1
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
2
|
Jiang T, Tang XY, Su H, Chen JY, Qin YQ, Qin YC, Ouyang NJ, Tang GH. Neutrophils are involved in early bone formation during midpalatal expansion. Oral Dis 2024; 30:4483-4494. [PMID: 38135895 DOI: 10.1111/odi.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Midpalatal expansion (MPE) is routinely employed to treat transverse maxillary arch deficiency. Neutrophils are indispensable for recruiting bone marrow stromal cells (BMSCs) at the initial stage of bone regeneration. This study aimed to explore whether neutrophils participate in MPE and how they function during bone formation under mechanical stretching. MATERIALS AND METHODS The presence and phenotype of neutrophils in the midpalatal suture during expansion were detected by flow cytometry and immunofluorescence staining. The possible mechanism of neutrophil recruitment and polarization was explored in vitro by exposing vascular endothelial cells (VECs) to cyclic tensile strain. RESULTS The number of neutrophils in the distracted suture peaked on Day 3, and N2-type neutrophils significantly increased on Day 5 after force application. The depletion of circulatory neutrophils reduced bone volume by 43.6% after 7-day expansion. The stretched VECs recruited neutrophils via a CXCR2 mechanism in vitro, which then promoted BMSC osteogenic differentiation through the VEGFA/VEGFR2 axis. Consistently, these neutrophils showed higher expression of canonical N2 phenotype genes, including CD206 and Arg1. CONCLUSIONS These results suggested that neutrophils participated in early bone formation during MPE. Based on these findings, we propose that stretched VECs recruited and polarized neutrophils, which, in turn, induced BMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Han Su
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jia-Yi Chen
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu-Qi Qin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu-Chen Qin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
3
|
Hwang SM, Song JM, Choi JJ, Jung Y, Park CK, Kim YH. Functional Role of Piezo1 in the Human Eosinophil Cell Line AML14.3D10: Implications for the Immune and Sensory Nervous Systems. Biomolecules 2024; 14:1157. [PMID: 39334923 PMCID: PMC11429562 DOI: 10.3390/biom14091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Min Song
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Zhang M, Li S, Ying J, Qu Y. Neutrophils: a key component in ECMO-related acute organ injury. Front Immunol 2024; 15:1432018. [PMID: 39346902 PMCID: PMC11427252 DOI: 10.3389/fimmu.2024.1432018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO), as an extracorporeal life support technique, can save the lives of reversible critically ill patients when conventional treatments fail. However, ECMO-related acute organ injury is a common complication that increases the risk of death in critically ill patients, including acute kidney injury, acute brain injury, acute lung injury, and so on. In ECMO supported patients, an increasing number of studies have shown that activation of the inflammatory response plays an important role in the development of acute organ injury. Cross-cascade activation of the complement system, the contact system, and the coagulation system, as well as the mechanical forces of the circuitry are very important pathophysiological mechanisms, likely leading to neutrophil activation and the production of neutrophil extracellular traps (NETs). NETs may have the potential to cause organ damage, generating interest in their study as potential therapeutic targets for ECMO-related acute organ injury. Therefore, this article comprehensively summarized the mechanism of neutrophils activation and NETs formation following ECMO treatment and their actions on acute organ injury.
Collapse
Affiliation(s)
- Mingfu Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (National Health Commission), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Benmelech S, Le T, McKay M, Nam J, Subramaniam K, Tellez D, Vlasak G, Mak M. Biophysical and biochemical aspects of immune cell-tumor microenvironment interactions. APL Bioeng 2024; 8:021502. [PMID: 38572312 PMCID: PMC10990568 DOI: 10.1063/5.0195244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The tumor microenvironment (TME), composed of and influenced by a heterogeneous set of cancer cells and an extracellular matrix, plays a crucial role in cancer progression. The biophysical aspects of the TME (namely, its architecture and mechanics) regulate interactions and spatial distributions of cancer cells and immune cells. In this review, we discuss the factors of the TME-notably, the extracellular matrix, as well as tumor and stromal cells-that contribute to a pro-tumor, immunosuppressive response. We then discuss the ways in which cells of the innate and adaptive immune systems respond to tumors from both biochemical and biophysical perspectives, with increased focus on CD8+ and CD4+ T cells. Building upon this information, we turn to immune-based antitumor interventions-specifically, recent biophysical breakthroughs aimed at improving CAR-T cell therapy.
Collapse
Affiliation(s)
- Shoham Benmelech
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Thien Le
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maggie McKay
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Krupakar Subramaniam
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Daniela Tellez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Grace Vlasak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
7
|
Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioact Mater 2024; 35:150-166. [PMID: 38318228 PMCID: PMC10839777 DOI: 10.1016/j.bioactmat.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
8
|
Datla US, Vundurthy B, Hook JS, Menon N, Razmi Bagtash H, Shihabeddin T, Schmidtke DW, Moreland JG, Radic MZ, Jones CN. Quantifying neutrophil extracellular trap release in a combined infection-inflammation NET-array device. LAB ON A CHIP 2024; 24:615-628. [PMID: 38189525 PMCID: PMC10826461 DOI: 10.1039/d3lc00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Excessive release of neutrophil extracellular traps (NETs) has been reported in various human pathologies, including COVID-19 patients. Elevated NET levels serve as a biomarker, indicating increased coagulopathy and immunothrombosis risks in these patients. Traditional immunoassays employed to quantify NET release focus on bulk measurements of released chromatin in simplified microenvironments. In this study, we fabricated a novel NET-array device to quantify NET release from primary human neutrophils with single-cell resolution in the presence of the motile bacteria Pseudomonas aeruginosa PAO1 and inflammatory mediators. The device was engineered to have wide chambers and constricted loops to measure NET release in variably confined spaces. Our open NET-array device enabled immunofluorescent labeling of citrullinated histone H3, a NET release marker. We took time-lapse images of primary healthy human neutrophils releasing NETs in clinically relevant infection and inflammation-rich microenvironments. We then developed a computer-vision-based image processing method to automate the quantification of individual NETs. We showed a significant increase in NET release to Pseudomonas aeruginosa PAO1 when challenged with inflammatory mediators tumor necrosis factor-α [20 ng mL-1] and interleukin-6 [50 ng mL-1], but not leukotriene B4 [20 nM], compared to the infection alone. We also quantified the temporal dynamics of NET release and differences in the relative areas of NETs, showing a high percentage of variable size NET release with combined PAO1 - inflammatory mediator treatment, in the device chambers. Importantly, we demonstrated reduced NET release in the confined loops of our combined infection-inflammation microsystem. Ultimately, our NET-array device stands as a valuable tool, facilitating experiments that enhance our comprehension of the spatiotemporal dynamics of NET release in response to infection within a defined microenvironment. In the future, our system can be used for high throughput and cost-effective screening of novel immunotherapies on human neutrophils in view of the importance of fine-tuning NET release in controlling pathological neutrophil-driven inflammation.
