1
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Edmondson M, Clarke M, O’Shea JN, Chen Q, Anderson HL, Saywell A. On-Surface Synthesis of Ni-Porphyrin-Doped Graphene Nanoribbons. ACS NANO 2024; 18:33390-33397. [PMID: 39586584 PMCID: PMC11636262 DOI: 10.1021/acsnano.4c09188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
On-surface synthesis of functional molecular structures provides a route to the fabrication of materials tailored to exhibit bespoke catalytic, (opto)electronic, and magnetic properties. The fabrication of graphene nanoribbons via on-surface synthesis, where reactive precursor molecules are combined to form extended polymeric structures, provides quasi-1D graphitic wires that can be doped by tuning the properties/composition of the precursor molecules. Here, we combine the atomic precision of solution-phase synthetic chemistry with on-surface protocols to enable reaction steps that cannot yet be achieved in solution. Our focus of this work is the inclusion of porphyrin species within graphene nanoribbons to create porphyrin-fused graphene nanoribbons. A combination of scanning tunneling microscopy and photoelectron spectroscopy techniques is used to characterize a porphyrin-fused graphene nanoribbon formed on-surface from a linear polymer consisting of regularly spaced Ni-porphyrin units linked by sections of aryl rings which fuse together during the reaction to form graphitic regions between neighboring Ni-porphyrin units.
Collapse
Affiliation(s)
- Matthew Edmondson
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Michael Clarke
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - James N. O’Shea
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Qiang Chen
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Harry L. Anderson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Alex Saywell
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Barragán A, Urbani M, Gallardo A, Pérez-Elvira E, Jover Ó, Lauwaet K, Gallego JM, Miranda R, Giovannantonio MD, Écija D, Torres T, Urgel JI. On-Surface Synthesis of Covalently-Linked Carbaporphyrinoid-Based Low-Dimensional Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408085. [PMID: 39552008 DOI: 10.1002/smll.202408085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 11/19/2024]
Abstract
The synthesis of porphyrinoid-based low-dimensional polymers has recently attracted considerable interest in view of their intriguing electronic, optical, and catalytic properties. Here, this is introduced by the surface-assisted synthesis of two carbaporphyrinoid-based polymers of increasing dimensionality under ultrahigh-vacuum conditions. The structural and electronic characterization of the resulting polymers has been performed by scanning tunneling and non-contact atomic force microscopies, complemented by theoretical modeling. First, a carbon-carbon coupling between dicarbahemiporphyrazine precursors is achieved by thermal activation of their isopropyl substituents via a [3+3] cycloaromatization, giving rise to one-dimensional (1D) polymers. Second, the same precursor is functionalized with chlorine atoms to complement the [3+3] cycloaromatization with orthogonal dehalogenation and homocoupling, affording two-dimensional (2D) molecular nanostructures. In addition, both low-dimensional free-base porphyrinoid-based polymers are exposed to an atomic flux of cobalt atoms, giving rise to cobalt-metalated macrocycles, with the metal atoms coordinated only to the two pyrrolic nitrogens, in contrast to the typical four-fold coordination that occurs inside tetrapyrroles. This on-surface protocol renders atomically precise covalently-linked porphyrinoid polymers and provides promising model systems toward the exploration of low-coordinated metals with utility in diverse technological areas.
Collapse
Affiliation(s)
- Ana Barragán
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Maxence Urbani
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Elena Pérez-Elvira
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Óscar Jover
- CNR - Istituto di Struttura della Materia (CNR-ISM), Roma, 00133, Italy
| | - Koen Lauwaet
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, Madrid, 28049, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | | | - David Écija
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
- Unidad de Nanomateriales Avanzados, Imdea Nanoscience, Unidad asociada al CSIC por el ICMM, Madrid, 28049, Spain
| | - Tomás Torres
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
- Departamento de Química Orgánica and Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José I Urgel
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
- Unidad de Nanomateriales Avanzados, Imdea Nanoscience, Unidad asociada al CSIC por el ICMM, Madrid, 28049, Spain
| |
Collapse
|
4
|
Gu Y, Xiang F, Liang Y, Bai P, Qiu Z, Chen Q, Narita A, Xie Y, Fasel R, Müllen K. A Poly(2,7-anthrylene) with peri-Fused Porphyrin Edges. Angew Chem Int Ed Engl 2024:e202417129. [PMID: 39449108 DOI: 10.1002/anie.202417129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Anthracene has served as an important building block of conjugated polymers with the connecting positions playing a crucial role for the electronic structures. Herein, anthracene units have been coupled through their 2,7-carbons to develop an unprecedented, conjugated polymer, namely, poly(2,7-anthrylene) featuring additional peri-fused porphyrin edges. The synthesis starts from a 2,7-dibromo-9-nickel(II) porphyrinyl-anthracene as the pivotal precursor. Polymerization is achieved by an AA-type Yamamoto coupling, followed by a polymer-analogous oxidative cyclodehydrogenation to obtain a peri-fusion between porphyrin and anthracene moieties. Although further cyclodehydrogenation between the repeating units cannot be achieved in solution, the thermal treatment of the precursor polymer derived from 2,7-dibromo-9-porphyrinyl-anthracene on a metal surface realizes the full cyclodehydrogenation. The difference between solution and on-surface reactivity can be rationalized by the larger dihedral angle between repeat units in solution, which is reduced under the pronounced interaction with the metal surface. The peri-fusion in the title polymer gives rise to a narrow electronic band gap optical absorptions extending far into the near-infrared region. Oligomeric models are synthesized as well to support the analyses of the electronic and photophysical properties.
Collapse
Affiliation(s)
- Yanwei Gu
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Feifei Xiang
- nanotech @surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yamei Liang
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Peizhi Bai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hongkong, Shenzhen (CUHK-Shenzhen, Guangdong, 518172, P.R. China
| | - Qiang Chen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Roman Fasel
- nanotech @surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Klaus Müllen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Pan WC, Arumugam K, Yen YH, Tani F, Goto K, Okamoto H, Tang SJ, Hoffmann G. Roto-Cyclization of 4-Bromopicene in On-Surface Synthesis. Chem Asian J 2024:e202400620. [PMID: 39105250 DOI: 10.1002/asia.202400620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Progress toward single-molecule electronics relies on a thorough understanding of local physico-chemical processes and development of synthetic routines for controlled hetero-coupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface-dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | | | - Yu-Hsiung Yen
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | - Kenta Goto
- Institute for Materials Chemistry and Engineering, Kyushu University, Japan
| | | | - Shu-Jung Tang
- Department of Physics, National Tsing Hua University, Taiwan
| | - Germar Hoffmann
- Surface Science Laboratory, Department of Physics, National Tsing Hua University, Taiwan
| |
Collapse
|
6
|
Chen Q, Lodi A, Zhang H, Gee A, Wang HI, Kong F, Clarke M, Edmondson M, Hart J, O'Shea JN, Stawski W, Baugh J, Narita A, Saywell A, Bonn M, Müllen K, Bogani L, Anderson HL. Porphyrin-fused graphene nanoribbons. Nat Chem 2024; 16:1133-1140. [PMID: 38459234 PMCID: PMC11230900 DOI: 10.1038/s41557-024-01477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Graphene nanoribbons (GNRs), nanometre-wide strips of graphene, are promising materials for fabricating electronic devices. Many GNRs have been reported, yet no scalable strategies are known for synthesizing GNRs with metal atoms and heteroaromatic units at precisely defined positions in the conjugated backbone, which would be valuable for tuning their optical, electronic and magnetic properties. Here we report the solution-phase synthesis of a porphyrin-fused graphene nanoribbon (PGNR). This PGNR has metalloporphyrins fused into a twisted fjord-edged GNR backbone; it consists of long chains (>100 nm), with a narrow optical bandgap (~1.0 eV) and high local charge mobility (>400 cm2 V-1 s-1 by terahertz spectroscopy). We use this PGNR to fabricate ambipolar field-effect transistors with appealing switching behaviour, and single-electron transistors displaying multiple Coulomb diamonds. These results open an avenue to π-extended nanostructures with engineerable electrical and magnetic properties by transposing the coordination chemistry of porphyrins into graphene nanoribbons.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
- Max Planck Institute for Polymer Research, Mainz, Germany.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China.
| | | | - Heng Zhang
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Alex Gee
- Department of Materials, University of Oxford, Oxford, UK
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Research, Utrecht University, Utrecht, the Netherlands
| | - Fanmiao Kong
- Department of Materials, University of Oxford, Oxford, UK
| | - Michael Clarke
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew Edmondson
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Jack Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - James N O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Wojciech Stawski
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Alex Saywell
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Lapo Bogani
- Department of Materials, University of Oxford, Oxford, UK.
