 and day 3 after the surgical procedure. We observed reduced transcript levels of respiratory complex components as early as day 1 after surgery, and subsequent protein changes were found at day 3 after surgical trauma. Consequently, the activities of respiratory complexes were reduced, and adenosine triphosphate (ATP) production was decreased in the hippocampus of mice with surgical operations, supporting that respiratory chain function was impaired. In support of these conclusions, the mitochondrial membrane potential (MMP) levels were decreased, and the reactive oxygen species (ROS) levels were significantly increased. Mechanistically, we demonstrated that surgery induced a significant increase in cytokine IL-1β levels at day 1 after surgery, which concomitantly occurred with transcript changes in respiratory complex components. We further uncovered that transcription factors PGC-1α and NRF-1 were responsible for the observed transcript changes in mitochondrial complex components. Importantly, HT22 cells treated with the cytokine IL-1β resulted in similar reductions in PGC-1α and NRF-1, leading to a reduction of both the transcript and protein levels of respiratory complex subunits. Consequently, respiratory function was impaired in HT22 cells treated with IL-1β. Taken together, we demonstrated that reductions in respiratory complex components and subsequent impairment in mitochondrial functions serve as a novel mechanism for PND pathology, providing a potential therapeutic target for PND treatment.
Collapse
Affiliation(s)
- Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xiaolin Ma
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiaofan Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqing Chai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiaoqing Chai,
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Qiang Liu,
| |
Collapse
|
22
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
23
|
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev 2022; 73:101507. [PMID: 34736994 PMCID: PMC8920518 DOI: 10.1016/j.arr.2021.101507] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022]
Abstract
Short telomeres confer risk of degenerative diseases. Chronic psychological stress can lead to disease through many pathways, and research from in vitro studies to human longitudinal studies has pointed to stress-induced telomere damage as an important pathway. However, there has not been a comprehensive model to describe how changes in stress physiology and neuroendocrine pathways can lead to changes in telomere biology. Critically short telomeres or the collapse of the telomere structure caused by displacement of telomere binding protein complex shelterin elicit a DNA damage response and lead to senescence or apoptosis. In this narrative review, we summarize the key roles glucocorticoids, reactive oxygen species (ROS) and mitochondria, and inflammation play in mediating the relationship between psychological stress and telomere maintenance. We emphasis that these mediators are interconnected and reinforce each other in positive feedback loops. Telomere length has not been studied across the lifespan yet, but the initial setting point at birth appears to be the most influential point, as it sets the lifetime trajectory, and is influenced by stress. We describe two types of intergenerational stress effects on telomeres - prenatal stress effects on telomeres during fetal development, and 'telotype transmission" -the directly inherited transmission of short telomeres from parental germline. It is clear that the initial simplistic view of telomere length as a mitotic clock has evolved into a far more complex picture of both transgenerational telomere influences, and of interconnected molecular and cellular pathways and networks, as hallmarks of aging where telomere maintenance is a key player interacting with mitochondria. Further mechanistic investigations testing this comprehensive model of stress mediators shaping telomere biology and the telomere-mitochondrial nexus will lead to better understanding from cell to human lifespan aging, and could lead to anti-aging interventions.
Collapse
|
24
|
Effect of Physical Activity, Smoking, and Sleep on Telomere Length: A Systematic Review of Observational and Intervention Studies. J Clin Med 2021; 11:jcm11010076. [PMID: 35011817 PMCID: PMC8745211 DOI: 10.3390/jcm11010076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a risk factor for several pathologies, restricting one’s health span, and promoting chronic diseases (e.g., cardiovascular and neurodegenerative diseases), as well as cancer. Telomeres are regions of repetitive DNA located at chromosomal ends. Telomere length has been inversely associated with chronological age and has been considered, for a long time, a good biomarker of aging. Several lifestyle factors have been linked with telomere shortening or maintenance. However, the consistency of results is hampered by some methodological issues, including study design, sample size, measurement approaches, and population characteristics, among others. Therefore, we aimed to systematically review the current literature on the effects of three relevant lifestyle factors on telomere length in human adults: physical activity, smoking, and sleep. We conducted a qualitative systematic review of observational and intervention studies using the Preferred Reporting Item for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The systematic literature search covered articles published in MEDLINE and EMBASE databases (from 2010 to 2020). A total of 1400 studies were identified; 83 were included after quality control. Although fewer sedentary activities, optimal sleep habits, and non- or ex-smoker status have been associated with less telomere shortening, several methodological issues were detected, including the need for more targeted interventions and standardized protocols to better understand how physical activity and sleep can impact telomere length and aging. We discuss the main findings and current limitations to gain more insights into the influence of these lifestyle factors on the healthy aging process.
