1
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
3
|
Dubacheva GV, Curk T, Richter RP. Determinants of Superselectivity─Practical Concepts for Application in Biology and Medicine. Acc Chem Res 2023; 56:729-739. [PMID: 36916901 PMCID: PMC10077582 DOI: 10.1021/acs.accounts.2c00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
ConspectusMultivalent interactions are common in biological systems and are also widely deployed for targeting applications in biomedicine. A unique feature of multivalent binding is "superselectivity". Superselectivity refers to the sharp discrimination of surfaces (e.g., on cells or cell compartments) by their comparative surface densities of a given receptor. This feature is different from the conventional "type" selectivity, which discriminates surfaces by their distinct receptor types. In a broader definition, a probe is superselective if it converts a gradual change in any one interaction parameter into a sharp on/off dependency in probe binding.This Account describes our systematic experimental and theoretical efforts over the past decade to analyze the determinants of superselective binding. It aims to offer chemical biologists, biophysicists, biologists, and biomedical scientists a set of guidelines for the interpretation of multivalent binding data, and design rules for tuning superselective targeting. We first provide a basic introduction that identifies multiple low-affinity interactions and combinatorial entropy as the minimal set of conditions required for superselective recognition. We then introduce the main experimental and theoretical tools and analyze how salient features of the multivalent probes (i.e., their concentration, size, ligand valency, and scaffold type), of the surface receptors (i.e., their affinity for ligands, surface density, and mobility), and of competitors and cofactors (i.e., their concentration and affinity for the ligands and/or receptors) influence the sharpness and the position of the threshold for superselective recognition.Emerging from this work are a set of relatively simple yet quantitative data analysis guidelines and superselectivity design rules that apply to a broad range of probe types and interaction systems. The key finding is the scaling variable xS which faithfully predicts the influence of the surface receptor density, probe ligand valency, receptor-ligand affinity, and competitor/cofactor concentrations and affinities on superselective recognition. The scaling variable is a simple yet versatile tool to quantitatively tune the on/off threshold of superselective probes. We exemplify its application by reviewing and reinterpreting literature data for selected biological and biomedical interaction systems where superselectivity clearly is important.Our guidelines can be deployed to generate a new mechanistic understanding of multivalent recognition events inside and outside cells and the downstream physiological/pathological implications. Moreover, the design rules can be harnessed to develop novel superselective probes for analytical purposes in the life sciences and for diagnostic/therapeutic intervention in biomedicine.
Collapse
Affiliation(s)
- Galina V Dubacheva
- Département de Chimie Moléculaire (DCM), UMR 5250, Université Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Tine Curk
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Simple Complexity: Incorporating Bioinspired Delivery Machinery within Self-Assembled Peptide Biogels. Gels 2023; 9:gels9030199. [PMID: 36975648 PMCID: PMC10048788 DOI: 10.3390/gels9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability—features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.
Collapse
|
5
|
Sha L, Yong X, Shao Z, Duan Y, Hong Q, Zhang J, Zhang Y, Chen L. Targeting adverse effects of antiseizure medication on offspring: current evidence and new strategies for safety. Expert Rev Neurother 2023; 23:141-156. [PMID: 36731825 DOI: 10.1080/14737175.2023.2176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION For women with epilepsy of reproductive age, antiseizure medications (ASMs) are associated with an increased risk of offspring malformations. There are safety concerns for most anti-seizure medications in the perinatal period, and there is a clear need to identify safe medications. ASMs must transport through biological barriers to exert toxic effects on the fetus, and transporters play essential roles in trans-barrier drug transport. Therefore, it is vital to understand the distribution and properties of ASM-related transporters in biological barriers. AREAS COVERED This study reviews the structure, transporter distribution, and properties of the blood-brain, placental, and blood-milk barrier, and summarizes the existing evidence for the trans-barrier transport mechanism of ASMs and standard experimental models of biological barriers. EXPERT OPINION Ideal ASMs in the perinatal period should have the following characteristics: 1) Increased transport through the blood-brain barrier, and 2) Reduced transport of the placental and blood-milk barriers. Thus, only low-dose or almost no antiseizure medication could enter the fetus's body, which could decrease medication-induced fetal abnormalities. Based on the stimulated structure and molecular docking, we propose a development strategy for new ASMs targeting transporters of biological barriers to improve the perinatal treatment of female patients with epilepsy.