- Department of Chemistry & Physics, University of Florence, Sesto Fiorentino, Italy.
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
| |
Collapse
|
7
|
Friedrich N, Li J, Pozo I, Peña D, Pascual JI. Tuneable Current Rectification Through a Designer Graphene Nanoribbon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401955. [PMID: 38613435 DOI: 10.1002/adma.202401955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Unimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron-hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule-metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven-armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on-surface synthesis. The diboron unit creates half-populated in-gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low-temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in-gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.
Collapse
Affiliation(s)
| | - Jingcheng Li
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
8
|
Sun K, Ishikawa A, Itaya R, Toichi Y, Yamakado T, Osuka A, Tanaka T, Sakamoto K, Kawai S. On-Surface Synthesis of Polyene-Linked Porphyrin Cooligomer. ACS NANO 2024; 18:13551-13559. [PMID: 38757371 DOI: 10.1021/acsnano.3c12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Atsushi Ishikawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryota Itaya
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Toichi
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takayuki Tanaka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyuki Sakamoto
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
9
|
Nandi RP, Chandra B, Ghosh S, Sarma SP, Geremia S, Hickey N, Thilagar P. Pyrrole βC-B-N Fused Porphyrins: Molecular Structures and Opto-Electrochemical Studies. Chemistry 2024; 30:e202304219. [PMID: 38155424 DOI: 10.1002/chem.202304219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Herein, we report the design, synthesis, structure, and electrochemical study of doubly βC-B-N fused Ni(II) porphyrins (1-trans, 1-cis, 2-trans, and 2-cis). These compounds have been synthesized from A2B2 type dipyridyl Ni(II) porphyrins (Ar=Ph for 1 a; Ar=C6F5 for 2 a) via Lewis base-directed electrophilic aromatic borylation reactions. The solution state structures of these compounds have been established using 1H NMR, 11B NMR, 1H-1H COSY, 1H-13C HSQC, and 19F-13C HSQC NMR techniques. Single crystal X-ray analysis have revealed that 1-trans, 1-cis, and 2-trans adopt ruffled conformations, with alternate meso-carbons on the opposite sides of the mean porphyrin plane. The Soret bands in the absorption spectra of the B-N fused molecules are ~40 nm redshifted compared to unfused Ni(II) porphyrin precursors. The B-N fusion have diminished the redox potential of fused porphyrins. Although 1-trans and 1-cis, show four oxidation processes, 2-trans and 2-cis show only three oxidation processes. DFT studies have revealed that the tetrahedral geometry of the boron has induced a twist in the π-conjugation, which destabilizes the HOMO and stabilizes the LUMO in 1-trans, 1-cis, 2-trans, and 2-cis.
Collapse
Affiliation(s)
- Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Brijesh Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Subhajit Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, INDIA
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, ITALY
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, ITALY
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, INDIA
| |
Collapse
|
10
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
11
|
Zhang D, Zuo L, Ye L, Chen ZH, Wang Y, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J Chem Phys 2023; 158:014106. [PMID: 36610957 DOI: 10.1063/5.0131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
Collapse
Affiliation(s)
- Daochi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Quantum nanomagnets in on-surface metal-free porphyrin chains. Nat Chem 2023; 15:53-60. [PMID: 36280765 DOI: 10.1038/s41557-022-01061-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Unlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems. Here we have synthesized individual quantum nanomagnets based on metal-free multi-porphyrin systems. Covalent chains of two to five porphyrins were first prepared on Au(111) under ultrahigh vacuum, and hydrogen atoms were then removed from selected carbons using the tip of a scanning tunnelling microscope. The conversion of specific porphyrin units to their radical or biradical state enabled the tuning of intra- and inter-porphyrin magnetic coupling. Characterization of the collective magnetic properties of the resulting chains showed that the constructed S = 1/2 antiferromagnets display a gapped excitation, whereas the S = 1 antiferromagnets exhibit distinct end states between even- and odd-numbered spin chains, consistent with Heisenberg model calculations.
Collapse
|
13
|
Lawrence J, Berdonces-Layunta A, Edalatmanesh S, Castro-Esteban J, Wang T, Jimenez-Martin A, de la Torre B, Castrillo-Bodero R, Angulo-Portugal P, Mohammed MSG, Matěj A, Vilas-Varela M, Schiller F, Corso M, Jelinek P, Peña D, de Oteyza DG. Circumventing the stability problems of graphene nanoribbon zigzag edges. Nat Chem 2022; 14:1451-1458. [PMID: 36163268 PMCID: PMC10665199 DOI: 10.1038/s41557-022-01042-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.
Collapse
Affiliation(s)
- James Lawrence
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | | | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tao Wang
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Alejandro Jimenez-Martin
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Bruno de la Torre
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | | | | | - Mohammed S G Mohammed
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Frederik Schiller
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Martina Corso
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Pavel Jelinek
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Dimas G de Oteyza
- Donostia International Physics Center, San Sebastián, Spain.
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, El Entrego, Spain.
| |
Collapse
|
14
|
Meng X, Möller J, Mansouri M, Sánchez-Portal D, Garcia-Lekue A, Weismann A, Li C, Herges R, Berndt R. Controlling the Spin States of FeTBrPP on Au(111). ACS NANO 2022; 17:1268-1274. [PMID: 36440841 DOI: 10.1021/acsnano.2c09310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spin-flip excitations of iron porphyrin molecules on Au(111) are investigated with a low-temperature scanning tunneling microscope. The molecules adopt two distinct adsorption configurations on the surface that exhibit different magnetic anisotropy energies. Density functional theory calculations show that the different structures and excitation energies reflect unlike occupations of the Fe 3d levels. We demonstrate that the magnetic anisotropy energy can be controlled by changing the adsorption site, the orientation, or the tip-molecule distance.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098Kiel, Germany
| | - Jenny Möller
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098Kiel, Germany
| | - Masoud Mansouri
- Donostia International Physics Center (DIPC), 20018Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC), 20018Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, 20018Donostia-San Sebastián, Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC), 20018Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013Bilbao, Spain
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098Kiel, Germany
| | - Chao Li
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098Kiel, Germany
| |
Collapse
|
15
|
Gao F, Li D, Barreteau C, Brandbyge M. Proposal for All-Electrical Spin Manipulation and Detection for a Single Molecule on Boron-Substituted Graphene. PHYSICAL REVIEW LETTERS 2022; 129:027201. [PMID: 35867446 DOI: 10.1103/physrevlett.129.027201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
All-electrical writing and reading of spin states attract considerable attention for their promising applications in energy-efficient spintronics devices. Here we show, based on rigorous first-principles calculations, that the spin properties can be manipulated and detected in molecular spinterfaces, where an iron tetraphenyl porphyrin (FeTPP) molecule is deposited on boron-substituted graphene (BG). Notably, a reversible spin switching between the S=1 and S=3/2 states is achieved by a gate electrode. We can trace the origin to a strong hybridization between the Fe-d_{z^{2}} and B-p_{z} orbitals. Combining density functional theory with nonequilibrium Green's function formalism, we propose an experimentally feasible three-terminal setup to probe the spin state. Furthermore, we show how the in-plane quantum transport for the BG, which is non-spin polarized, can be modified by FeTPP, yielding a significant transport spin polarization near the Fermi energy (>10% for typical coverage). Our work paves the way to realize all-electrical spintronics devices using molecular spinterfaces.