Collapse
Affiliation(s)
- Udaya Sree Datla
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nidhi Menon
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hossein Razmi Bagtash
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tarik Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Caroline N Jones
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Sani A, Idrees Khan M, Shah S, Tian Y, Zha G, Fan L, Zhang Q, Cao C. Diagnosis and screening of abnormal hemoglobins. Clin Chim Acta 2024; 552:117685. [PMID: 38030031 DOI: 10.1016/j.cca.2023.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Hemoglobin (Hb) abnormalities, such as thalassemia and structural Hb variants, are among the most prevalent inherited diseases and are associated with significant mortality and morbidity worldwide. However, there were not comprehensive reviews focusing on different clinical analytical techniques, research methods and artificial intelligence (AI) used in clinical screening and research on hemoglobinopathies. Hence the review offers a comprehensive summary of recent advancements and breakthroughs in the detection of aberrant Hbs, research methods and AI uses as well as the present restrictions anddifficulties in hemoglobinopathies. Recent advances in cation exchange high performance liquid chromatography (HPLC), capillary zone electrophoresis (CZE), isoelectric focusing (IEF), flow cytometry, mass spectrometry (MS) and polymerase chain reaction (PCR) etc have allowed for the definitive detection by using advanced AIand portable point of care tests (POCT) integrating with smartphone microscopic classification, machine learning (ML) model, complete blood counts (CBC), imaging-based method, speedy immunoassay, and electrochemical-, microfluidic- and sensing-related platforms. In addition, to confirm and validate unidentified and novel Hbs, highly specialized genetic based techniques like PCR, reverse transcribed (RT)-PCR, DNA microarray, sequencing of genomic DNA, and sequencing of RT-PCR amplified globin cDNA of the gene of interest have been used. Hence, adequate utilization and improvement of available diagnostic and screening technologies are important for the control and management of hemoglobinopathies.
Collapse
Affiliation(s)
- Ali Sani
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Idrees Khan
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saud Shah
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
11
|
Abraham A, Virdi S, Herrero N, Bryant I, Nwakama C, Jacob M, Khaparde G, Jordan D, McCuddin M, McKinley S, Taylor A, Peeples C, Ekpenyong A. Microfluidic Microcirculation Mimetic for Exploring Biophysical Mechanisms of Chemotherapy-Induced Metastasis. MICROMACHINES 2023; 14:1653. [PMID: 37763816 PMCID: PMC10536821 DOI: 10.3390/mi14091653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant (p < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.
Collapse
Affiliation(s)
- Ashley Abraham
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Sukhman Virdi
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.V.); (I.B.); (C.P.)
| | - Nick Herrero
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Israel Bryant
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.V.); (I.B.); (C.P.)
| | - Chisom Nwakama
- Chemistry Department, Creighton University, Omaha, NE 68178, USA;
| | - Megha Jacob
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Gargee Khaparde
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Destiny Jordan
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Mackenzie McCuddin
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Spencer McKinley
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Adam Taylor
- Biology Department, Creighton University, Omaha, NE 68178, USA; (A.A.); (N.H.); (M.J.); (G.K.); (D.J.); (M.M.); (S.M.); (A.T.)
| | - Conner Peeples
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.V.); (I.B.); (C.P.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.V.); (I.B.); (C.P.)
| |
Collapse
|
12
|
Mauro D, Gandolfo S, Tirri E, Schett G, Maksymowych WP, Ciccia F. The bone marrow side of axial spondyloarthritis. Nat Rev Rheumatol 2023:10.1038/s41584-023-00986-6. [PMID: 37407716 DOI: 10.1038/s41584-023-00986-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Spondyloarthritis (SpA) is characterized by the infiltration of innate and adaptive immune cells into entheses and bone marrow. Molecular, cellular and imaging evidence demonstrates the presence of bone marrow inflammation, a hallmark of SpA. In the spine and the peripheral joints, bone marrow is critically involved in the pathogenesis of SpA. Evidence suggests that bone marrow inflammation is associated with enthesitis and that there are roles for mechano-inflammation and intestinal inflammation in bone marrow involvement in SpA. Specific cell types (including mesenchymal stem cells, innate lymphoid cells and γδ T cells) and mediators (Toll-like receptors and cytokines such as TNF, IL-17A, IL-22, IL-23, GM-CSF and TGFβ) are involved in these processes. Using this evidence to demonstrate a bone marrow rather than an entheseal origin for SpA could change our understanding of the disease pathogenesis and the relevant therapeutic approach.
Collapse
Affiliation(s)
- Daniele Mauro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Enrico Tirri
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
13
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
14
|
Locally organised and activated Fth1 hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat Commun 2022; 13:7703. [PMID: 36513690 PMCID: PMC9745290 DOI: 10.1038/s41467-022-35492-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome with no effective therapeutic intervention. Neutrophils function in the overwhelming inflammatory process of acute lung injury (ALI) caused by ARDS; however, the phenotypic heterogeneity of pulmonary neutrophils in ALI/ARDS remains largely unknown. Here, using single-cell RNA sequencing, we identify two transcriptionally and functionally heterogeneous neutrophil populations (Fth1hi Neu and Prok2hi Neu) with distinct locations in LPS-induced ALI mouse lungs. Exposure to LPS promotes the Fth1hi Neu subtype, with more inflammatory factors, stronger antioxidant, and decreased apoptosis under the regulation of interleukin-10. Furthermore, prolonged retention of Fth1hi Neu within lung tissue aggravates inflammatory injury throughout the development of ALI/ARDS. Notably, ARDS patients have high ratios of Fth1 to Prok2 expression in pulmonary neutrophils, suggesting that the Fth1hi Neu population may promote the pathological development and provide a marker of poor outcome.
Collapse
|
15
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
16
|
Singh J, Imran Alsous J, Garikipati K, Shvartsman SY. Mechanics of stabilized intercellular bridges. Biophys J 2022; 121:3162-3171. [PMID: 35778841 PMCID: PMC9463629 DOI: 10.1016/j.bpj.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022] Open
Abstract
Numerous engineered and natural systems form through reinforcement and stabilization of a deformed configuration that was generated by a transient force. An important class of such structures arises during gametogenesis, when a dividing cell undergoes incomplete cytokinesis, giving rise to daughter cells that remain connected through a stabilized intercellular bridge (ICB). ICBs can form through arrest of the contractile cytokinetic furrow and its subsequent stabilization. Despite knowledge of the molecular components, the mechanics underlying robust ICB assembly and the interplay between ring contractility and stiffening are poorly understood. Here, we report joint experimental and theoretical work that explores the physics underlying robust ICB assembly. We develop a continuum mechanics model that reveals the minimal requirements for the formation of stable ICBs, and validate the model's equilibrium predictions through a tabletop experimental analog. With insight into the equilibrium states, we turn to the dynamics: we demonstrate that contractility and stiffening are in dynamic competition and that the time intervals of their action must overlap to ensure assembly of ICBs of biologically observed proportions. Our results highlight a mechanism in which deformation and remodeling are tightly coordinated-one that is applicable to several mechanics-based applications and is a common theme in biological systems spanning several length scales.