Collapse
|
25
|
Tarazón E, Pérez-Carrillo L, Giménez-Escamilla I, Ramos-Castellanos P, Martínez-Dolz L, Portolés M, Roselló-Lletí E. Relationships of Telomere Homeostasis with Oxidative Stress and Cardiac Dysfunction in Human Ischaemic Hearts. Antioxidants (Basel) 2021; 10:antiox10111750. [PMID: 34829621 PMCID: PMC8615212 DOI: 10.3390/antiox10111750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Although the roles of telomeres and oxidative stress in ischaemic cardiomyopathy (ICM) are known, mechanisms of telomere homeostasis and their relationship with oxidative stress are incompletely understood. We performed two RNA-seq analyses (mRNA n = 23; ncRNA n = 30) and protein validation on left ventricles of explanted hearts from ICM and control subjects. We observed dysregulation of the shelterin and cohesin complexes, which was related to an increase in the response to cellular oxidative stress. Moreover, we found alterations at mRNA level in the mechanisms of telomeric DNA repair. Specifically, increased RAD51D mRNA levels were correlated with left ventricular diameters. RAD51D protein levels were unaltered, however, and were inversely corelated with the miR-103a-3p upregulation. We also observed the overexpression of lncRNAs (TERRA and GUARDIN) involved in telomere protection in response to stress and alterations in their regulatory molecules. Expression of the TERRA transcription factor ATF7 was correlated with superoxide dismutase 1 expression and left ventricular diameters. The levels of GUARDIN and its transcription factor FOSL2 were correlated with those of catalase. Therefore, we showed specific alterations in the mechanisms of telomeric DNA repair and protection, and these alterations are related to an increase in the response mechanisms to oxidative stress and cardiac dysfunction in ICM.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| | - Lorena Pérez-Carrillo
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Isaac Giménez-Escamilla
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Pablo Ramos-Castellanos
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| |
Collapse
|
26
|
Güneşliol BE, Karaca E, Ağagündüz D, Acar ZA. Association of physical activity and nutrition with telomere length, a marker of cellular aging: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:674-692. [PMID: 34553645 DOI: 10.1080/10408398.2021.1952402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aging of the population has great social and economic effects because it is characterized by a gradual loss in physiological integrity, resulting in functional decline, thereby loss of ability to move independently. Telomeres, the hallmarks of biological aging, play a protective role in both cell death and aging. Critically short telomeres give rise to a metabolically active cell that is unable to repair damage or divide, thereby leading to aging. Lifestyle factors such as physical activity (PA) and nutrition could be associated with telomere length (TL). Indeed, regular PA and healthy nutrition as integral parts of our lifestyle can slow down telomere shortening, thereby delaying aging. In this context, the present comprehensive review summarizes the data from recent literature on the association of PA and nutrition with TL.
Collapse
Affiliation(s)
| | - Esen Karaca
- Department of Nutrition and Dietetics, Izmir Demokrasi University, Izmir, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | | |
Collapse
|
27
|
Endurance training alleviates MCP-1 and TERRA accumulation at old age in human skeletal muscle. Exp Gerontol 2021; 153:111510. [PMID: 34371098 DOI: 10.1016/j.exger.2021.111510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
Both oxidative stress and telomere transcription are up-regulated by acute endurance exercise in human skeletal muscle. Whether and how life-long exercise training influences the antioxidant system response at transcriptional level and TERRA expression is unknown, especially during aging. Response to acute endurance exercise was investigated in muscle biopsies of 3 male subjects after 45 min of cycling. MCP-1 and SOD1 mRNA levels increased up to, 15-fold and 63%, respectively, after the cycling session while the mRNA levels of SOD2 were downregulated by 25%. The effects of chronic endurance exercise and aging were tested in the blood and muscle of 34 male subjects divided into four groups: young (YU) or old (OU) untrained, young (YT) or old (OT) trained cyclists. Long-term endurance training limited the age-dependent elevation in SOD1 (OT vs OU, -26%, P = 0.03) and the decline in SOD2 mRNA levels (OU vs YU, -41%, P = 0.04). A high endurance training status alleviated the age-related increase in the aging biological marker MCP-1 in plasma (OU vs YU, +48%, P = 0.005). Similar results were observed for telomeric transcription as the age-associated increase in 16p TERRA levels (OU vs YU, +39%, P = 0.001) was counteracted by a high endurance training status (OT vs OU, -63%, P = 0.0005). In conclusion, as MCP-1, we propose that the age-related TERRA accumulation might represent a novel biological marker of aging. Those aging-related increase expression might be alleviated by a high endurance training status. Whether those biological markers of aging are linked to an elevation of oxidative stress is still an open question. Therefore, whether the positive adaptations provided by endurance training indeed reduce oxidative stress, including at telomeres, and whether TERRA plays any role in this, need to be further investigated.