Collapse
Affiliation(s)
- Fei Gao
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Dongzhe Li
- CEMES, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
| | - Cyrille Barreteau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Mads Brandbyge
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
17
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Bottari G, Torres T, Fasel R, Lorente N. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105906. [PMID: 35302718 PMCID: PMC9259720 DOI: 10.1002/advs.202105906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Magnetism is typically associated with d- or f-block elements, but can also appear in organic molecules with unpaired π-electrons. This has considerably boosted the interest in such organic materials with large potential for spintronics and quantum applications. While several materials showing either d/f or π-electron magnetism have been synthesized, the combination of both features within the same structure has only scarcely been reported. Open-shell porphyrins (Pors) incorporating d-block transition metal ions represent an ideal platform for the realization of such architectures. Herein, the preparation of a series of open-shell, π-extended Pors that contain magnetically active metal ions (i.e., CuII , CoII , and FeII ) through a combination of in-solution and on-surface synthesis is reported. A detailed study of the magnetic interplay between π- and d-electrons in these metalloPors has been performed by scanning probe methods and density functional theory calculations. For the Cu and FePors, ferromagnetically coupled π-electrons are determined to be delocalized over the Por edges. For the CoPor, the authors find a Kondo resonance resulting from the singly occupied CoII dz 2 orbital to dominate the magnetic fingerprint. The Fe derivative exhibits the highest magnetization of 3.67 μB (S≈2) and an exchange coupling of 16 meV between the π-electrons and the Fe d-states.
Collapse
Affiliation(s)
- Qiang Sun
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
| | - Pascal Ruffieux
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCampus de CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| | - Roman Fasel
- nanotech@surfaces LaboratoryEmpa ‐ Swiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC‐UPV/EHU)Paseo de Manuel de Lardizabal 5Donostia‐San Sebastián20018Spain
- Donostia International Physics Center (DIPC)Donostia‐San Sebastián20018Spain
| |
Collapse
|
18
|
Ishii A, Shiotari A, Sugimoto Y. Mechanically induced single-molecule helicity switching of graphene-nanoribbon-fused helicene on Au(111). Chem Sci 2021; 12:13301-13306. [PMID: 34777748 PMCID: PMC8528025 DOI: 10.1039/d1sc03976h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Helicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, via on-surface synthesis using multiple precursors. Noncontact atomic force microscopy imaging with high spatial resolution confirmed the helicity of the reaction products. The helicity was geometrically converted by pushing a CO-terminated tip into the twisted framework, which is the first demonstration of helicity switching at the single-molecule scale.
Collapse
Affiliation(s)
- Ayumu Ishii
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| | - Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| |
Collapse
|
19
|
Peng X, Mahalingam H, Dong S, Mutombo P, Su J, Telychko M, Song S, Lyu P, Ng PW, Wu J, Jelínek P, Chi C, Rodin A, Lu J. Visualizing designer quantum states in stable macrocycle quantum corrals. Nat Commun 2021; 12:5895. [PMID: 34625542 PMCID: PMC8501084 DOI: 10.1038/s41467-021-26198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Creating atomically precise quantum architectures with high digital fidelity and desired quantum states is an important goal in a new era of quantum technology. The strategy of creating these quantum nanostructures mainly relies on atom-by-atom, molecule-by-molecule manipulation or molecular assembly through non-covalent interactions, which thus lack sufficient chemical robustness required for on-chip quantum device operation at elevated temperature. Here, we report a bottom-up synthesis of covalently linked organic quantum corrals (OQCs) with atomic precision to induce the formation of topology-controlled quantum resonance states, arising from a collective interference of scattered electron waves inside the quantum nanocavities. Individual OQCs host a series of atomic orbital-like resonance states whose orbital hybridization into artificial homo-diatomic and hetero-diatomic molecular-like resonance states can be constructed in Cassini oval-shaped OQCs with desired topologies corroborated by joint ab initio and analytic calculations. Our studies open up a new avenue to fabricate covalently linked large-sized OQCs with atomic precision to engineer desired quantum states with high chemical robustness and digital fidelity for future practical applications.
Collapse
Affiliation(s)
- Xinnan Peng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | | | - Shaoqiang Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic
| | - Jie Su
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pei Wen Ng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Prague, 16200, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, 78371, Czech Republic.
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| | - Aleksandr Rodin
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
20
|
Pijeat J, Chaussy L, Simoës R, Isopi J, Lauret J, Paolucci F, Marcaccio M, Campidelli S. Thermally Induced Synthesis of Anthracene-, Pyrene- and Naphthalene-Fused Porphyrins. ChemistryOpen 2021; 10:997-1003. [PMID: 34617692 PMCID: PMC8495684 DOI: 10.1002/open.202100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
The synthesis of π-extended porphyrins containing anthracenyl moieties still represents an important challenge. Here, we report on the synthesis of a series of unsubstituted naphthyl-, pyrenyl- and anthracenyl-fused zinc porphyrin derivatives. To this aim, meso-substitued porphyrins are synthesized and the fusion of the PAHs (Polycyclic Aromatic Hydrocarbon) on the β-positions are performed through thermally induced dehydro-aromatization. The fused zinc-porphyrin derivatives are fully characterized and their optical absorption and photoluminescence properties are reported. We also demonstrate that zinc can be removed from the porphyrin core, giving rise to pure C, H, N materials. This work constitutes the first step towards the synthesis of the fully-fused tetra-anthracenylporphyrin.
Collapse
Affiliation(s)
- Joffrey Pijeat
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Léo Chaussy
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Roxanne Simoës
- Université Paris-SaclayCEA, CNRS, NIMBE, LICSEN91191Gif-sur-YvetteFrance
| | - Jacopo Isopi
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Jean‐Sébastien Lauret
- Université Paris SaclayENS Paris-SaclayCentrale Supelec, CNRS, LUMIN91405Orsay CedexFrance
| | - Francesco Paolucci
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | - Massimo Marcaccio
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 240126BolognaItaly
| | | |
Collapse
|
21
|
Bhandary S, Tomczak JM, Valli A. Designing a mechanically driven spin-crossover molecular switch via organic embedding. NANOSCALE ADVANCES 2021; 3:4990-4995. [PMID: 34485819 PMCID: PMC8386408 DOI: 10.1039/d1na00407g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Among spin-crossover complexes, Fe-porphyrin (FeP) stands out for molecular spintronic applications: an intricate, yet favourable balance between ligand fields, charge transfer, and the Coulomb interaction makes FeP highly manipulable, while its planar structure facilitates device integration. Here, we theoretically design a mechanical spin-switch device in which external strain triggers the intrinsic magneto-structural coupling of FeP through a purely organic embedding. Exploiting the chemical compatibility and stretchability of graphene nanoribbon electrodes, we overcome common reliability and reproducibility issues of conventional inorganic setups. The competition between the Coulomb interaction and distortion-induced changes in ligand fields requires methodologies beyond the state-of-the-art: combining density functional theory with many-body techniques, we demonstrate experimentally feasible tensile strain to trigger a low-spin (S = 1) to high-spin (S = 2) crossover. Concomitantly, the current through the device toggles by over an order of magnitude, adding a fully planar mechanical current-switch unit to the panoply of molecular spintronics.