Collapse
Affiliation(s)
- Jaspreet Singh
- Center for Computational Biology, Flatiron Institute, New York, New York
| | | | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
17
|
Hauck N, Beck T, Cojoc G, Schlüßler R, Ahmed S, Raguzin I, Mayer M, Schubert J, Müller P, Guck J, Thiele J. PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers. MATERIALS ADVANCES 2022; 3:6179-6190. [PMID: 35979502 PMCID: PMC9342673 DOI: 10.1039/d2ma00296e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.
Collapse
Affiliation(s)
- Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Timon Beck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Gheorghe Cojoc
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Raimund Schlüßler
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Saeed Ahmed
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Ivan Raguzin
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Jonas Schubert
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| |
Collapse
|
18
|
Liu X, Gao Q, Wu S, Qin H, Zhang T, Zheng X, Li B. Optically Manipulated Neutrophils as Native Microcrafts In Vivo. ACS CENTRAL SCIENCE 2022; 8:1017-1027. [PMID: 35912340 PMCID: PMC9336151 DOI: 10.1021/acscentsci.2c00468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As the first line of host defense against invading pathogens, neutrophils have an inherent phagocytosis capability for the elimination of foreign agents and target loading upon activation, as well as the ability to transmigrate across blood vessels to the infected tissue, making them natural candidates to execute various medical tasks in vivo. However, most of the existing neutrophil-based strategies rely on their spontaneous chemotactic motion, lacking in effective activation, rapid migration, and high navigation precision. Here, we report an optically manipulated neutrophil microcraft in vivo through the organic integration of endogenous neutrophils and scanning optical tweezers, functioning as a native biological material and wireless remote controller, respectively. The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, followed by the fulfillment of its task in vivo, such as active intercellular connection, targeted delivery of nanomedicine, and precise elimination of cell debris, free from the extra construction or modification of the native neutrophils. On the basis of the innate immunologic function of neutrophils and intelligent optical manipulation, the proposed neutrophil microcraft might provide new insight for the construction of native medical microdevices for drug delivery and precise treatment of inflammatory diseases.
Collapse
|
19
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
20
|
Petchakup C, Yang H, Gong L, He L, Tay HM, Dalan R, Chung AJ, Li KHH, Hou HW. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104822. [PMID: 35253966 DOI: 10.1002/smll.202104822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intrinsic biophysical states of neutrophils are associated with immune dysfunctions in diseases. While advanced image-based biophysical flow cytometers can probe cell deformability at high throughput, it is nontrivial to couple different sensing modalities (e.g., electrical) to measure other critical cell attributes including cell viability and membrane integrity. Herein, an "optics-free" impedance-deformability cytometer for multiparametric single cell mechanophenotyping is reported. The microfluidic platform integrates hydrodynamic cell pinching, and multifrequency impedance quantification of cell size, deformability, and membrane impedance (indicative of cell viability and activation). A newly-defined "electrical deformability index" is validated by numerical simulations, and shows strong correlations with the optical cell deformability index of HL-60 experimentally. Human neutrophils treated with various biochemical stimul are further profiled, and distinct differences in multimodal impedance signatures and UMAP analysis are observed. Overall, the integrated cytometer enables label-free cell profiling at throughput of >1000 cells min-1 without any antibodies labeling to facilitate clinical diagnostics.
Collapse
Affiliation(s)
- Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haoning Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rinkoo Dalan
- Endocrinology Department, Tan Tock Seng Hospital, 11 Jln Tan Tock Seng Road, Singapore, 308433, Singapore
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building Level 11, Singapore, 308232, Singapore
| |
Collapse
|
21
|
Microfluidic Microcirculation Mimetic as a Tool for the Study of Rheological Characteristics of Red Blood Cells in Patients with Sickle Cell Anemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated hemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and forms tactoids, which lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM), which has 187 capillary-like constrictions, to impose deformations on erythrocytes of 25 SCD patients, visualizing and characterizing the morpho-rheological properties of the cells in normoxic, hypoxic (using sodium meta-bisulfite) and treatment conditions (using hydroxyurea). The MMM enabled a patient-specific quantification of shape descriptors (circularity and roundness) and transit time through the capillary constrictions, which are readouts for morpho-rheological properties implicated in VOC. Transit times varied significantly (p < 0.001) between patients. Our results demonstrate the feasibility of microfluidics-based monitoring of individual patients for personalized care in the context of SCD complications such as VOC, even in resource-constrained settings.
Collapse
|
22
|
Jeon H, Wei M, Huang X, Yao J, Han W, Wang R, Xu X, Chen J, Sun L, Han J. Rapid and Label-Free Classification of Blood Leukocytes for Immune State Monitoring. Anal Chem 2022; 94:6394-6402. [PMID: 35416029 DOI: 10.1021/acs.analchem.2c00906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fully automated and label-free sample-to-answer white blood cell (WBC) cytometry platform for rapid immune state monitoring is demonstrated. The platform integrates (1) a WBC separation process using the multidimensional double spiral (MDDS) device and (2) an imaging process where images of the separated WBCs are captured and analyzed. Using the deep-learning-based image processing technique, we analyzed the captured bright-field images to classify the WBCs into their subtypes. Furthermore, in addition to cell classification, we can detect activation-induced morphological changes in WBCs for functional immune assessment, which could allow the early detection of various diseases. The integrated platform operates in a rapid (<30 min), fully automated, and label-free manner. The platform could provide a promising solution to future point-of-care WBC diagnostics applications.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Maoyu Wei
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiangfan Yao
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wentao Han
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Renjie Wang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xuefeng Xu
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Zak A, Dupré-Crochet S, Hudik E, Babataheri A, Barakat AI, Nüsse O, Husson J. Distinct timing of neutrophil spreading and stiffening during phagocytosis. Biophys J 2022; 121:1381-1394. [PMID: 35318004 PMCID: PMC9072703 DOI: 10.1016/j.bpj.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8- and 20-μm-diameter beads as targets. We used a micropipette-based single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20- than on 8-μm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Avin Babataheri
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
24
|
Orsini EM, Perelas A, Southern BD, Grove LM, Olman MA, Scheraga RG. Stretching the Function of Innate Immune Cells. Front Immunol 2021; 12:767319. [PMID: 34795674 PMCID: PMC8593101 DOI: 10.3389/fimmu.2021.767319] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.