Collapse
Affiliation(s)
- Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Duan
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Qiulei Hong
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| | - Yunwu Zhang
- The current form, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan
| |
Collapse
|
6
|
Bimodal brush-functionalized nanoparticles selective to receptor surface density. Proc Natl Acad Sci U S A 2023; 120:e2208377120. [PMID: 36630450 PMCID: PMC9934298 DOI: 10.1073/pnas.2208377120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nanoparticles or drug carriers which can selectively bind to cells expressing receptors above a certain threshold surface density are very promising for targeting cells overexpressing specific receptors under pathological conditions. Simulations and theoretical studies have suggested that such selectivity can be enhanced by functionalizing nanoparticles with a bimodal polymer monolayer (BM) containing shorter ligated chains and longer inert protective chains. However, a systematic study of the effect of these parameters under tightly controlled conditions is still missing. Here, we develop well-defined and highly specific platforms mimicking particle-cell interface using surface chemistry to provide a experimental proof of such selectivity. Using surface plasmon resonance and atomic force microscopy, we report the selective adsorption of BM-functionalized nanoparticles, and especially, a significant enhanced selective behavior by using a BM with longer protective chains. Furthermore, a model is also developed to describe the repulsive contribution of the protective brush to nanoparticle adsorption. This model is combined with super-selectivity theory to support experimental findings and shows that the observed selectivity is due to the steric energy barrier which requires a high number of ligand-receptor bonds to allow nanoparticle adsorption. Finally, the results show how the relative length and molar ratio of two chains can be tuned to target a threshold surface density of receptors and thus lay the foundation for the rational design of BM-functionalized nanoparticles for selective targeting.
Collapse
|
7
|
Acosta‐Gutiérrez S, Buckley J, Battaglia G. The Role of Host Cell Glycans on Virus Infectivity: The SARS-CoV-2 Case. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2201853. [PMID: 36417571 PMCID: PMC9811451 DOI: 10.1002/advs.202201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glycans are ubiquitously expressed sugars, coating the cell and protein surfaces. They are found on many proteins as either short and branched chains or long chains sticking out from special membrane proteins, known as proteoglycans. This sugar cushion, the glycocalyx, modulates specific interactions and protects the cell. Here it is shown that both the expression of proteoglycans and the glycans expressed on the surface of both the host and virus proteins have a critical role in modulating viral attachment to the cell. A mathematical model using SARS-Cov-2 as an archetypical virus to study the glycan role during infection is proposed. It is shown that this occurs via a tug-of-war of forces. On one side, the multivalent molecular recognition that viral proteins have toward specific host glycans and receptors. On the other side, the glycan steric repulsion that a virus must overcome to approach such specific receptors. By balancing both interactions, viral tropism can be predicted. In other words, the authors can map out the cells susceptible to virus infection in terms of receptors and proteoglycans compositions.
Collapse
Affiliation(s)
- Silvia Acosta‐Gutiérrez
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
| | - Joseph Buckley
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
| | - Giuseppe Battaglia
- Institute for the Physics of Living SystemsUniversity College LondonLondonCentral LondonUK
- Institute of Structural and Molecular BiologyUniversity College LondonLondonCentral LondonUK
- Department of ChemistryUniversity College London20 Gordon StLondonCentral LondonWC1H 0AJUK
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and TechnologyBarcelonaBarcelona08028Spain
- Catalan Institution for Research and Advances Studies (ICREA)BarcelonaSpain
| |
Collapse
|
8
|
Bila H, Paloja K, Caroprese V, Kononenko A, Bastings MM. Multivalent Pattern Recognition through Control of Nano-Spacing in Low-Valency Super-Selective Materials. J Am Chem Soc 2022; 144:21576-21586. [DOI: 10.1021/jacs.2c08529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hale Bila
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Kaltrina Paloja
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Artem Kononenko
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maartje M.C. Bastings
- Programmable Biomaterials Laboratory (PBL), Institute of Materials (IMX), Interfaculty Bioengineering Institute (IBI), School of Engineering (STI), Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Acosta-Gutiérrez S, Matias D, Avila-Olias M, Gouveia VM, Scarpa E, Forth J, Contini C, Duro-Castano A, Rizzello L, Battaglia G. A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting. ACS CENTRAL SCIENCE 2022; 8:891-904. [PMID: 35912343 PMCID: PMC9335915 DOI: 10.1021/acscentsci.2c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phenotypic targeting requires the ability of the drug delivery system to discriminate over cell populations expressing a particular receptor combination. Such selectivity control can be achieved using multiplexed-multivalent carriers often decorated with multiple ligands. Here, we demonstrate that the promiscuity of a single ligand can be leveraged to create multiplexed-multivalent carriers achieving phenotypic targeting. We show how the cellular uptake of poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacry-late) (PMPC-PDPA) polymersomes varies depending on the receptor expression among different cells. We investigate the PMPC-PDPA polymersome insertion at the single chain/receptor level using all-atom molecular modeling. We propose a theoretical statistical mechanics-based model for polymersome-cell association that explicitly considers the interaction of the polymersome with the cell glycocalyx shedding light on its effect on the polymersome binding. We validate our model experimentally and show that the binding energy is a nonlinear function, allowing us to tune the interaction by varying the radius and degree of polymerization. Finally, we show that PMPC-PDPA polymersomes can be used to target monocytes in vivo due to their promiscuous interaction with SRB1, CD36, and CD81.