Collapse
Affiliation(s)
- Sumanta Bhandary
- School of Physics, Trinity College Dublin, The University of Dublin Dublin 2 Ireland +353-1-896 8455
| | - Jan M Tomczak
- Institute of Solid State Physics, Vienna University of Technology 1040 Vienna Austria
| | - Angelo Valli
- Institute for Theoretical Physics, Vienna University of Technology 1040 Vienna Austria
| |
Collapse
|
22
|
Mallada B, Błoński P, Langer R, Jelínek P, Otyepka M, de la Torre B. On-Surface Synthesis of One-Dimensional Coordination Polymers with Tailored Magnetic Anisotropy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32393-32401. [PMID: 34227386 DOI: 10.1021/acsami.1c04693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One-dimensional (1D) metalloporphyrin polymers can exhibit magnetism, depending on the central metal ion and the surrounding ligand field. The possibility of tailoring the magnetic signal in such nanostructures is highly desirable for potential spintronic devices. We present low-temperature (4.2 K) scanning tunneling microscopy and spectroscopy (LT-STM/STS) in combination with high-resolution atomic force microscopy (AFM) and a density functional theory (DFT) study of a two-step synthetic protocol to grow a robust Fe-porphyrin-based 1D polymer on-surface and to tune its magnetic properties. A thermally assisted Ullmann-like coupling reaction of Fe(III)diphenyl-bromine-porphyrin (2BrFeDPP-Cl) on Au(111) in ultra-high vacuum results in long (up to 50 nm) 1D metal-organic wires with regularly distributed magnetic and (electronically) independent porphyrins units, as confirmed by STM images. Thermally controlled C-H bond activation leads to conformational changes in the porphyrin units, which results in molecular planarization steered by 2D surface confinement, as confirmed by high-resolution AFM images. Spin-flip STS images in combination with DFT self-consistent spin-orbit coupling calculations of porphyrin units with different structural conformations reveal that the magnetic anisotropy of the triplet ground state of the central Fe ion units drops down substantially upon intramolecular rearrangements. These results point out to new opportunities for realizing and studying well-defined 1D organic magnets on surfaces and demonstrate the feasibility of tailoring their magnetic properties.
Collapse
Affiliation(s)
- Benjamin Mallada
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Piotr Błoński
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
| | - Rostislav Langer
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
- IT4Innovations, Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba,Czech Republic
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Material, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 783 71 Olomouc, Czech Republic
- Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| |
Collapse
|
23
|
Houtsma RSK, de la Rie J, Stöhr M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chem Soc Rev 2021; 50:6541-6568. [PMID: 34100034 PMCID: PMC8185524 DOI: 10.1039/d0cs01541e] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Graphene nanoribbons hold great promise for future applications in nanoelectronic devices, as they may combine the excellent electronic properties of graphene with the opening of an electronic band gap - not present in graphene but required for transistor applications. With a two-step on-surface synthesis process, graphene nanoribbons can be fabricated with atomic precision, allowing precise control over width and edge structure. Meanwhile, a decade of research has resulted in a plethora of graphene nanoribbons having various structural and electronic properties. This article reviews not only the on-surface synthesis of atomically precise graphene nanoribbons but also how their electronic properties are ultimately linked to their structure. Current knowledge and considerations with respect to precursor design, which eventually determines the final (electronic) structure, are summarized. Special attention is dedicated to the electronic properties of graphene nanoribbons, also in dependence on their width and edge structure. It is exactly this possibility of precisely changing their properties by fine-tuning the precursor design - offering tunability over a wide range - which has generated this vast research interest, also in view of future applications. Thus, selected device prototypes are presented as well.
Collapse
Affiliation(s)
- R. S. Koen Houtsma
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Joris de la Rie
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
24
|
Lu J, Da B, Xiong W, Du R, Hao Z, Ruan Z, Zhang Y, Sun S, Gao L, Cai J. Identification and electronic characterization of four cyclodehydrogenation products of H 2TPP molecules on Au(111). Phys Chem Chem Phys 2021; 23:11784-11788. [PMID: 33982699 DOI: 10.1039/d1cp01040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-H bond activation and dehydrogenative coupling reactions have always been significant approaches to construct microscopic nanostructures on surfaces. By using scanning tunneling microscopy/spectroscopy (STM/STS) and non-contact atomic force microscopy (nc-AFM) combined with density functional theory (DFT), we systematically characterized the atomically precise topographies and electronic properties of H2TPP cyclodehydrogenation products on Au(111). Through surface-assisted thermal excitation, four types of cyclodehydrogenation products were obtained and clearly resolved in the nc-AFM images. The electronic characterization depicts the predominant resonances and their spatial distributions of the four products.
Collapse
Affiliation(s)
- Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Binbin Da
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Renjun Du
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Zhenliang Hao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Zilin Ruan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
25
|
Xu J, Zhu L, Gao H, Li C, Zhu M, Jia Z, Zhu X, Zhao Y, Li S, Wu F, Shen Z. Ligand Non‐innocence and Single Molecular Spintronic Properties of Ag
II
Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Meng‐Jiao Zhu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen‐Yu Jia
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Xin‐Yang Zhu
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Shao‐Chun Li
- National Laboratory of Solid State Microstructures School of Physics Collaborative Innovation Center of, Advanced Microstructures Nanjing University Nanjing 210093 P. R. China
- Jiangsu Provincial Key Laboratory for Nanotechnology Nanjing University Nanjing 210093 China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210046 P. R. China
| |
Collapse
|
26
|
Xu J, Zhu L, Gao H, Li C, Zhu MJ, Jia ZY, Zhu XY, Zhao Y, Li SC, Wu F, Shen Z. Ligand Non-innocence and Single Molecular Spintronic Properties of Ag II Dibenzocorrole Radical on Ag(111). Angew Chem Int Ed Engl 2021; 60:11702-11706. [PMID: 33694297 DOI: 10.1002/anie.202016674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Indexed: 11/08/2022]
Abstract
A facile method for the quantitative preparation of silver dibenzo-fused corrole Ag-1 is described. In contrast to the saddle conformation resolved by single-crystal X-ray analysis for Ag-1, it adopts an unprecedented domed geometry, with up and down orientations, when adsorbed on an Ag(111) surface. Sharp Kondo resonances near Fermi level, both at the corrole ligand and the silver center were observed by cryogenic STM, with relatively high Kondo temperature (172 K), providing evidence for a non-innocent AgII -corrole.2- species. Further investigation validates that benzene ring fusion and molecule-substrate interactions play pivotal roles in enhancing Ag(4d(x2 -y2 ))-corrole (π) orbital interactions, thereby stabilizing the open-shell singlet AgII -corrole.2- on Ag(111) surface. Moreover, this strategy used for constructing metal-free benzene-ring fused corrole ligand gives rise to inspiration of designing novel metal-corrole compound for multichannel molecular spintronics devices.