Collapse
Affiliation(s)
- Erica M Orsini
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Apostolos Perelas
- Department of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian D Southern
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lisa M Grove
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mitchell A Olman
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Rachel G Scheraga
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
25
|
Pistenmaa CL, Nardelli P, Ash SY, Come CE, Diaz AA, Rahaghi FN, Barr RG, Young KA, Kinney GL, Simmons JP, Wade RC, Wells JM, Hokanson JE, Washko GR, San José Estépar R. Pulmonary Arterial Pruning and Longitudinal Change in Percent Emphysema and Lung Function: The Genetic Epidemiology of COPD Study. Chest 2021; 160:470-480. [PMID: 33607083 PMCID: PMC8411454 DOI: 10.1016/j.chest.2021.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pulmonary endothelial damage has been shown to precede the development of emphysema in animals, and vascular changes in humans have been observed in COPD and emphysema. RESEARCH QUESTION Is intraparenchymal vascular pruning associated with longitudinal progression of emphysema on CT imaging or decline in lung function over 5 years? STUDY DESIGN AND METHODS The Genetic Epidemiology of COPD Study enrolled ever smokers with and without COPD from 2008 through 2011. The percentage of emphysema-like lung, or "percent emphysema," was assessed at baseline and after 5 years on noncontrast CT imaging as the percentage of lung voxels < -950 Hounsfield units. An automated CT imaging-based tool assessed and classified intrapulmonary arteries and veins. Spirometry measures are postbronchodilator. Pulmonary arterial pruning was defined as a lower ratio of small artery volume (< 5 mm2 cross-sectional area) to total lung artery volume. Mixed linear models included demographics, anthropomorphics, smoking, and COPD, with emphysema models also adjusting for CT imaging scanner and lung function models adjusting for clinical center and baseline percent emphysema. RESULTS At baseline, the 4,227 participants were 60 ± 9 years of age, 50% were women, 28% were Black, 47% were current smokers, and 41% had COPD. Median percent emphysema was 2.1 (interquartile range, 0.6-6.3) and progressed 0.24 percentage points/y (95% CI, 0.22-0.26 percentage points/y) over 5.6 years. Mean FEV1 to FVC ratio was 68.5 ± 14.2% and declined 0.26%/y (95% CI, -0.30 to -0.23%/y). Greater pulmonary arterial pruning was associated with more rapid progression of percent emphysema (0.11 percentage points/y per 1-SD increase in arterial pruning; 95% CI, 0.09-0.16 percentage points/y), including after adjusting for baseline percent emphysema and FEV1. Arterial pruning also was associated with a faster decline in FEV1 to FVC ratio (-0.04%/y per 1-SD increase in arterial pruning; 95% CI, -0.008 to -0.001%/y). INTERPRETATION Pulmonary arterial pruning was associated with faster progression of percent emphysema and more rapid decline in FEV1 to FVC ratio over 5 years in ever smokers, suggesting that pulmonary vascular differences may be relevant in disease progression. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
| | - P Nardelli
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - S Y Ash
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - C E Come
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - A A Diaz
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - F N Rahaghi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - R G Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, NY
| | - K A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - J P Simmons
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - R C Wade
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J M Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - J E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, CO
| | - G R Washko
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | |
Collapse
|
26
|
Belchamber KBR, Hughes MJ, Spittle DA, Walker EM, Sapey E. New Pharmacological Tools to Target Leukocyte Trafficking in Lung Disease. Front Immunol 2021; 12:704173. [PMID: 34367163 PMCID: PMC8334730 DOI: 10.3389/fimmu.2021.704173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
Infection and inflammation of the lung results in the recruitment of non-resident immune cells, including neutrophils, eosinophils and monocytes. This swift response should ensure clearance of the threat and resolution of stimuli which drive inflammation. However, once the threat is subdued this influx of immune cells should be followed by clearance of recruited cells through apoptosis and subsequent efferocytosis, expectoration or retrograde migration back into the circulation. This cycle of cell recruitment, containment of threat and then clearance of immune cells and repair is held in exquisite balance to limit host damage. Advanced age is often associated with detrimental changes to the balance described above. Cellular functions are altered including a reduced ability to traffic accurately towards inflammation, a reduced ability to clear pathogens and sustained inflammation. These changes, seen with age, are heightened in lung disease, and most chronic and acute lung diseases are associated with an exaggerated influx of immune cells, such as neutrophils, to the airways as well as considerable inflammation. Indeed, across many lung diseases, pathogenesis and progression has been associated with the sustained presence of trafficking cells, with examples including chronic diseases such as Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis and acute infections such as Pneumonia and Pneumonitis. In these instances, there is evidence that dysfunctional and sustained recruitment of cells to the airways not only increases host damage but impairs the hosts ability to effectively respond to microbial invasion. Targeting leukocyte migration in these instances, to normalise cellular responses, has therapeutic promise. In this review we discuss the current evidence to support the trafficking cell as an immunotherapeutic target in lung disease, and which potential mechanisms or pathways have shown promise in early drug trials, with a focus on the neutrophil, as the quintessential trafficking immune cell.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Daniella A. Spittle
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Eloise M. Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
27
|
Ali SG, Shehwar D, Alam MR. Mitoxantrone Inhibits FMLP-Induced Degenerative Changes in Human Neutrophils. Mol Biol 2021. [DOI: 10.1134/s0026893321040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
HIF2α is a direct regulator of neutrophil motility. Blood 2021; 137:3416-3427. [PMID: 33619535 DOI: 10.1182/blood.2020007505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/24/2021] [Indexed: 12/19/2022] Open
Abstract
Orchestrated recruitment of neutrophils to inflamed tissue is essential during the initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it remains unclear how these factors influence the migration of neutrophils to and at the site of inflammation during their transmigration through the blood-endothelial cell barrier, as well as their motility in the interstitial space. Here, we reveal that activation of hypoxia-inducible factor 2 (HIF2α) as a result of a deficiency in HIF prolyl hydroxylase domain protein 2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNA sequencing analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation because it promotes neutrophil movement through highly confined tissue landscapes.