Collapse
|
28
|
An N-ethyl-N-Nitrosourea Mutagenesis Screen in Mice Reveals a Mutation in Nuclear Respiratory Factor 1 ( Nrf1) Altering the DNA Methylation State and Correct Embryonic Development. Animals (Basel) 2021; 11:ani11072103. [PMID: 34359231 PMCID: PMC8300126 DOI: 10.3390/ani11072103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary In this work, we aimed to discover unknown genes that are important in the regulation of other genes. These genes often play an important role during the development of the embryo. By screening thousands of mice, we found a gene, namely, Nuclear Respiratory Factor 1 (Nrf1), that controls the switching on and off of other genes. Mice with a defective Nrf1 present lesser levels of the gene and embryonic delay. When the mutation is in both chains of the DNA, mice are not born and die in the uterus. Our work unveils a novel, previously unknown functionality of Nrf1 and provides a new mice model for the study of diseases caused by a defective Nrf1. Abstract We have established a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify novel genes playing a role in epigenetic regulation in mammals. We hypothesize that the ENU mutagenesis screen will lead to the discovery of unknown genes responsible of the maintenance of the epigenetic state as the genes found are modifiers of variegation of the transgene green fluorescent protein (GFP) expression in erythrocytes, which are named MommeD. Here we report the generation of a novel mutant mouse line, MommeD46, that carries a new missense mutation producing an amino acid transversion (L71P) in the dimerization domain of Nuclear Respiratory Factor 1 (Nrf1). The molecular characterization of the mutation reveals a decrease in the Nrf1 mRNA levels and a novel role of Nrf1 in the maintenance of the DNA hypomethylation in vivo. The heritability of the mutation is consistent with paternal imprinting and haploinsufficiency. Homozygous mutants display embryonic lethality at 14.5 days post-coitum and developmental delay. This work adds a new epi-regulatory role to Nrf1 and uncovers unknown phenotypical defects of the Nrf1 hypomorph. The generated mouse line represents a valuable resource for studying NRF1-related diseases.
Collapse
|
29
|
Li B. Keeping Balance Between Genetic Stability and Plasticity at the Telomere and Subtelomere of Trypanosoma brucei. Front Cell Dev Biol 2021; 9:699639. [PMID: 34291053 PMCID: PMC8287324 DOI: 10.3389/fcell.2021.699639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Telomeres, the nucleoprotein complexes at chromosome ends, are well-known for their essential roles in genome integrity and chromosome stability. Yet, telomeres and subtelomeres are frequently less stable than chromosome internal regions. Many subtelomeric genes are important for responding to environmental cues, and subtelomeric instability can facilitate organismal adaptation to extracellular changes, which is a common theme in a number of microbial pathogens. In this review, I will focus on the delicate and important balance between stability and plasticity at telomeres and subtelomeres of a kinetoplastid parasite, Trypanosoma brucei, which causes human African trypanosomiasis and undergoes antigenic variation to evade the host immune response. I will summarize the current understanding about T. brucei telomere protein complex, the telomeric transcript, and telomeric R-loops, focusing on their roles in maintaining telomere and subtelomere stability and integrity. The similarities and differences in functions and underlying mechanisms of T. brucei telomere factors will be compared with those in human and yeast cells.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
30
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
31
|
TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. Nat Commun 2021; 12:3760. [PMID: 34145295 PMCID: PMC8213692 DOI: 10.1038/s41467-021-24097-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is a Break-Induced Replication (BIR)-based mechanism elongating telomeres in a subset of human cancer cells. While the notion that spontaneous DNA damage at telomeres is required to initiate ALT, the molecular triggers of this physiological telomere instability are largely unknown. We previously proposed that the telomeric long noncoding RNA TERRA may represent one such trigger; however, given the lack of tools to suppress TERRA transcription in cells, our hypothesis remained speculative. We have developed Transcription Activator-Like Effectors able to rapidly inhibit TERRA transcription from multiple chromosome ends in an ALT cell line. TERRA transcription inhibition decreases marks of DNA replication stress and DNA damage at telomeres and impairs ALT activity and telomere length maintenance. We conclude that TERRA transcription actively destabilizes telomere integrity in ALT cells, thereby triggering BIR and promoting telomere elongation. Our data point to TERRA transcription manipulation as a potentially useful target for therapy. TERRA RNA has previously been linked to Alternative lengthening of telomeres (ALT). Here the authors developed a tool to rapidly inhibit TERRA transcription from different chromosome ends in an ALT cell line to show that TERRA transcription actively promotes break induced replication (BIR) and destabilizes telomere integrity in ALT cells.