Collapse
Affiliation(s)
- Jialiang Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Li Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Chenhong Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen-Yu Jia
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yang Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Shao-Chun Li
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of, Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.,Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, P. R. China
| |
Collapse
|
27
|
Tretyakov EV, Lomanovich KA, Bagryanskaya EG, Romanenko GV, Bogomyakov AS, Zueva EM, Petrova MM, Dmitriev AA, Gritsan NP. 2‐(8‐Iodonaphthalen‐1‐yl)‐Substituted Nitronyl Nitroxide: Suppressed Reactivity of Iodine Atom and Unusual Temperature Dynamics of the EPR Spectrum. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Evgeny V. Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect, 47 Moscow 119991 Russia
| | - Konstantin A. Lomanovich
- N. N. Vorozhtsov Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences 9 Ac. Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences 9 Ac. Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Galina V. Romanenko
- International Tomography Center Siberian Branch of Russian Academy of Sciences 3a Institutskaya Str. Novosibirsk 630090 Russia
| | - Artem S. Bogomyakov
- International Tomography Center Siberian Branch of Russian Academy of Sciences 3a Institutskaya Str. Novosibirsk 630090 Russia
| | - Ekaterina M. Zueva
- Kazan National Research Technological University 68 K. Marx Str. Kazan 420015 Russia
| | - Maria M. Petrova
- Kazan National Research Technological University 68 K. Marx Str. Kazan 420015 Russia
| | - Alexey A. Dmitriev
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of Russian Academy of Sciences 3 Institutskaya Str. Novosibirsk 630090 Russia
| | - Nina P. Gritsan
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of Russian Academy of Sciences 3 Institutskaya Str. Novosibirsk 630090 Russia
| |
Collapse
|
28
|
Haastrup MJ, Mammen MHR, Rodríguez-Fernández J, Lauritsen JV. Lateral Interfaces between Monolayer MoS 2 Edges and Armchair Graphene Nanoribbons on Au(111). ACS NANO 2021; 15:6699-6708. [PMID: 33750101 DOI: 10.1021/acsnano.0c10062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The realization of electronic devices based on heterostructures of metallic, semiconducting, or insulating two-dimensional materials relies on the ability to form structurally coherent and clean interfaces between them, vertically or laterally. Lateral two-dimensional heterostructures that fuse together two different materials in a well-controlled manner have attracted recent attention, but the methods to form seamless interfaces between structurally dissimilar materials, such as graphene and transition-metal dichalcogenides (TMDCs), are still limited. Here, we investigate the structure of the lateral interfaces that arise between monolayer MoS2 flakes on Au(111) and two families of armchair graphene nanoribbons (GNRs) created through on-surface assisted Ullmann coupling using regular organobromine precursors for GNR synthesis. We find that parallel alignment between the GNR armchair edge and MoS2 leads to van der Waals bonded nanoribbons, whereas a perpendicular orientation is characterized by a single phenyl-group of the GNR covalently bonded to S on the edge. The edge-on bonding is facilitated by a hydrogen treatment of the MoS2, and temperature control during growth is shown to influence the nanoribbon width and the yield of covalently attached nanoribbons. Interestingly, the temperatures needed to drive the intramolecular dehydrogenation during GNR formation are lowered significantly by the presence of MoS2, which we attribute to enhanced hydrogen recombination at the MoS2 edges. These results are a demonstration of a viable method to make laterally bonded graphene nanostructures to TMDCs to be used in further investigations of two-dimensional heterostructure junctions.
Collapse
Affiliation(s)
- Mark J Haastrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias H R Mammen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Saraswat V, Jacobberger RM, Arnold MS. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS NANO 2021; 15:3674-3708. [PMID: 33656860 DOI: 10.1021/acsnano.0c07835] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene nanoribbons (GNRs) have recently emerged as promising candidates for channel materials in future nanoelectronic devices due to their exceptional electronic, thermal, and mechanical properties and chemical inertness. However, the adoption of GNRs in commercial technologies is currently hampered by materials science and integration challenges pertaining to synthesis and devices. In this Review, we present an overview of the current status of challenges, recent breakthroughs toward overcoming these challenges, and possible future directions for the field of GNR electronics. We motivate the need for exploration of scalable synthetic techniques that yield atomically precise, placed, registered, and oriented GNRs on CMOS-compatible substrates and stimulate ideas for contact and dielectric engineering to realize experimental performance close to theoretically predicted metrics. We also briefly discuss unconventional device architectures that could be experimentally investigated to harness the maximum potential of GNRs in future spintronic and quantum information technologies.
Collapse
Affiliation(s)
- Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert M Jacobberger
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A Covalent Black Phosphorus/Metal–Organic Framework Hetero‐nanostructure for High‐Performance Flexible Supercapacitors. Angew Chem Int Ed Engl 2021; 60:10366-10374. [DOI: 10.1002/anie.202101648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Tianyu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Yunya He
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| |
Collapse
|
31
|
Wu T, Ma Z, He Y, Wu X, Tang B, Yu Z, Wu G, Chen S, Bao N. A Covalent Black Phosphorus/Metal–Organic Framework Hetero‐nanostructure for High‐Performance Flexible Supercapacitors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tianyu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Yunya He
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University (former: Nanjing University of Technology) Nanjing 210009 P. R. China
| |
Collapse
|
32
|
Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J. On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. NANO LETTERS 2021; 21:861-867. [PMID: 33305570 DOI: 10.1021/acs.nanolett.0c04627] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to engineer geometrically well-defined antidots in large triangulene homologues allows for creating an entire family of triangulene quantum rings (TQRs) with tunable high-spin ground state, crucial for next-generation molecular spintronic devices. Herein, we report the synthesis of an open-shell [7]triangulene quantum ring ([7]TQR) molecule on Au(111) through the surface-assisted cyclodehydrogenation of a rationally designed kekulene derivative. Bond-resolved scanning tunneling microscopy (BR-STM) unambiguously imaged the molecular backbone of a single [7]TQR with a triangular zigzag edge topology, which can be viewed as [7]triangulene decorated with a coronene-like antidot in the center. Additionally, dI/dV mapping reveals that both inner and outer zigzag edges contribute to the edge-localized and spin-polarized electronic states of [7]TQR. Both experimental results and spin-polarized density functional theory calculations indicate that [7]TQR retains its open-shell septuple ground state (S = 3) on Au(111). This work demonstrates a new route for the design of high-spin graphene quantum rings for future quantum devices.
Collapse
Affiliation(s)
- Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pingo Mutombo
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaotang Song
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Martin Ondráček
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
| | - Pavlo Golub
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Prague 16200, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc 78371, Czech Republic
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
33
|
Osterloh WR, Kumar S, Chaudhri N, Fang Y, Sankar M, Kadish KM. Facile Heterogeneous and Homogeneous Anion Induced Electrosynthesis: An Efficient Method for Obtaining π-Extended Porphyrins. Inorg Chem 2020; 59:16737-16746. [PMID: 33143408 DOI: 10.1021/acs.inorgchem.0c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two closely related electrosynthetic approaches are applied for the preparation of novel π-extended tetraphenylporphyrins from malononitrile-appended meso-β di-fused porphyrins, represented as MTPP(MN)2, where TPP = the dianion of tetraphenylporphyrin and MN = malononitrile. The first method involves application of a controlled reducing potential at a platinum electrode in CH2Cl2, while the second proceeds via cyanide anion induced electron transfer. Both methods produced the same decyanated, π-extended di-fused porphyrins represented as MTPP(VCN)2 where VCN = vinyl cyanide and M = H2, NiII, CuII, or ZnII in almost quantitative yields. The final isolated and purified porphyrin products are characterized by a split Soret band ranging from 411-497 nm and two broad intense Q bands. The new π-extended porphyrins are easier to reduce than the parent MTPP or MTPP(MN)2 compounds by 760-800 mV and 180-190 mV, respectively, and possess an electrochemical HOMO-LUMO gap ranging from 1.48 to 1.66 V. They are also characterized by two reversible one-electron ring-centered reductions in CH2Cl2 and three reversible one-electron ring-centered reductions in THF. A fourth irreversible reduction is seen in THF at more negative potentials and is assigned to one or two of the fused cyanobenzene rings of the macrocycle.