Collapse
|
29
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Martirosyan A, Poghosyan D, Ghonyan S, Mkrtchyan N, Amaryan G, Manukyan G. Transmigration of Neutrophils From Patients With Familial Mediterranean Fever Causes Increased Cell Activation. Front Immunol 2021; 12:672728. [PMID: 34079554 PMCID: PMC8165278 DOI: 10.3389/fimmu.2021.672728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Familial Mediterranean fever (FMF) is caused by pyrin-encoding MEFV gene mutations and characterized by the self-limiting periods of intense inflammation, which are mainly mediated by a massive influx of polymorphonuclear neutrophils (PMNs) into the inflamed sites. Perturbation of actin polymerization by different pathogens was shown to activate the pyrin inflammasome. Our aim was to test whether cytoskeletal dynamics in the absence of pathogens may cause abnormal activation of PMNs from FMF patients. We also aimed to characterize immunophenotypes of circulating neutrophils and their functional activity. Circulating PMNs displayed heterogeneity in terms of cell size, granularity and immunophenotypes. Particularly, PMNs from the patients in acute flares (FMF-A) exhibited a characteristic of aged/activated cells (small cell size and granularity, up-regulated CXCR4), while PMNs form the patients in remission period (FMF-R) displayed mixed fresh/aged cell characteristics (normal cell size and granularity, up-regulated CD11b, CD49d, CXCR4, and CD62L). The findings may suggest that sterile tissue-infiltrated PMNs undergo reverse migration back to bone marrow and may explain why these PMNs do not cause immune-mediated tissue damage. A multidirectional expression of FcγRs on neutrophils during acute flares was also noteworthy: up-regulation of FcγRI and down-regulation of FcγRII/FcγRIII. We also observed spontaneous and fMPL-induced activation of PMNs from the patients after transmigration through inserts as seen by the increased expression of CD11b and intracellular expression of IL-1β. Our study suggests heightened sensitivity of mutated pyrin inflammasome towards cytoskeletal modifications in the absence of pathogens.
Collapse
Affiliation(s)
- Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - David Poghosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Susanna Ghonyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Nune Mkrtchyan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Amaryan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| |
Collapse
|
31
|
Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He HT, Barakat AI, Carrasco YR, Hamon Y, Puech PH, Hivroz C, Nüsse O, Husson J. Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 2021; 120:1692-1704. [PMID: 33730552 PMCID: PMC8204340 DOI: 10.1016/j.bpj.2021.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | | | - Anaïs Sadoun
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Farah Mustapha
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France; Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphanie Dogniaux
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Hai-Tao He
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yolanda R Carrasco
- B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yannick Hamon
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Claire Hivroz
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
32
|
Juzenaite G, Secklehner J, Vuononvirta J, Helbawi Y, Mackey JBG, Dean C, Harker JA, Carlin LM, Rankin S, De Filippo K. Lung Marginated and Splenic Murine Resident Neutrophils Constitute Pioneers in Tissue-Defense During Systemic E. coli Challenge. Front Immunol 2021; 12:597595. [PMID: 33953706 PMCID: PMC8089477 DOI: 10.3389/fimmu.2021.597595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Abstract
The rapid response of neutrophils throughout the body to a systemic challenge is a critical first step in resolution of bacterial infection such as Escherichia coli (E. coli). Here we delineated the dynamics of this response, revealing novel insights into the molecular mechanisms using lung and spleen intravital microscopy and 3D ex vivo culture of living precision cut splenic slices in combination with fluorescent labelling of endogenous leukocytes. Within seconds after challenge, intravascular marginated neutrophils and lung endothelial cells (ECs) work cooperatively to capture pathogens. Neutrophils retained on lung ECs slow their velocity and aggregate in clusters that enlarge as circulating neutrophils carrying E. coli stop within the microvasculature. The absolute number of splenic neutrophils does not change following challenge; however, neutrophils increase their velocity, migrate to the marginal zone (MZ) and form clusters. Irrespective of their location all neutrophils capturing heat-inactivated E. coli take on an activated phenotype showing increasing surface CD11b. At a molecular level we show that neutralization of ICAM-1 results in splenic neutrophil redistribution to the MZ under homeostasis. Following challenge, splenic levels of CXCL12 and ICAM-1 are reduced allowing neutrophils to migrate to the MZ in a CD29-integrin dependent manner, where the enlargement of splenic neutrophil clusters is CXCR2-CXCL2 dependent. We show directly molecular mechanisms that allow tissue resident neutrophils to provide the first lines of antimicrobial defense by capturing circulating E. coli and forming clusters both in the microvessels of the lung and in the parenchyma of the spleen.
Collapse
Affiliation(s)
- Goda Juzenaite
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Judith Secklehner
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Juho Vuononvirta
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- William Harvey Heart Centre, Barts & the London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Yoseph Helbawi
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - John B. G. Mackey
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Charlotte Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - James A. Harker
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Asthma UK Centre for Allergic Mechanisms of Asthma, London, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Rankin
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Katia De Filippo
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| |
Collapse
|
33
|
Fajrial AK, Liu K, Gao Y, Gu J, Lakerveld R, Ding X. Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers. Anal Chem 2021; 93:1317-1325. [PMID: 33253534 DOI: 10.1021/acs.analchem.0c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Junhao Gu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
Cohen JT, Danise M, Machan JT, Zhao R, Lefort CT. Murine Myeloid Progenitors Attenuate Immune Dysfunction Induced by Hemorrhagic Shock. Stem Cell Reports 2021; 16:324-336. [PMID: 33482101 PMCID: PMC7878835 DOI: 10.1016/j.stemcr.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Hemorrhagic shock induces an aberrant immune response characterized by simultaneous induction of a proinflammatory state and impaired host defenses. The objective of this study was to evaluate the impact of conditionally immortalized neutrophil progenitors (NPs) on this aberrant immune response. We employed a mouse model of hemorrhagic shock, followed by the adoptive transfer of NPs and subsequent inoculation of Staphylococcus aureus to induce pneumonia. We observed that transplant of NPs decreases the proportion of host neutrophils that express programmed death ligand 1 and intercellular adhesion molecule 1 in the context of prior hemorrhage. Following hemorrhage, NP transplant decreased proinflammatory cytokines in the lungs, increased neutrophil migration into the airspaces, and enhanced bacterial clearance. Further, hemorrhagic shock improved NP engraftment in the bone marrow. These results suggest that NPs hold the potential for use as a cellular therapy in the treatment and prevention of secondary infection following hemorrhagic shock. Myeloid progenitors restore a competent inflammatory response to pneumonia Progenitor transplantation promotes clearance of secondary S. aureus pneumonia Hemorrhagic shock enhances engraftment of transplanted myeloid progenitors
Collapse
Affiliation(s)
- Joshua T Cohen
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Michael Danise
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Jason T Machan
- Lifespan Biostatistics Core, Rhode Island Hospital, Providence, RI 02903, USA
| | - Runping Zhao
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Craig T Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
35
|
Huang X, Jeon H, Liu J, Yao J, Wei M, Han W, Chen J, Sun L, Han J. Deep-Learning Based Label-Free Classification of Activated and Inactivated Neutrophils for Rapid Immune State Monitoring. SENSORS 2021; 21:s21020512. [PMID: 33450866 PMCID: PMC7828324 DOI: 10.3390/s21020512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The differential count of white blood cells (WBCs) is one widely used approach to assess the status of a patient’s immune system. Currently, the main methods of differential WBC counting are manual counting and automatic instrument analysis with labeling preprocessing. But these two methods are complicated to operate and may interfere with the physiological states of cells. Therefore, we propose a deep learning-based method to perform label-free classification of three types of WBCs based on their morphologies to judge the activated or inactivated neutrophils. Over 90% accuracy was finally achieved by a pre-trained fine-tuning Resnet-50 network. This deep learning-based method for label-free WBC classification can tackle the problem of complex instrumental operation and interference of fluorescent labeling to the physiological states of the cells, which is promising for future point-of-care applications.