Collapse
|
32
|
Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience 2021; 43:1093-1112. [PMID: 32902818 PMCID: PMC7479299 DOI: 10.1007/s11357-020-00261-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ameya S Kulkarni
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jenna M Bartley
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
33
|
Effects of exercise on cellular and tissue aging. Aging (Albany NY) 2021; 13:14522-14543. [PMID: 34001677 PMCID: PMC8202894 DOI: 10.18632/aging.203051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The natural aging process is carried out by a progressive loss of homeostasis leading to a functional decline in cells and tissues. The accumulation of these changes stem from a multifactorial process on which both external (environmental and social) and internal (genetic and biological) risk factors contribute to the development of adult chronic diseases, including type 2 diabetes mellitus (T2D). Strategies that can slow cellular aging include changes in diet, lifestyle and drugs that modulate intracellular signaling. Exercise is a promising lifestyle intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the nine hallmarks of aging and age-associated inflammation. Herein, we review the effects of exercise to attenuate aging from a clinical to a cellular level, listing its effects upon various tissues and systems as well as its capacity to reverse many of the hallmarks of aging. Additionally, we suggest AMPK as a central regulator of the cellular effects of exercise due to its integrative effects in different tissues. These concepts are especially relevant in the setting of T2D, where cellular aging is accelerated and exercise can counteract these effects through the reviewed antiaging mechanisms.
Collapse
|
34
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|
35
|
Toubiana S, Tzur-Gilat A, Selig S. Epigenetic Characteristics of Human Subtelomeres Vary in Cells Utilizing the Alternative Lengthening of Telomeres (ALT) Pathway. Life (Basel) 2021; 11:life11040278. [PMID: 33810393 PMCID: PMC8065733 DOI: 10.3390/life11040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Most human cancers circumvent senescence by activating a telomere length maintenance mechanism, most commonly involving telomerase activation. A minority of cancers utilize the recombination-based alternative lengthening of telomeres (ALT) pathway. The exact requirements for unleashing normally repressed recombination at telomeres are yet unclear. Epigenetic modifications at telomeric regions were suggested to be pivotal for activating ALT; however, conflicting data exist regarding their exact nature and necessity. To uncover common ALT-positive epigenetic characteristics, we performed a comprehensive analysis of subtelomeric DNA methylation, histone modifications, and TERRA expression in several ALT-positive and ALT-negative cell lines. We found that subtelomeric DNA methylation does not differentiate between the ALT-positive and ALT-negative groups, and most of the analyzed subtelomeres within each group do not share common DNA methylation patterns. Additionally, similar TERRA levels were measured in the ALT-positive and ALT-negative groups, and TERRA levels varied significantly among the members of the ALT-positive group. Subtelomeric H3K4 and H3K9 trimethylation also differed significantly between samples in the ALT-positive group. Our findings do not support a common route by which epigenetic modifications activate telomeric recombination in ALT-positive cells, and thus, different therapeutic approaches will be necessary to overcome ALT-dependent cellular immortalization.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
| | - Sara Selig
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel; (S.T.); (A.T.-G.)