Collapse
Affiliation(s)
- W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Nivedita Chaudhri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
34
|
Chen Z, Narita A, Müllen K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001893. [PMID: 32945038 DOI: 10.1002/adma.202001893] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Graphene nanoribbons (GNRs) are quasi-1D graphene strips, which have attracted attention as a novel class of semiconducting materials for various applications in electronics and optoelectronics. GNRs exhibit unique electronic and optical properties, which sensitively depend on their chemical structures, especially the width and edge configuration. Therefore, precision synthesis of GNRs with chemically defined structures is crucial for their fundamental studies as well as device applications. In contrast to top-down methods, bottom-up chemical synthesis using tailor-made molecular precursors can achieve atomically precise GNRs. Here, the synthesis of GNRs on metal surfaces under ultrahigh vacuum (UHV) and chemical vapor deposition (CVD) conditions is the main focus, and the recent progress in the field is summarized. The UHV method leads to successful unambiguous visualization of atomically precise structures of various GNRs with different edge configurations. The CVD protocol, in contrast, achieves simpler and industry-viable fabrication of GNRs, allowing for the scale up and efficient integration of the as-grown GNRs into devices. The recent updates in device studies are also addressed using GNRs synthesized by both the UHV method and CVD, mainly for transistor applications. Furthermore, views on the next steps and challenges in the field of on-surface synthesized GNRs are provided.
Collapse
Affiliation(s)
- Zongping Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department of Chemistry, University of Cologne, Greinstr. 4-6, D-50939, Cologne, Germany
| |
Collapse
|
35
|
Mateo LM, Sun Q, Eimre K, Pignedoli CA, Torres T, Fasel R, Bottari G. On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chem Sci 2020; 12:247-252. [PMID: 34163593 PMCID: PMC8178705 DOI: 10.1039/d0sc04316h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
On-surface synthesis has emerged as a powerful tool for the construction of large, planar, π-conjugated structures that are not accessible through standard solution chemistry. Among such solid-supported architectures, graphene nanoribbons (GNRs) hold a prime position for their implementation in nanoelectronics due to their manifold outstanding properties. Moreover, using appropriately designed molecular precursors, this approach allows the synthesis of functionalized GNRs, leading to nanostructured hybrids with superior physicochemical properties. Among the potential “partners” for GNRs, porphyrins (Pors) outstand due to their rich chemistry, robustness, and electronic richness, among others. However, the use of such π-conjugated macrocycles for the construction of GNR hybrids is challenging and examples are scarce. Herein, singly and doubly Por-capped GNR segments presenting a commensurate and triply-fused GNR–Por heterojunction are reported. The study of the electronic properties of such hybrid structures by high-resolution scanning tunneling microscopy, scanning tunneling spectroscopy, and DFT calculations reveals a weak hybridization of the electronic states of the GNR segment and the Por moieties despite their high degree of conjugation. Singly and doubly porphyrin-capped graphene nanoribbon segments are reported and their electronic properties are studied by high-resolution scanning tunneling microscopy and spectroscopy, and DFT calculations.![]()
Collapse
Affiliation(s)
- Luis M Mateo
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain
| | - Qiang Sun
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland .,Materials Genome Institute, Shanghai University 200444 Shanghai China
| | - Kristjan Eimre
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Carlo A Pignedoli
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland
| | - Tomas Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Roman Fasel
- Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology 8600 Dübendorf Switzerland .,Department of Chemistry and Biochemistry, University of Bern 3012 Bern Switzerland
| | - Giovanni Bottari
- Departamento de Química Orgánica, Universidad Autónoma de Madrid 28049 Madrid Spain .,IMDEA-Nanociencia Campus de Cantoblanco 28049 Madrid Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
36
|
Sun Q, Mateo LM, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R. Inducing Open-Shell Character in Porphyrins through Surface-Assisted Phenalenyl π-Extension. J Am Chem Soc 2020; 142:18109-18117. [DOI: 10.1021/jacs.0c07781] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qiang Sun
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Luis M. Mateo
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - Roberto Robles
- Centro de Fı́sica de Materiales, CFM/MPC (CSIC-UPV/EHU), Paseo de Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Nicolas Lorente
- Centro de Fı́sica de Materiales, CFM/MPC (CSIC-UPV/EHU), Paseo de Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Giovanni Bottari
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Campus
de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Tomás Torres
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IMDEA-Nanociencia, Campus
de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
37
|
Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S. Precise Control of π-Electron Magnetism in Metal-Free Porphyrins. J Am Chem Soc 2020; 142:18532-18540. [DOI: 10.1021/jacs.0c07791] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Zhao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiyue Jiang
- The meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengyang Xu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenna Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xiaodong Zhuang
- The meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
38
|
Yin C, Peng Z, Liu D, Song H, Zhu H, Chen Q, Wu K. Selective Intramolecular Dehydrocyclization of Co-Porphyrin on Au(111). Molecules 2020; 25:molecules25173766. [PMID: 32824933 PMCID: PMC7503656 DOI: 10.3390/molecules25173766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
The on-surface C–H bond activation and coupling reaction is a powerful approach to constructing fine-tuned surface nanostructures. It is quite challenging to control its regioselectivity due to the inertness of the C–H bond involved. With scanning tunneling microscopy/spectroscopy and theoretical calculations, the C–H activation and sequential intramolecular dehydrocyclization of meso-tetra(p-methoxyphenyl)porphyrinatocobalt(II) was explored on Au(111), showing that the methoxy groups in the molecule could kinetically mediate the selectivity of the intramolecular reaction over its intermolecular coupling counterpart. The experimental results demonstrate that the introduced protecting group could help augment the selectivity of such on-surface reaction, which can be applied to the precise fabrication of functional surface nanostructures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Wu
- Correspondence: (Q.C.); (K.W.)
| |
Collapse
|
39
|
El Abbassi M, Perrin ML, Barin GB, Sangtarash S, Overbeck J, Braun O, Lambert CJ, Sun Q, Prechtl T, Narita A, Müllen K, Ruffieux P, Sadeghi H, Fasel R, Calame M. Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS NANO 2020; 14:5754-5762. [PMID: 32223259 PMCID: PMC7254832 DOI: 10.1021/acsnano.0c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 05/29/2023]
Abstract
Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.