Collapse
Affiliation(s)
- Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
- Correspondence:
| | - Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (H.J.); (J.H.)
| | - Jixuan Liu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China; (J.L.); (J.Y.); (M.W.); (W.H.); (J.C.); (L.S.)
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (H.J.); (J.H.)
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Bashant KR, Aponte AM, Randazzo D, Rezvan Sangsari P, Wood AJ, Bibby JA, West EE, Vassallo A, Manna ZG, Playford MP, Jordan N, Hasni S, Gucek M, Kemper C, Conway Morris A, Morgan NY, Toepfner N, Guck J, Mehta NN, Chilvers ER, Summers C, Kaplan MJ. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann Rheum Dis 2020; 80:209-218. [PMID: 32988843 DOI: 10.1136/annrheumdis-2020-218338] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.
Collapse
Affiliation(s)
- Kathleen R Bashant
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Angel M Aponte
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alexander Jt Wood
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Jack A Bibby
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Erin E West
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Arlette Vassallo
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Zerai G Manna
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Natasha Jordan
- Rheumatology Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarfaraz Hasni
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Kemper
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Nicole Y Morgan
- NIBIB, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole Toepfner
- Department of Pediatrics/Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Sachsen, Germany
| | - Jochen Guck
- Biological Optomechanics Division, Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Nehal N Mehta
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | | |
Collapse
|
37
|
Prasanth D, Suresh S, Prathivadhi-Bhayankaram S, Mimlitz M, Zetocha N, Lee B, Ekpenyong A. Microgravity Modulates Effects of Chemotherapeutic Drugs on Cancer Cell Migration. Life (Basel) 2020; 10:E162. [PMID: 32846924 PMCID: PMC7555236 DOI: 10.3390/life10090162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Microgravity or the condition of apparent weightlessness causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. These organ and system-level dysfunctions correlate with changes induced at the single cell level both by simulated microgravity on earth as well as microgravity conditions in outer space (as in the international space station). Reported changes in single bone cells, muscle cells and white blood cells include structural/morphological abnormalities, changes in gene expression, protein expression, metabolic pathways and signaling pathways, suggesting that cells mount some response or adjustment to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear largely because the primary mechanism of gravity sensing in animal cells is unknown. Here, we used a rotary cell culture system developed by NASA to subject leukemic and erythroleukemic cancer cells to microgravity for 48 h and then quantified their innate immune response to common anti-cancer drugs using biophysical parameters and our recently developed quantum-dot-based fluorescence spectroscopy. We found that leukemic cancer cells treated with daunorubicin show increased chemotactic migration (p < 0.01) following simulated microgravity (µg) compared to normal gravity on earth (1 g). However, cells treated with doxorubicin showed enhanced migration both in 1 g and following µg. Our results show that microgravity modulates cancer cell response to chemotherapy in a drug-dependent manner. These results suggest using simulated microgravity as an immunomodulatory tool for the development of new immunotherapies for both space and terrestrial medicine.
Collapse
Affiliation(s)
- Devika Prasanth
- Biology Department, Creighton University, Omaha, NE 68178, USA;
| | - Sindhuja Suresh
- Computer Science Department, Creighton University, Omaha, NE 68187, USA;
| | | | - Michael Mimlitz
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Noah Zetocha
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Bong Lee
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (S.P.-B.); (M.M.); (N.Z.); (B.L.)
| |
Collapse
|
38
|
Sapey E. Neutrophil Modulation in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:247-259. [PMID: 32697897 DOI: 10.15326/jcopdf.7.3.2019.0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils have been implicated in the pathogenesis of alpha-1 antitrypsin deficiency (AATD) since the first descriptions of the disease. Neutrophil proteinases can cause all lung manifestations of AATD, from small airways destruction, to emphysema, to chronic bronchitis and airflow obstruction. Initially, it was proposed that neutrophil functions were normal in AATD, responding in an initially physiological manner to a high burden of pulmonary inflammation. More recent studies have shed new light on this, describing changes in neutrophil responses (a modulation of usual cellular functions) in the presence of inflammation or infection which might enhance tissue damage while impeding bacterial clearance, providing some evidence to support there being an AATD neutrophil phenotype. Many facets of neutrophil function in AATD can be explained by the loss of alpha-1 antitrypsin (AAT) in diverse biological processes. If this were the only reason for altered neutrophil functions, one would predict similar disease presentation across affected people. However, this is not the case. Despite similar (low) levels of AAT, lung disease is extremely variable in AATD, with some patients suffering a significant burden of lung disease and some much less, irrespective of smoking habits and, in some cases, despite augmentation therapy. This review will explore how complex neutrophil responses are and how they are altered with age, inflammation and AATD. Further, it will discuss the need to understand more completely which aspects of AATD-associated disease are driven by neutrophils and how patients more susceptible to neutrophil dysfunction could be identified to potentially stratify treatment approaches.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Pillay J, Tregay N, Juzenaite G, Carlin LM, Pirillo C, Gaboriau DCA, Farahi N, Summers C, Lo Celso C, Chilvers ER, Rankin S, De Filippo K. Effect of the CXCR4 antagonist plerixafor on endogenous neutrophil dynamics in the bone marrow, lung and spleen. J Leukoc Biol 2020; 107:1175-1185. [PMID: 32374077 DOI: 10.1002/jlb.1ma0420-571rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 11/05/2022] Open
Abstract
Treatment with the CXCR4 antagonist, plerixafor (AMD3100), has been proposed for clinical use in patients with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome and in pulmonary fibrosis. However, there is controversy with respect to the impact of plerixafor on neutrophil dynamics in the lung, which may affect its safety profile. In this study, we investigated the kinetics of endogenous neutrophils by direct imaging, using confocal intravital microscopy in mouse bone marrow, spleen, and lungs. Neutrophils are observed increasing their velocity and exiting the bone marrow following plerixafor administration, with a concomitant increase in neutrophil numbers in the blood and spleen, while the marginated pool of neutrophils in the lung microvasculature remained unchanged in terms of numbers and cell velocity. Use of autologous radiolabeled neutrophils and SPECT/CT imaging in healthy volunteers showed that plerixafor did not affect GM-CSF-primed neutrophil entrapment or release in the lungs. Taken together, these data suggest that plerixafor causes neutrophil mobilization from the bone marrow but does not impact on lung marginated neutrophil dynamics and thus is unlikely to compromise respiratory host defense both in humans and mice.