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
- Correspondence:
| |
Collapse
|
36
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
37
|
Libertini G, Corbi G, Nicola F. Importance and Meaning of TERRA Sequences for Aging Mechanisms. BIOCHEMISTRY (MOSCOW) 2021; 85:1505-1517. [PMID: 33705290 DOI: 10.1134/s0006297920120044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Any theory suggesting an adaptive meaning for aging implicitly postulates the existence of specific mechanisms, genetically determined and modulated, causing progressive decline of an organism. According to the subtelomere-telomere theory, each telomere is covered by a hood formed in the first cell of an organism having a size preserved at each subsequent duplication. Telomere shortening, which is quantitatively different for each cell type according to the telomerase regulation, causes the hood to slide on the subtelomere repressing it by the telomeric position effect. At this point, the theory postulates existence of subtelomeric regulatory sequences, whose progressive transcriptional repression by the hood should cause cellular alterations that would be the likely determinant of aging manifestations. However, sequences with characteristics of these hypothetical sequences have already been described and documented. They are the [sub]TElomeric Repeat-containing RNA (TERRA) sequences. The repression of TERRA sequences causes progressively: (i) down- or up-regulation of many other regulatory sequences; (ii) increase in the probability of activation of cell senescence program (blockage of the ability to replicate and very significant alterations of the cellular functions). When cell senescence program has not been triggered and the repression is partial, there is a partial alteration of the cellular functions that is easily reversible by telomerase activation. Location of the extremely important sequences in chromosomal parts that are most vulnerable to repression by the telomeric hood is evolutionarily unjustifiable if aging is not considered adaptive: this location must be necessarily adaptive with the specific function of determining aging of the cell and consequently of the whole organism.
Collapse
Affiliation(s)
- G Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Asti, 14100, Italy.
| | - G Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy.,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - F Nicola
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy.,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
38
|
Increasing Oxygen Partial Pressures Induce a Distinct Transcriptional Response in Human PBMC: A Pilot Study on the "Normobaric Oxygen Paradox". Int J Mol Sci 2021; 22:ijms22010458. [PMID: 33466421 PMCID: PMC7796168 DOI: 10.3390/ijms22010458] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The term “normobaric oxygen paradox” (NOP), describes the response to the return to normoxia after a hyperoxic event, sensed by tissues as oxygen shortage, and resulting in up-regulation of the Hypoxia-inducible factor 1α (HIF-1α) transcription factor activity. The molecular characteristics of this response have not been yet fully characterized. Herein, we report the activation time trend of oxygen-sensitive transcription factors in human peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects after one hour of exposure to mild (MH), high (HH) and very high (VHH) hyperoxia, corresponding to 30%, 100%, 140% O2, respectively. Our observations confirm that MH is perceived as a hypoxic stress, characterized by the activation of HIF-1α and Nuclear factor (erythroid-derived 2)-like 2 (NRF2), but not Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB). Conversely, HH is associated to a progressive loss of NOP response and to an increase in oxidative stress leading to NRF2 and NF-kB activation, accompanied by the synthesis of glutathione (GSH). After VHH, HIF-1α activation is totally absent and oxidative stress response, accompanied by NF-κB activation, is prevalent. Intracellular GSH and Matrix metallopeptidase 9 (MMP-9) plasma levels parallel the transcription factors activation pattern and remain elevated throughout the observation time. In conclusion, our study confirms that, in vivo, the return to normoxia after MH is sensed as a hypoxic trigger characterized by HIF-1α activation. On the contrary, HH and VHH induce a shift toward an oxidative stress response, characterized by NRF2 and NF-κB activation in the first 24 h post exposure.
Collapse
|
39
|
Viceconte N, Loriot A, Lona Abreu P, Scheibe M, Fradera Sola A, Butter F, De Smet C, Azzalin CM, Arnoult N, Decottignies A. PAR-TERRA is the main contributor to telomeric repeat-containing RNA transcripts in normal and cancer mouse cells. RNA (NEW YORK, N.Y.) 2021; 27:106-121. [PMID: 33127860 PMCID: PMC7749631 DOI: 10.1261/rna.076281.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/28/2020] [Indexed: 05/12/2023]
Abstract
Telomeric repeat-containing RNA (TERRA) molecules play important roles at telomeres, from heterochromatin regulation to telomerase activity control. In human cells, TERRA is transcribed from subtelomeric promoters located on most chromosome ends and associates with telomeres. The origin of mouse TERRA molecules is, however, unclear, as transcription from the pseudoautosomal PAR locus was recently suggested to account for the vast majority of TERRA in embryonic stem cells (ESC). Here, we confirm the production of TERRA from both the chromosome 18q telomere and the PAR locus in mouse embryonic fibroblasts, ESC, and various mouse cancer and immortalized cell lines, and we identify two novel sources of TERRA on mouse chromosome 2 and X. Using various approaches, we show that PAR-TERRA molecules account for the majority of TERRA transcripts, displaying an increase of two to four orders of magnitude compared to the telomeric 18q transcript. Finally, we present a SILAC-based pull-down screen revealing a large overlap between TERRA-interacting proteins in human and mouse cells, including PRC2 complex subunits, chromatin remodeling factors, DNA replication proteins, Aurora kinases, shelterin complex subunits, Bloom helicase, Coilin, and paraspeckle proteins. Hence, despite originating from distinct genomic regions, mouse and human TERRA are likely to play similar functions in cells.