Collapse
Affiliation(s)
- Silvia Acosta-Gutiérrez
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- Institute
for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Diana Matias
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
| | - Milagros Avila-Olias
- Department
of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Virginia M. Gouveia
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- SomaServe
Ltd U.K., Babraham Research Campus, Cambridge, CB22 3AT, United
Kingdom
| | - Edoardo Scarpa
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- Department
of Pharmaceutical Sciences, University of
Milan, 20133 Milan, Italy
- INGM,
Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica
Invernizzi”, 20122 Milan, Italy
| | - Joe Forth
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
| | - Claudia Contini
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, United Kingdom
| | - Aroa Duro-Castano
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
| | - Loris Rizzello
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- Department
of Pharmaceutical Sciences, University of
Milan, 20133 Milan, Italy
- INGM,
Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica
Invernizzi”, 20122 Milan, Italy
- Institute
for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Department
of Chemistry and Institute for the Physics of Living Systems, University
College London, London, WC1H 0AJ, United Kingdom
- Institute
for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
10
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022; 146:10-22. [PMID: 35523414 PMCID: PMC9590281 DOI: 10.1016/j.actbio.2022.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States.
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
11
|
Ahmadi S, Sukprasert P, Vegesna R, Sinha S, Schischlik F, Artzi N, Khuller S, Schäffer AA, Ruppin E. The landscape of receptor-mediated precision cancer combination therapy via a single-cell perspective. Nat Commun 2022; 13:1613. [PMID: 35338126 PMCID: PMC8956718 DOI: 10.1038/s41467-022-29154-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Mining a large cohort of single-cell transcriptomics data, here we employ combinatorial optimization techniques to chart the landscape of optimal combination therapies in cancer. We assume that each individual therapy can target any one of 1269 genes encoding cell surface receptors, which may be targets of CAR-T, conjugated antibodies or coated nanoparticle therapies. We find that in most cancer types, personalized combinations composed of at most four targets are then sufficient for killing at least 80% of tumor cells while sparing at least 90% of nontumor cells in the tumor microenvironment. However, as more stringent and selective killing is required, the number of targets needed rises rapidly. Emerging individual targets include PTPRZ1 for brain and head and neck cancers and EGFR in multiple tumor types. In sum, this study provides a computational estimate of the identity and number of targets needed in combination to target cancers selectively and precisely.
Collapse
Affiliation(s)
- Saba Ahmadi
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Pattara Sukprasert
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Rahulsimham Vegesna
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, 02139, USA
| | - Samir Khuller
- Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
- Department of Computer Science, Northwestern University, Evanston, IL, 60208, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Cai H, Tan P, Chen X, Kopytynski M, Pan D, Zheng X, Gu L, Gong Q, Tian X, Gu Z, Zhang H, Chen R, Luo K. Stimuli-Sensitive Linear-Dendritic Block Copolymer-Drug Prodrug as a Nanoplatform for Tumor Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108049. [PMID: 34875724 DOI: 10.1002/adma.202108049] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Linear-dendritic block copolymer (LDBCs) are highly attractive candidates for smart drug-delivery vehicles. Herein, an amphiphilic poly[(ethylene glycol) methyl ether methacrylate] (POEGMA) linear-peptide dendritic prodrug of doxorubicin (DOX) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The hydrophobic-dye-based photosensitizer chlorin e6 (Ce6) is employed for encapsulation in the prodrug nanoparticles (NPs) to obtain an LDBCs-based drug-delivery system (LD-DOX/Ce6) that offers a combination cancer therapy. Due to the presence of Gly-Phe-Leu-Gly peptides and hydrazone bonds in the prodrug structure, LD-DOX/Ce6 is degraded into small fragments, thus specifically triggering the intracellular release of DOX and Ce6 in the tumor microenvironment. Bioinformatics analysis suggests that LD-DOX/Ce6 with laser irradiation treatment significantly induces apoptosis, DNA damage, and cell cycle arrest. The combination treatment can not only suppress tumor growth, but also significantly reduce tumor metastasis compared with treatments with DOX or Ce6 through regulating EMT pathway, TGFβ pathway, angiogenesis, and the hypoxia pathway. LD-DOX/Ce6 displays a synergistic chemo-photodynamic antitumor efficacy, resulting in a high inhibition in tumor growth and metastasis, while maintaining an excellent biosafety. Therefore, this study demonstrates the potential of the biodegradable and tumor-microenvironment-responsive LDBCs as an intelligent multifunctional drug-delivery vehicle for high-efficiency cancer combination therapy.