Collapse
Affiliation(s)
- Maria El Abbassi
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Kavli
Institute of Nanoscience, Delft University
of Technology, 2628 CJ Delft, The Netherlands
| | - Mickael L. Perrin
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriela Borin Barin
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Sara Sangtarash
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jan Overbeck
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Oliver Braun
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
| | - Colin J. Lambert
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Qiang Sun
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | | | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Hatef Sadeghi
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
- School of
Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Roman Fasel
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Chemistry and Biochemistry, University
of Bern, CH-3012 Bern, Switzerland
| | - Michel Calame
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
- Department
of Physics, University of Basel, CH-4056 Basel, Switzerland
- Swiss
Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
40
|
Merino-Díez N, Mohammed MSG, Castro-Esteban J, Colazzo L, Berdonces-Layunta A, Lawrence J, Pascual JI, de Oteyza DG, Peña D. Transferring axial molecular chirality through a sequence of on-surface reactions. Chem Sci 2020; 11:5441-5446. [PMID: 34094071 PMCID: PMC8159356 DOI: 10.1039/d0sc01653e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reactions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from adequate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchitectures with pre-defined handedness. The axial chirality of reactants is transferred through multistep on-surface reactions to chiral polymers and to prochiral graphene nanoribbons.![]()
Collapse
Affiliation(s)
- Néstor Merino-Díez
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,CIC NanoGUNE, Nanoscience Cooperative Research Center 20018 San Sebastián Spain.,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain
| | - Jesús Castro-Esteban
- CiQUS, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares 15705 Santiago de Compostela Spain
| | - Luciano Colazzo
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain
| | - James Lawrence
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain
| | - J Ignacio Pascual
- CIC NanoGUNE, Nanoscience Cooperative Research Center 20018 San Sebastián Spain.,Ikerbasque, Basque Foundation for Science 20018 San Sebastián Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center (DIPC) 20018 San Sebastián Spain .,Centro de Física de Materiales-Material Physics Center (CFM-PCM) 20018 San Sebastián Spain.,Ikerbasque, Basque Foundation for Science 20018 San Sebastián Spain
| | - Diego Peña
- CiQUS, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares 15705 Santiago de Compostela Spain
| |
Collapse
|
41
|
Ma C, Xiao Z, Puretzky AA, Wang H, Mohsin A, Huang J, Liang L, Luo Y, Lawrie BJ, Gu G, Lu W, Hong K, Bernholc J, Li AP. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence. ACS NANO 2020; 14:5090-5098. [PMID: 32283017 DOI: 10.1021/acsnano.0c01737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid-state narrow-band light emitters are on-demand for quantum optoelectronics. Current approaches based on defect engineering in low-dimensional materials usually introduce a broad range of emission centers. Here, we report narrow-band light emission from covalent heterostructures fused to the edges of graphene nanoribbons (GNRs) by controllable on-surface reactions from molecular precursors. Two types of heterojunction (HJ) states are realized by sequentially synthesizing GNRs and graphene nanodots (GNDs) and then coupling them together. HJs between armchair GNDs and armchair edges of the GNR are coherent and give rise to narrow-band photoluminescence. In contrast, HJs between the armchair GNDs and the zigzag ends of GNRs are defective and give rise to nonradiative states near the Fermi level. At low temperatures, sharp photoluminescence emissions with peak energy range from 2.03 to 2.08 eV and line widths of 2-5 meV are observed. The radiative HJ states are uniform, and the optical transition energy is controlled by the band gaps of GNRs and GNDs. As these HJs can be synthesized in a large quantity with atomic precision, this finding highlights a route to programmable and deterministic creation of quantum light emitters.
Collapse
Affiliation(s)
- Chuanxu Ma
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongcan Xiao
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hao Wang
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Mohsin
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jingsong Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yingdong Luo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gong Gu
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wenchang Lu
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jerzy Bernholc
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
42
|
Abstract
We introduce a computational approach to study porphyrin-like transition metal complexes, bridging density functional theory and exact many-body techniques, such as the density matrix renormalization group (DMRG). We first derive a multi-orbital Anderson impurity Hamiltonian starting from first principles considerations that qualitatively reproduce generalized gradient approximation (GGA)+U results when ignoring inter-orbital Coulomb repulsion U ′ and Hund exchange J. An exact canonical transformation is used to reduce the dimensionality of the problem and make it amenable to DMRG calculations, including all many-body terms (both intra- and inter-orbital), which are treated in a numerically exact way. We apply this technique to FeN 4 centers in graphene and show that the inclusion of these terms has dramatic effects: as the iron orbitals become single occupied due to the Coulomb repulsion, the inter-orbital interaction further reduces the occupation, yielding a non-monotonic behavior of the magnetic moment as a function of the interactions, with maximum polarization only in a small window at intermediate values of the parameters. Furthermore, U ′ changes the relative position of the peaks in the density of states, particularly on the iron d z 2 orbital, which is expected to affect the binding of ligands greatly.
Collapse
|
43
|
Li J, Brandimarte P, Vilas-Varela M, Merino-Díez N, Moreno C, Mugarza A, Mollejo JS, Sánchez-Portal D, Garcia de Oteyza D, Corso M, Garcia-Lekue A, Peña D, Pascual JI. Band Depopulation of Graphene Nanoribbons Induced by Chemical Gating with Amino Groups. ACS NANO 2020; 14:1895-1901. [PMID: 31999431 DOI: 10.1021/acsnano.9b08162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electronic properties of graphene nanoribbons (GNRs) can be precisely tuned by chemical doping. Here we demonstrate that amino (NH2) functional groups attached at the edges of chiral GNRs (chGNRs) can efficiently gate the chGNRs and lead to the valence band (VB) depopulation on a metallic surface. The NH2-doped chGNRs are grown by on-surface synthesis on Au(111) using functionalized bianthracene precursors. Scanning tunneling spectroscopy resolves that the NH2 groups significantly upshift the bands of chGNRs, causing the Fermi level crossing of the VB onset of chGNRs. Through density functional theory simulations we confirm that the hole-doping behavior is due to an upward shift of the bands induced by the edge NH2 groups.
Collapse
Affiliation(s)
- Jingcheng Li
- CIC nanoGUNE BRTA , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
| | - Pedro Brandimarte
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Nestor Merino-Díez
- CIC nanoGUNE BRTA , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
| | - Cesar Moreno
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona , Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona , Spain
- ICREA Institució Catalana de Recerca i Estudis Avancats , Lluis Companys 23 , 08010 Barcelona , Spain
| | - Jaime Sáez Mollejo
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales MPC (CSIC-UPV/EHU) , 20018 Donostia-San Sebastián , Spain
| | - Dimas Garcia de Oteyza
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales MPC (CSIC-UPV/EHU) , 20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Martina Corso
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales MPC (CSIC-UPV/EHU) , 20018 Donostia-San Sebastián , Spain
| | - Aran Garcia-Lekue
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Jose Ignacio Pascual
- CIC nanoGUNE BRTA , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
44
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020; 59:7658-7668. [DOI: 10.1002/anie.201913783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
45
|
Su J, Telychko M, Song S, Lu J. Triangulenes: From Precursor Design to On‐Surface Synthesis and Characterization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Su
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Mykola Telychko
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| | - Shaotang Song
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Jiong Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials (CA2DM) National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
| |
Collapse
|
46
|
Chaudhri N, Cong L, Bulbul AS, Grover N, Osterloh WR, Fang Y, Sankar M, Kadish KM. Structural, Photophysical, and Electrochemical Properties of Doubly Fused Porphyrins and Related Fused Chlorins. Inorg Chem 2020; 59:1481-1495. [PMID: 31889445 DOI: 10.1021/acs.inorgchem.9b03329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrochemical and physicochemical properties of tetraphenylporphyrins and tetraphenylchlorins with two fused indanedione (IND) or malononitrile (MN) groups and two antipodal Br, Ph, or H β-substituents are investigated in nonaqueous media. These compounds were synthesized by oxidative fusion of free-base trans-chlorins, followed by metalation. The corresponding free-base di-fused chlorins were also isolated as intermediates and characterized for comparisons. The examined di-fused porphyrins (DFP) and di-fused chlorins (DFC) are represented as MDFP(Y)2(R)2 and H2DFC(Y)2(R)2, where M = 2H, CuII, NiII, ZnII, and CoII, Y is a fused indanedione (IND) or malononitrile group (MN), and R = H, Br, or Ph. The IND- and MN-appended compounds in both series exhibit the expected two one-electron oxidations but quite different redox behavior is observed upon reduction, where the free-base IND-appended chlorins show four reversible one-electron reductions, compared to only two for the related free-base MN-appended chlorins. Although porphyrin trianions and tetraanions have been recently described for derivatives with highly electron-withdrawing and/or π-extending substituents, this seems not to be the case for the doubly fused IND-chlorins, where the first two one-electron additions are proposed to be located at the conjugated macrocycle and the last two at the fused IND groups, each of which is reduced at a different potential, consistent with the behavior expected for two equivalent and interacting redox centers. Unlike the examined chlorins, which are all stable in their electroreduced forms, the electrogenerated anionic forms of the di-fused porphyrins are all highly reactive and characterized by cyclic voltammograms having reduction peaks not only for the synthesized compounds added to solution but also for one or more new redox active species formed at the electrode surface in homogeneous chemical reactions following electron transfer. Comparisons are made between electrochemical behavior of the structurally related porphyrins and chlorins and the sites of electron transfer assigned on the basis of known electrochemical diagnostic criteria. One of the compounds, ZnDFP(MN)2, was also structurally characterized as having a ruffled and twisted macrocyclic conformation.