Collapse
Affiliation(s)
- Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Axelle Loriot
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Patrícia Lona Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marion Scheibe
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Albert Fradera Sola
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Charles De Smet
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nausica Arnoult
- MCBD-University of Colorado Boulder, Boulder, Colorado 80309-0347, USA
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
40
|
Huang J, Peng X, Dong K, Tao J, Yang Y. The Association between Antidiabetic Agents and Leukocyte Telomere Length in the Novel Classification of Type 2 Diabetes Mellitus. Gerontology 2020; 67:60-68. [PMID: 33321495 DOI: 10.1159/000511362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/05/2020] [Indexed: 11/19/2022] Open
Abstract
AIMS This study aimed to explore the new role of telomere length (TL) in the novel classification of type 2 diabetes mellitus (T2DM) patients driven by cluster analysis. MATERIALS AND METHODS A total of 541 T2DM patients were divided into 4 subgroups by k-means analysis: mild obesity-related diabetes (MOD), severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), and mild age-related diabetes (MARD). After patients with insufficient data were excluded, further analysis was conducted on 246 T2DM patients. The TL was detected using telomere restriction fragment, and the related diabetic indexes were also measured by clinical standard procedures. RESULTS The MARD group had significantly shorter TLs than the MOD and SIDD groups. Then, we subdivided all T2DM patients into the MARD and NONMARD groups, which included the MOD, SIDD, and SIRD groups. The TLs of the MARD group, associated with age, were discovered to be significantly shorter than those of the NONMARD group (p = 0.0012), and this difference in TL disappeared after metformin (p = 0.880) and acarbose treatment (p = 0.058). The linear analysis showed that metformin can more obviously reduce telomere shortening in the MARD group (r = 0.030, 95% CI 0.010-0.051, p = 0.004), and acarbose can more apparently promote telomere attrition in the SIRD group (r = -0.069, 95% CI -0.100 to -0.039, p< 0.001) compared with other T2DM patients after adjusting for age and gender. CONCLUSIONS The MARD group was found to have shorter TLs and benefit more from the antiaging effect of metformin than other T2DM. Shorter TLs were observed in the SIRD group after acarbose use.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
41
|
Association between appendicular skeletal muscle index and leukocyte telomere length in adults: A study from National Health and Nutrition Examination Survey (NHANES) 1999-2002. Clin Nutr 2020; 40:3470-3478. [PMID: 33309414 DOI: 10.1016/j.clnu.2020.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/24/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND A higher body mass index (BMI) is associated with shorter telomeres. The loss of muscle mass with aging is associated with adverse outcomes. The appendicular skeletal muscle index (ASMI) is currently used to quantify muscle mass. OBJECTIVE We investigated the association of the ASMI with leukocyte telomere length in adult Americans. METHODS This cross-sectional study used the National Health and Nutrition Examination Survey (NHANES) 1999-2002 dataset. Body composition was measured by dual-energy X-ray absorptiometry. Low muscle mass was defined using sex-specific thresholds of the appendicular skeletal muscle mass index (ASMI). The telomere-to-single-copy gene ratio (T/S ratio) was converted to base pairs. Generalized linear models were performed to evaluate the association of ASMI with telomere length. RESULTS In multivariable adjustment regression models, higher ASMI was associated with longer telomeres in US adults (β = 70.2, P < 0.001, P trend<0.001). In participants with preserved muscle mass, the ASMI was related to longer telomere length (β = 75.1, P < 0.001), but not significantly in low muscle mass participants (β = 68.7, P = 0.30). Further subgroup analysis by a combination of age groups and muscle mass status showed positive association with young-preserved muscle mass (β = 82.6, P < 0.001), old-preserved muscle mass (β = 44.4, P = 0.12), young-low muscle mass (β = 135.4, P = 0.20), and old-low muscle mass (β = 52.7, P = 0.55). Because each additional year of chronological age was associated with telomeres that were 15.3 base pairs shorter, on average, this would equate to 5.4 fewer years of biological aging (82.6 ÷ 15.3) in the young-preserved muscle mass participants. CONCLUSIONS A higher ASMI is associated with longer telomeres. The prevention of skeletal muscle loss has the potential to delay telomere shortening and account for less biological aging.