Collapse
Affiliation(s)
- Janesh Pillay
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Intensive Care Medicine, University Medical Center, Groningen, The Netherlands
- Dept of Intensive Care Medicine, University Medical Center, The Netherlands, Groningen
| | - Nicola Tregay
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Goda Juzenaite
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Chiara Pirillo
- Department of Life Science, Imperial College, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy (FILM), NHLI, Imperial College, London, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| | - Sara Rankin
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| | - Katia De Filippo
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, UK
| |
Collapse
|
40
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
41
|
Hughes MJ, McGettrick HM, Sapey E. Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. Eur Respir Rev 2020; 29:190102. [PMID: 32198215 PMCID: PMC9488696 DOI: 10.1183/16000617.0102-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Multimorbidity is increasingly common and current healthcare strategies are not always aligned to treat this complex burden of disease. COPD, type-2 diabetes mellitus (T2D) and cardiovascular disease, especially atherosclerosis, occur more frequently together than expected, even when risk factors such as smoking, obesity, inactivity and poverty are considered. This supports the possibility of unifying mechanisms that contribute to the pathogenesis or progression of each condition.Neutrophilic inflammation is causally associated with COPD, and increasingly recognised in the pathogenesis of atherosclerosis and T2D, potentially forming an aetiological link between conditions. This link might reflect an overspill of inflammation from one affected organ into the systemic circulation, exposing all organs to an increased milieu of proinflammatory cytokines. Additionally, increasing evidence supports the involvement of other processes in chronic disease pathogenesis, such as cellular senescence or changes in cellular phenotypes.This review explores the current scientific evidence for inflammation, cellular ageing and cellular processes, such as reactive oxygen species production and phenotypic changes in the pathogenesis of COPD, T2D and atherosclerosis; highlighting common mechanisms shared across these diseases. We identify emerging therapeutic approaches that target these areas, but also where more work is still required to improve our understanding of the underlying cellular biology in a multimorbid disease setting.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Neutrophil Adaptations upon Recruitment to the Lung: New Concepts and Implications for Homeostasis and Disease. Int J Mol Sci 2020; 21:ijms21030851. [PMID: 32013006 PMCID: PMC7038180 DOI: 10.3390/ijms21030851] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils have a prominent role in all human immune responses against any type of pathogen or stimulus. The lungs are a major neutrophil reservoir and neutrophilic inflammation is a primary response to both infectious and non-infectious challenges. While neutrophils are well known for their essential role in clearance of bacteria, they are also equipped with specific mechanisms to counter viruses and fungi. When these defense mechanisms become aberrantly activated in the absence of infection, this commonly results in debilitating chronic lung inflammation. Clearance of bacteria by phagocytosis is the hallmark role of neutrophils and has been studied extensively. New studies on neutrophil biology have revealed that this leukocyte subset is highly adaptable and fulfills diverse roles. Of special interest is how these adaptations can impact the outcome of an immune response in the lungs due to their potent capacity for clearing infection and causing damage to host tissue. The adaptability of neutrophils and their propensity to influence the outcome of immune responses implicates them as a much-needed target of future immunomodulatory therapies. This review highlights the recent advances elucidating the mechanisms of neutrophilic inflammation, with a focus on the lung environment due to the immense and growing public health burden of chronic lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), and acute lung inflammatory diseases such as transfusion-related acute lung injury (TRALI).
Collapse
|
43
|
Huang L, Liang F, Feng Y, Zhao P, Wang W. On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. MICROSYSTEMS & NANOENGINEERING 2020; 6:57. [PMID: 34567668 PMCID: PMC8433418 DOI: 10.1038/s41378-020-0162-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 05/05/2023]
Abstract
Cells have different intrinsic markers such as mechanical and electrical properties, which may be used as specific characteristics. Here, we present a microfluidic chip configured with two opposing optical fibers and four 3D electrodes for multiphysical parameter measurement. The chip leverages optical fibers to capture and stretch a single cell and uses 3D electrodes to achieve rotation of the single cell. According to the stretching deformation and rotation spectrum, the mechanical and dielectric properties can be extracted. We provided proof of concept by testing five types of cells (HeLa, A549, HepaRG, MCF7 and MCF10A) and determined five biophysical parameters, namely, shear modulus, steady-state viscosity, and relaxation time from the stretching deformation and area-specific membrane capacitance and cytoplasm conductivity from the rotation spectra. We showed the potential of the chip in cancer research by observing subtle changes in the cellular properties of transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) A549 cells. The new chip provides a microfluidic platform capable of multiparameter characterization of single cells, which can play an important role in the field of single-cell research.
Collapse
Affiliation(s)
- Liang Huang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, China
| | - Fei Liang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Yongxiang Feng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Peng Zhao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Wenhui Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
|
45
|
Vassallo A, Wood AJ, Subburayalu J, Summers C, Chilvers ER. The counter-intuitive role of the neutrophil in the acute respiratory distress syndrome. Br Med Bull 2019; 131:43-55. [PMID: 31504234 DOI: 10.1093/bmb/ldz024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/02/2019] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neutrophils are the primary effectors of the innate immune system but are profoundly histotoxic cells. The acute respiratory distress syndrome (ARDS) is considered to be a prime example of neutrophil-mediated tissue injury. SOURCES OF DATA The information presented in this review is acquired from the published neutrophil cell biology literature and the longstanding interest of the senior authors in ARDS pathogenesis and clinical management. AREAS OF AGREEMENT Investigators in the field would agree that neutrophils accumulate in high abundance in the pulmonary microcirculation, lung interstitium and alveolar airspace of patients with ARDS. ARDS is also associated with systemic neutrophil priming and delayed neutrophil apoptosis and clearance of neutrophils from the lungs. In animal models, reducing circulating neutrophil numbers ameliorates lung injury. AREAS OF CONTROVERSY Areas of uncertainty include how neutrophils get stuck in the narrow pulmonary capillary network-whether this reflects changes in the mechanical properties of primed neutrophils alone or additional cell adhesion molecules, the role of neutrophil sub-sets or polarization states including pro-angiogenic and low-density neutrophils, whether neutrophil extracellular trap (NET) formation is beneficial (through bacterial capture) or harmful and the potential for neutrophils to participate in inflammatory resolution. The latter may involve the generation of specialized pro-resolving molecules (SPMs) and MMP-9, which is required for adequate matrix processing. GROWING POINTS Different and possibly stable endotypes of ARDS are increasingly being recognized, yet the relative contribution of the neutrophil to these endotypes is uncertain. There is renewed and intense interest in understanding the complex 'new biology' of the neutrophil, specifically whether this cell might be a valid therapeutic target in ARDS and other neutrophil-driven diseases and developing understanding of ways to enhance the beneficial role of the neutrophil in the resolution phase of ARDS. AREAS TIMELY FOR DEVELOPING RESEARCH Aside from treatment of the precipitating causes of ARDS, and scrupulous fluid, infection and ventilation management, there are no pharmacological interventions for ARDS; this represents an urgent and unmet need. Therapies aimed at reducing overall neutrophil numbers risk secondary infection; hence better ways are needed to reverse the processes of neutrophil priming activation, hyper-secretion and delayed apoptosis while enhancing the pro-resolution functions of the neutrophil.