Collapse
Affiliation(s)
- Hao Cai
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ping Tan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital Sichuan University Chengdu 610041 China
| | - Michal Kopytynski
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
13
|
Tan P, Cai H, Wei Q, Tang X, Zhang Q, Kopytynski M, Yang J, Yi Y, Zhang H, Gong Q, Gu Z, Chen R, Luo K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021; 277:121061. [PMID: 34508957 DOI: 10.1016/j.biomaterials.2021.121061] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Patient-derived xenograft (PDX) models are powerful tools for understanding cancer biology and drug discovery. In this study, a polymeric nano-sized drug delivery system poly (OEGMA)-PTX@Ce6 (NPs@Ce6) composed of a photosensitizer chlorin e6 (Ce6) and a cathepsin B-sensitive polymer-paclitaxel (PTX) prodrug was constructed. The photochemical internalization (PCI) effect and enhanced chemo-photodynamic therapy (PDT) were achieved via a two-stage light irradiation strategy. The results showed that the NPs@Ce6 had great tumor targeting and rapid cellular uptake induced by PCI, thereby producing excellent anti-tumor effects on human bladder cancer PDX models with tumor growth inhibition greater than 98%. Bioinformatics analysis revealed that the combination of PTX chemotherapy and PDT up-regulated oxidative phosphorylation and reactive oxygen species (ROS) generation, blocked cell cycle and proliferation, and down-regulated the pathways related to tumor progression, invasion and metastasis, including hypoxia, TGF-β signaling and TNF-α signaling pathways. Western blots analysis confirmed that proteins promoting apoptosis (Bax, Cleaved caspase-3, Cleaved PARP) and DNA damage (γH2A.X) were up-regulated, while those inhibiting apoptosis (Bcl-2) and mitosis (pan-actin and α/β-tubulin) were down-regulated after chemo-PDT treatment. Therefore, this stimuli-responsive polymer-PTX prodrug-based nanomedicine with combinational chemotherapy and PDT evaluated in the PDX models could be a potential candidate for bladder cancer therapy.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Cai
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodi Tang
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qianfeng Zhang
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Junxiao Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Yi
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA, 91711, USA
| | - Qiyong Gong
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Zhongwei Gu
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Kui Luo
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Linne C, Visco D, Angioletti-Uberti S, Laan L, Kraft DJ. Direct visualization of superselective colloid-surface binding mediated by multivalent interactions. Proc Natl Acad Sci U S A 2021; 118:e2106036118. [PMID: 34465623 PMCID: PMC8433554 DOI: 10.1073/pnas.2106036118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this "superselectivity." However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
Collapse
Affiliation(s)
- Christine Linne
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands
| | - Daniele Visco
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Liedewij Laan
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands;
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
15
|
Cremers GAO, Rosier BJHM, Meijs A, Tito NB, van Duijnhoven SMJ, van Eenennaam H, Albertazzi L, de Greef TFA. Determinants of Ligand-Functionalized DNA Nanostructure-Cell Interactions. J Am Chem Soc 2021; 143:10131-10142. [PMID: 34180666 PMCID: PMC8283757 DOI: 10.1021/jacs.1c02298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Synthesis of ligand-functionalized
nanomaterials with control over
size, shape, and ligand orientation facilitates the design of targeted
nanomedicines for therapeutic purposes. DNA nanotechnology has emerged
as a powerful tool to rationally construct two- and three-dimensional
nanostructures, enabling site-specific incorporation of protein ligands
with control over stoichiometry and orientation. To efficiently target
cell surface receptors, exploration of the parameters that modulate
cellular accessibility of these nanostructures is essential. In this
study, we systematically investigate tunable design parameters of
antibody-functionalized DNA nanostructures binding to therapeutically
relevant receptors, including the programmed cell death protein 1,
the epidermal growth factor receptor, and the human epidermal growth
factor receptor 2. We show that, although the native affinity of antibody-functionalized
DNA nanostructures remains unaltered, the absolute number of bound
surface receptors is lower compared to soluble antibodies due to receptor
accessibility by the nanostructure. We explore structural determinants
of this phenomenon to improve efficiency, revealing that receptor
binding is mainly governed by nanostructure size and DNA handle location.