Collapse
|
42
|
Toubiana S, Larom G, Smoom R, Duszynski RJ, Godley LA, Francastel C, Velasco G, Selig S. Regulation of telomeric function by DNA methylation differs between humans and mice. Hum Mol Genet 2020; 29:3197-3210. [PMID: 32916696 DOI: 10.1093/hmg/ddaa206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Gal Larom
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Robert J Duszynski
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Lucy A Godley
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Guillaume Velasco
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Sara Selig
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
43
|
Balan E, De Groote E, Bouillon M, Viceconte N, Mahieu M, Naslain D, Nielens H, Decottignies A, Deldicque L. No effect of the endurance training status on senescence despite reduced inflammation in skeletal muscle of older individuals. Am J Physiol Endocrinol Metab 2020; 319:E447-E454. [PMID: 32691630 DOI: 10.1152/ajpendo.00149.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to determine if the training status decreases inflammation, slows down senescence, and preserves telomere health in skeletal muscle in older compared with younger subjects, with a specific focus on satellite cells. Analyses were conducted on skeletal muscle and cultured satellite cells from vastus lateralis biopsies (n = 34) of male volunteers divided into four groups: young sedentary (YS), young trained cyclists (YT), old sedentary (OS), and old trained cyclists (OT). The senescence state and inflammatory profile were evaluated by telomere dysfunction-induced foci (TIF) quantification, senescence-associated β-galactosidase (SA-β-Gal) staining, and quantitative (q)RT-PCR. Independently of the endurance training status, TIF levels (+35%, P < 0.001) and the percentage of SA-β-Gal-positive cells (+30%, P < 0.05) were higher in cultured satellite cells of older compared with younger subjects. p16 (4- to 5-fold) and p21 (2-fold) mRNA levels in skeletal muscle were higher with age but unchanged by the training status. Aging induced higher CD68 mRNA levels in human skeletal muscle (+102%, P = 0.009). Independently of age, both trained groups had lower IL-8 mRNA levels (-70%, P = 0.011) and tended to have lower TNF-α mRNA levels (-40%, P = 0.10) compared with the sedentary subjects. All together, we found that the endurance training status did not slow down senescence in skeletal muscle and satellite cells in older compared with younger subjects despite reduced inflammation in skeletal muscle. These findings highlight that the link between senescence and inflammation can be disrupted in skeletal muscle.
Collapse
Affiliation(s)
- Estelle Balan
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Estelle De Groote
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Margot Bouillon
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Nikenza Viceconte
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Manon Mahieu
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Damien Naslain
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Henri Nielens
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
44
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
45
|
Kulkarni AS, Gubbi S, Barzilai N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab 2020; 32:15-30. [PMID: 32333835 PMCID: PMC7347426 DOI: 10.1016/j.cmet.2020.04.001] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Biological aging involves an interplay of conserved and targetable molecular mechanisms, summarized as the hallmarks of aging. Metformin, a biguanide that combats age-related disorders and improves health span, is the first drug to be tested for its age-targeting effects in the large clinical trial-TAME (targeting aging by metformin). This review focuses on metformin's mechanisms in attenuating hallmarks of aging and their interconnectivity, by improving nutrient sensing, enhancing autophagy and intercellular communication, protecting against macromolecular damage, delaying stem cell aging, modulating mitochondrial function, regulating transcription, and lowering telomere attrition and senescence. These characteristics make metformin an attractive gerotherapeutic to translate to human trials.
Collapse
Affiliation(s)
- Ameya S Kulkarni
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
46
|
Semeraro MD, Smith C, Kaiser M, Levinger I, Duque G, Gruber HJ, Herrmann M. Physical activity, a modulator of aging through effects on telomere biology. Aging (Albany NY) 2020; 12:13803-13823. [PMID: 32575077 PMCID: PMC7377891 DOI: 10.18632/aging.103504] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Aging is a complex process that is not well understood but involves finite changes at the genetic and epigenetic level. Physical activity is a well-documented modulator of the physiological process of aging. It has been suggested that the beneficial health effects of regular exercise are at least partly mediated through its effects on telomeres and associated regulatory pathways. Telomeres, the region of repetitive nucleotide sequences functioning as a "cap" at the chromosomal ends, play an important role to protect genomic DNA from degradation. Telomeres of dividing cells progressively shorten with age. Leucocyte telomere length (TL) has been associated with age-related diseases. Epidemiologic evidence indicates a strong relationship between physical activity and TL. In addition, TL has also been shown to predict all-cause and cardiovascular mortality. Experimental studies support a functional link between aerobic exercise and telomere preservation through activation of telomerase, an enzyme that adds nucleotides to the telomeric ends. However, unresolved questions regarding exercise modalities, pathomechanistic aspects and analytical issues limit the interpretability of available data. This review provides an overview about the current knowledge in the area of telomere biology, aging and physical activity. Finally, the capabilities and limitations of available analytical methods are addressed.