Collapse
Affiliation(s)
- Arlette Vassallo
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Alex J Wood
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | | | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| |
Collapse
|
46
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
47
|
Sierra-Parraga JM, Munk A, Andersen C, Lohmann S, Moers C, Baan CC, Ploeg RJ, Pool M, Keller AK, Møller BK, Leuvenink H, Hoogduijn MJ, Jespersen B, Eijken M. Mesenchymal Stromal Cells Are Retained in the Porcine Renal Cortex Independently of Their Metabolic State After Renal Intra-Arterial Infusion. Stem Cells Dev 2019; 28:1224-1235. [PMID: 31280676 DOI: 10.1089/scd.2019.0105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The regenerative capacities of mesenchymal stromal cells (MSCs) make them suitable for renal regenerative therapy. The most common delivery route of MSC is through intravenous infusion, which is associated with off-target distribution. Renal intra-arterial delivery offers a targeted therapy, but limited knowledge is available regarding the fate of MSCs delivered through this route. Therefore, we studied the efficiency and tissue distribution of MSCs after renal intra-arterial delivery to a porcine renal ischemia-reperfusion model. MSCs were isolated from adipose tissue of healthy male pigs, fluorescently labeled and infused into the renal artery of female pigs. Flow cytometry allowed MSC detection and quantification in tissue and blood. In addition, quantitative polymerase chain reaction was used to trace MSCs by their Y-chromosome. During infusion, a minor number of MSCs left the kidney through the renal vein, and no MSCs were identified in arterial blood. Ischemic and healthy renal tissues were analyzed 30 min and 8 h after infusion, and 1-4 × 104 MSCs per gram of tissue were detected, predominantly, in the renal cortex, with a viability >70%. Confocal microscopy demonstrated mainly glomerular localization of MSCs, but they were also observed in the capillary network around tubuli. The infusion of heat-inactivated (HI) MSCs, which are metabolically inactive, through the renal artery showed that HI-MSCs were distributed in the kidney in a similar manner to regular MSCs, suggesting a passive retention mechanism. Long-term MSC survival was analyzed by Y-chromosome tracing, and demonstrated that a low percentage of the infused MSCs were present in the kidney 14 days after administration, while HI-MSCs were completely undetectable. In conclusion, renal intra-arterial MSC infusion limited off-target engraftment, leading to efficient MSC delivery to the kidney, most of them being cleared within 14 days. MSC retention was independent of the metabolic state of MSC, indicating a passive mechanism.
Collapse
Affiliation(s)
- Jesus M Sierra-Parraga
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Munk
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Stine Lohmann
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carla C Baan
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Merel Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin J Hoogduijn
- Nephrology and Transplantation, Internal Medicine Department, University Medical Center Rotterdam, Erasmus MC, Rotterdam, the Netherlands
| | - Bente Jespersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Eijken
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
48
|
Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu J, Kaplan MJ, Summers C, Guck J, Chilvers ER, Toepfner N. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 2019; 105:1143-1153. [PMID: 30835869 PMCID: PMC7587463 DOI: 10.1002/jlb.ma0718-295rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly apparent that the biomechanical properties of neutrophils impact on their trafficking through the circulation and in particularly through the pulmonary capillary bed. The retention of polarized or shape-changed neutrophils in the lungs was recently proposed to contribute to acute respiratory distress syndrome pathogenesis. Accordingly, this study tested the hypothesis that neutrophil priming is coupled to morpho-rheological (MORE) changes capable of altering cell function. We employ real-time deformability cytometry (RT-DC), a recently developed, rapid, and sensitive way to assess the distribution of size, shape, and deformability of thousands of cells within seconds. During RT-DC analysis, neutrophils can be easily identified within anticoagulated "whole blood" due to their unique granularity and size, thus avoiding the need for further isolation techniques, which affect biomechanical cell properties. Hence, RT-DC is uniquely suited to describe the kinetics of MORE cell changes. We reveal that, following activation or priming, neutrophils undergo a short period of cell shrinking and stiffening, followed by a phase of cell expansion and softening. In some contexts, neutrophils ultimately recover their un-primed mechanical phenotype. The mechanism(s) underlying changes in human neutrophil size are shown to be Na+ /H+ antiport-dependent and are predicted to have profound implications for neutrophil movement through the vascular system in health and disease.
Collapse
Affiliation(s)
- Kathleen R Bashant
- Department of Medicine, University of Cambridge, Cambridge, UK
- National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Reinhard Berner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonhard Menschner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Hidalgo A, Chilvers ER, Summers C, Koenderman L. The Neutrophil Life Cycle. Trends Immunol 2019; 40:584-597. [PMID: 31153737 DOI: 10.1016/j.it.2019.04.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
Abstract
Neutrophils are recognized as an essential part of the innate immune response, but an active debate still exists regarding the life cycle of these cells. Neutrophils first differentiate in the bone marrow through progenitor intermediaries before entering the blood, in a process that gauges the extramedullary pool size. Once believed to be directly eliminated in the marrow, liver, and spleen, neutrophils, after circulating for less than 1 day, are now known to redistribute into multiple tissues with poorly understood kinetics. In this review, we provide an update on the dynamic distribution of neutrophils across tissues in health and disease, and emphasize differences between humans and model organisms. We further highlight issues to be addressed to exploit the unique features of neutrophils in the clinic.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones, Cardiovasculares Carlos III (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| | - Edwin R Chilvers
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Sapey E, Stockley RA. Getting stuck or choosing to stay? Neutrophil transit times in the lung in acute inflammation and COPD. Thorax 2019; 74:631-632. [PMID: 31097614 PMCID: PMC6585287 DOI: 10.1136/thoraxjnl-2018-213000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Robert A Stockley
- Respiratory Medicine, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|