Collapse
Affiliation(s)
- Nivedita Chaudhri
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Lei Cong
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Amir Sohel Bulbul
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Nitika Grover
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - W Ryan Osterloh
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Yuanyuan Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Muniappan Sankar
- Department of Chemistry , Indian Institute of Technology Roorkee , Roorkee 247667 , India
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
47
|
Baklanov A, Garnica M, Robert A, Bocquet ML, Seufert K, Küchle JT, Ryan PTP, Haag F, Kakavandi R, Allegretti F, Auwärter W. On-Surface Synthesis of Nonmetal Porphyrins. J Am Chem Soc 2020; 142:1871-1881. [PMID: 31944105 DOI: 10.1021/jacs.9b10711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report the on-surface synthesis of a nonmetal porphyrin, namely, silicon tetraphenylporphyrin (Si-TPP), by the deposition of atomic silicon onto a free-base TPP layer on a Ag(100) surface under ultrahigh vacuum (UHV) conditions. Scanning tunneling microscopy provides insights into the self-assembly of the TPP molecules before and after Si insertion. Silicon coordinates with all four nitrogen atoms of the TPP macrocycle and interacts with a silver atom of the substrate as confirmed by scanning tunneling spectroscopy, X-ray photoelectron spectroscopy, and complementary density functional theory calculations. The Si-TPP complex presents a saddle-shaped conformation that is stable under STM manipulation. Our study shows how protocols established for the on-surface metalation of tetrapyrroles can be adopted to achieve nonmetal porphyrins. Complementary experiments yielding Si-TPP and Ge-TPP on Ag(111) highlight the applicability to different main group elements and supports. The success of our nonmetal porphyrin synthesis procedure is further corroborated by a temperature-programmed desorption experiment, revealing the desorption of Ge-TPP. This extension of interfacial complex formation beyond metal elements opens promising prospects for new tetrapyrrole architectures with distinct properties and functionalities.
Collapse
Affiliation(s)
- Aleksandr Baklanov
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Manuela Garnica
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Anton Robert
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Knud Seufert
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Johannes T Küchle
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Paul T P Ryan
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot OX11 0DE , U.K.,Department of Materials , Imperial College London , South Kensington, London , SW7 2AZ , U.K
| | - Felix Haag
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Reza Kakavandi
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Francesco Allegretti
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Willi Auwärter
- Physics Department E20 , Technical University of Munich , James-Franck-Str. 1 , D-85748 Garching , Germany
| |
Collapse
|
48
|
Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers WK, Müllen K, Feng X, Bogani L. Quantum units from the topological engineering of molecular graphenoids. Science 2019; 366:1107-1110. [DOI: 10.1126/science.aay7203] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp2-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.
Collapse
Affiliation(s)
- Federico Lombardi
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Alessandro Lodi
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Michael Slota
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| | - Akimitsu Narita
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - William K. Myers
- Inorganic Chemistry, University of Oxford, South Parks Road, OX1 3QR Oxford, UK
| | - Klaus Müllen
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Lapo Bogani
- Department of Materials, University of Oxford, 16 Parks Road, OX1 3PH Oxford, UK
| |
Collapse
|
49
|
Xie L, Lin H, Zhang C, Li J, Merino-Díez N, Friedrich N, Bouju X, Li Y, Pascual JI, Xu W. Switching the Spin on a Ni Trimer within a Metal-Organic Motif by Controlling the On-Top Bromine Atom. ACS NANO 2019; 13:9936-9943. [PMID: 31381315 DOI: 10.1021/acsnano.9b04715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the spin of metal atoms embedded in molecular systems is a key step toward the realization of molecular electronics and spintronics. Many efforts have been devoted to explore the influencing factors dictating the survival or quenching of a magnetic moment in a metal-organic molecule, and among others, the spin control by axial ligand attachments is the most promising. Herein, from the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and scanning tunneling spectroscopy measurements together with density functional theory calculations, we successfully demonstrate that a Ni trimer within a metal-organic motif acquires a net spin promoted by the adsorption of an on-top Br atom. The spin localization in the trimetal centers bonded to Br was monitored via the Kondo effect. The removal of the Br ligand resulted in the switch from a Kondo ON to a Kondo OFF state. The magnetic state induced by the Br ligand is theoretically attributed to the enhanced Br 4pz and Ni 3dz2 states due to the charge redistribution. The manipulation strategy reported here provides the possibility to explore potential applications of spin-tunable structures in spintronic devices.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| | - Jingcheng Li
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
| | - Nestor Merino-Díez
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
- Donostia International Physics Center (DIPC) , 20018 San Sebastián-Donostia , Spain
| | | | - Xavier Bouju
- CEMES-CNRS, Université de Toulouse , 31000 Toulouse , France
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , People's Republic of China
| | - Jose Ignacio Pascual
- CIC nanoGUNE , 20018 San Sebastián-Donostia , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Wei Xu
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering , Tongji University , Shanghai 201804 , People's Republic of China
| |
Collapse
|
50
|
Li J, Friedrich N, Merino N, de Oteyza DG, Peña D, Jacob D, Pascual JI. Electrically Addressing the Spin of a Magnetic Porphyrin through Covalently Connected Graphene Electrodes. NANO LETTERS 2019; 19:3288-3294. [PMID: 30964303 DOI: 10.1021/acs.nanolett.9b00883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on the fabrication and transport characterization of atomically precise single-molecule devices consisting of a magnetic porphyrin covalently wired by graphene nanoribbon electrodes. The tip of a scanning tunneling microscope was utilized to contact the end of a GNR-porphyrin-GNR hybrid system and create a molecular bridge between the tip and sample for transport measurements. Electrons tunneling through the suspended molecular heterostructure excited the spin multiplet of the magnetic porphyrin. The detachment of certain spin centers from the surface shifted their spin-carrying orbitals away from an on-surface mixed-valence configuration, recovering its original spin state. The existence of spin-polarized resonances in the free-standing systems and their electrical addressability is the fundamental step in the utilization of carbon-based materials as functional molecular spintronics systems.
Collapse
Affiliation(s)
- Jingcheng Li
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
| | - Niklas Friedrich
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
| | - Nestor Merino
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
| | - Dimas G de Oteyza
- Donostia International Physics Center (DIPC) , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) , 20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao , Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15705 Santiago de Compostela , Spain
| | - David Jacob
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao , Spain
- Departamento de Física de Materiales , Universidad del País Vasco UPV/EHU , 20018 Donostia-San Sebastián , Spain
| | - Jose Ignacio Pascual
- CIC nanoGUNE , Tolosa Hiribidea 76 , 20018 Donostia-San Sebastian , Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao , Spain
| |
Collapse
|