Collapse
Affiliation(s)
- Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Melanie Kaiser
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Hans-Juergen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
47
|
Marques A, Gouveira ÉR, Peralta M, Martins J, Venturini J, Henriques-Neto D, Sarmento H. Cardiorespiratory fitness and telomere length: a systematic review. J Sports Sci 2020; 38:1690-1697. [PMID: 32284029 DOI: 10.1080/02640414.2020.1754739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aimed to systematically review the association between cardiorespiratory fitness and telomere length (TL). Studies were identified from searches in Cochrane Central, PubMed, Scopus, Sportdiscus, and Web of Science databases through July 2019. Eligibility criteria included: cross-sectional, prospective, and experimental study design; outcomes included TL; results expressed the relationship between cardiorespiratory fitness and TL; studies published in English, Portuguese, or Spanish. A total of 20 articles met the inclusion criteria. Sixteen studies (80%) reported a significant relationship between cardiorespiratory fitness, or training load, and TL. Better cardiorespiratory fitness or a large cardiorespiratory training load are associated with an increase in TL. Although, TL was related to regular moderate-to-vigorous aerobic exercise and cardiorespiratory fitness in older healthy humans, it was not related to cardiorespiratory fitness among young subjects. There seems to be a positive and significant relationship between cardiorespiratory fitness and TL, mainly among middle age and older people, which emphasizes the importance of cardiorespiratory fitness for healthy ageing. Therefore, endurance exercise and better cardiorespiratory fitness may regulate the TL in middle age and older adults, slowing the cellular ageing process.
Collapse
Affiliation(s)
- Adilson Marques
- Centro Interdisciplinar do Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa , Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa , Lisboa, Portugal
| | - Élvio Rubio Gouveira
- Departamento de Educação Física e Desporto, Universidade da Madeira , Funchal, Portugal.,Interactive Technologies Institute, LARSyS , Funchal, Portugal
| | - Miguel Peralta
- Centro Interdisciplinar do Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa , Lisboa, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa , Lisboa, Portugal
| | - João Martins
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa , Lisboa, Portugal.,Laboratório de Pedagogia, Faculdade de Motricidade Humana e UIDEF, Instituto de Educação, Universidade de Lisboa , Lisboa, Portugal
| | - Joed Venturini
- NOVA Medical School, Universidade NOVA de Lisboa , Lisboa, Portugal
| | - Duarte Henriques-Neto
- Centro Interdisciplinar do Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa , Lisboa, Portugal
| | - Hugo Sarmento
- Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra, Portugal
| |
Collapse
|
48
|
Human subtelomeric DNA methylation: regulation and roles in telomere function. Curr Opin Genet Dev 2020; 60:9-16. [PMID: 32109830 DOI: 10.1016/j.gde.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
Abstract
Subtelomeres are the regions at chromosome ends, immediately adjacent to the terminal telomeric repeats. The majority of human subtelomeres are CpG-rich in their distal two kilobases, and are methylated during early embryonic development by the de novo DNA methyltransferase DNMT3B. The biological relevance of subtelomeric DNA methylation is highlighted by the presence of promoters for the long non-coding TERRA transcripts in these CpG-rich regions. Indeed, deviant subtelomeric methylation has been linked with abnormal telomeric phenotypes, as most strikingly found in ICF syndrome. Here we review recent studies that explore new aspects of subtelomeric methylation regulation and demonstrate the significance of maintaining proper DNA methylation at the extreme distal human subtelomeric regions.
Collapse
|
49
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
50
|
Toubiana S, Gagliardi M, Papa M, Manco R, Tzukerman M, Matarazzo MR, Selig S. Persistent epigenetic memory impedes rescue of the telomeric phenotype in human ICF iPSCs following DNMT3B correction. eLife 2019; 8:e47859. [PMID: 31738163 PMCID: PMC6897513 DOI: 10.7554/elife.47859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.
Collapse
Affiliation(s)
- Shir Toubiana
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | | | - Roberta Manco
- Institute of Genetics and Biophysics, ABT CNRNaplesItaly
| | - Maty Tzukerman
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| | | | - Sara Selig
- Molecular Medicine LaboratoryRappaport Faculty of Medicine, TechnionHaifaIsrael
- Rambam Health Care CampusHaifaIsrael
| |
Collapse
|