The obtained results provide key insights in the ability of ligand-functionalized
DNA nanostructures to bind surface receptors and yields design rules
for optimal cellular targeting.
Collapse
Affiliation(s)
- Glenn A O Cremers
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas J H M Rosier
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ab Meijs
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nicholas B Tito
- Electric Ant Lab, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | | | - Hans van Eenennaam
- Aduro Biotech Europe B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
16
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
17
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
18
|
Tian X, Leite DM, Scarpa E, Nyberg S, Fullstone G, Forth J, Matias D, Apriceno A, Poma A, Duro-Castano A, Vuyyuru M, Harker-Kirschneck L, Šarić A, Zhang Z, Xiang P, Fang B, Tian Y, Luo L, Rizzello L, Battaglia G. On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias. SCIENCE ADVANCES 2020; 6:6/48/eabc4397. [PMID: 33246953 PMCID: PMC7695481 DOI: 10.1126/sciadv.abc4397] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of Life Science, Anhui University, Hefei, P. R. China
- Department of Chemistry, Anhui University, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Diana M Leite
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- SomaNautix Ltd., London, UK
| | - Sophie Nyberg
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Gavin Fullstone
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Joe Forth
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Diana Matias
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Aroa Duro-Castano
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Manish Vuyyuru
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Lena Harker-Kirschneck
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Anđela Šarić
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Zhongping Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Science, Hefei, China
| | - Pan Xiang
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Bin Fang
- Department of Chemistry, Anhui University, Hefei, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Anhui University, Hefei, P. R. China
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, P. R. China
| | - Loris Rizzello
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Giuseppe Battaglia
- Department of Chemistry, Anhui University, Hefei, P. R. China.
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
20
|
Liu M, Apriceno A, Sipin M, Scarpa E, Rodriguez-Arco L, Poma A, Marchello G, Battaglia G, Angioletti-Uberti S. Combinatorial entropy behaviour leads to range selective binding in ligand-receptor interactions. Nat Commun 2020; 11:4836. [PMID: 32973157 PMCID: PMC7515919 DOI: 10.1038/s41467-020-18603-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
From viruses to nanoparticles, constructs functionalized with multiple ligands display peculiar binding properties that only arise from multivalent effects. Using statistical mechanical modelling, we describe here how multivalency can be exploited to achieve what we dub range selectivity, that is, binding only to targets bearing a number of receptors within a specified range. We use our model to characterise the region in parameter space where one can expect range selective targeting to occur, and provide experimental support for this phenomenon. Overall, range selectivity represents a potential path to increase the targeting selectivity of multivalent constructs.
Collapse
Affiliation(s)
- Meng Liu
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Azzurra Apriceno
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Miguel Sipin
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Laura Rodriguez-Arco
- Department of Chemistry, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Gabriele Marchello
- Institute for the Physics of Living Systems, University College London, London, UK
- Physical Chemistry Chemical Physics Division, Department of Chemistry, University College London, London, UK
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
- The UCL EPSRC/JEOL Centre for Liquid Phase Electron Microscopy, London, UK.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Stefano Angioletti-Uberti
- Institute of Physics, Chinese Academy of Science, Beijing, People's Republic of China.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
21
|
Wang B, Van Herck S, Chen Y, Bai X, Zhong Z, Deswarte K, Lambrecht BN, Sanders NN, Lienenklaus S, Scheeren HW, David SA, Kiessling F, Lammers T, De Geest BG, Shi Y. Potent and Prolonged Innate Immune Activation by Enzyme-Responsive Imidazoquinoline TLR7/8 Agonist Prodrug Vesicles. J Am Chem Soc 2020; 142:12133-12139. [PMID: 32524819 DOI: 10.1021/jacs.0c01928] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.
Collapse
Affiliation(s)
- Bi Wang
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Xiangyang Bai
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Zifu Zhong
- Laboratory of Gene Therapy, Ghent University, Ghent 9820, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam 3015, The Netherlands
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, Ghent 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Hans W Scheeren
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.,Department of Pharmaceutics, Utrecht University, 3584 CG Utrecht, The Netherlands.,Department of Targeted Therapeutics, University of Twente, 7500 AE Enschede, The Netherlands
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|