1
|
Jiao S, Cheng P, Li Q, Wang X, Li Y, Cheng Z, Lai H, Liu Y. Light-induced manipulation of ultra-low surface tension droplets on stable quasi-liquid surfaces. J Colloid Interface Sci 2025; 677:303-311. [PMID: 39146818 DOI: 10.1016/j.jcis.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
HYPOTHESIS Perfluorocarbon is commonly used as a coolant, chemical reaction carrier solvent, medical anti-hypoxic agents and blood substitutes. The realization of non-contact complex manipulation of perfluorocarbon liquids is urgently needed in human life and industrial production. However, most liquid-repellent interfaces are ineffective for the transport of ultra-low surface tension perfluorocarbon liquids, and struggle to maintain good durability due to unstable air or oil cushions in the surface. Therefore, preparing surfaces for stable non-contact complex manipulation of ultra-low surface tension droplets remains a challenge. EXPERIMENTS In this paper, a novel solution, a photothermal responsive droplet manipulation surface based on polydimethylsiloxane brushes, has been reported. On this surface, droplets with different surface tensions (as low as 10 mN/m) can be efficiently manipulated through induced near-infrared light. Notably, this surface maintains its effectiveness after exposure to extreme anthropogenic conditions. FINDINGS The interface effect between perfluorocarbon droplets and polydimethylsiloxane brushes by near-infrared light-induced was investigated in detail. In addition, ultra-low surface tension droplets demonstrate the ability to transport solid particles. The conductive droplets exhibit sophisticated manipulation realizing the controlled switching of smart circuits. This research opens up new possibilities for advancing the capabilities and adaptability of ultralow surface tension droplets in a range of applications.
Collapse
Affiliation(s)
- Shouzheng Jiao
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peng Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Li
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
| | - Xiaonan Wang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yufen Li
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yuyan Liu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Xu P, Sun Y, Yang S, Chen G, Qu J, Li Q, Zhou Z. Topological regulation in polysilsesquioxanes for achieving super-hard and flexible membranes: insights from molecular simulation. MATERIALS HORIZONS 2024. [PMID: 39660383 DOI: 10.1039/d4mh01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Cage-like and ladder-like polysilsesquioxane, named EPOSS and ELPSQ, were synthesized and employed as precursors to develop a UV-curable membrane exhibiting remarkable hardness, superior flexibility, exceptional transparency and excellent friction resistance. Nanoindentation analysis demonstrates that the precise control of the Silicane molecular frameworks by adding a small quantity of EPOSS to ELPSQ can significantly enhance the hardness of the membranes. The resulting hardness value reaches a record 1.56 GPa, which is notably higher than all of the reported rigid polymer membranes. Meanwhile, the membrane displays superior flexural properties with a minimum radius of curvature of 0.35 mm, and after 10 000 folds in the cyclic flexure test, only slight creases were observed even under a polarizing microscope. The molecular dynamics simulation reveals how different molecular stereo topologies endow materials with astonishing hardness and excellent flexibility, thereby formulating a novel strategy for material design. ELPSQ's trapezoidal topology exhibits anisotropy, enabling the material to bend while maintaining super hardness. EPOSS's cage topology endows materials with a higher modulus and improved bending performance. Incorporating an appropriate amount of EPOSS into the ELPSQ can inhibit the movement of molecular chains, thereby enhancing the mechanical properties of the resin. This work presents a new strategy for preparing membranes with super-hardness and high flexibility, and investigates how the cage-like topological structure influences the hardness of resin systems.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology, Beijing 100029, China.
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxin Sun
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Yang
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangxin Chen
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiali Qu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qifang Li
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Zhou
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education Beijing University of Chemical Technology, Beijing 100029, China.
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Xu X, Chen Y, Li Y, Li X, Bai J, Jiang X, Yu D, Wu X, Yao X. Dynamic silicone hydrogel gauze coatings with dual anti-blood adhesion mechanism for rapid hemostasis and minimal secondary damage. SCIENCE ADVANCES 2024; 10:eado4944. [PMID: 39642220 PMCID: PMC11623298 DOI: 10.1126/sciadv.ado4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hemostatic materials that can rapidly control bleeding without causing secondary damage or sharp pain upon removal are receiving increasing demands in acute trauma treatments and first-aid supplies. Here, we report the development of a dynamic silicone hydrogel coating on medical gauze to enable rapid hemostasis and synergistic anti-blood adhesion properties. The silicone hydrogel can spontaneously form oriented cross-linked structures on fibrous medical gauze through a solution-processing method to achieve macroscopic superhydrophobicity with microscopic surface slipperiness, resulting in excellent anti-blood adhesion with the on-wound peeling force at ~0 millinewton. The development of dynamic silicone hydrogel coating on medical gauze enables a unique integration of advanced features including instant bleeding control, excellent anti-blood adhesion, and excellent air permeability. The proposed strategy is also suitable for scalable production, making it promising in the applications of trauma management.
Collapse
Affiliation(s)
- Xiubin Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Yanting Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yunlong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Jian Bai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xusheng Jiang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Danfeng Yu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Wang J, Chu Z, Zheng S. Exploring α-Lipoic Acid Based Thermoplastic Silicone Adhesive: Towards Sustainable and Green Recycling. Polymers (Basel) 2024; 16:3254. [PMID: 39683999 DOI: 10.3390/polym16233254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Considering the demand for the construction of a sustainable future, it is essential to endow the conventional thermoset silicone adhesive with reuse capability and recyclability. Although various research attempts have been made by incorporating reversible linkages, developing sustainable silicone adhesives by natural linkers is still challenging, as the interface between the natural linker and the silicone is historically difficult. We exploited the possibility of utilizing α-lipoic acid, a natural linker, to construct a sustainable silicone adhesive. Via the simultaneous ring-opening reaction between the COOH and epoxide-functionalized silicone and the polymerization of the α-lipoic acid, the resulting network exhibited dynamic properties. The shear strength of the LASA90 presented strong adhesion (up to 88 kPa) on various substrates including steel, aluminum, PET, and PTFE. Meanwhile, reversible adhesion was shown multiple times under mild heating conditions (80 °C). The rheology, TG-DTA, DSC, and 1H NMR showed that the degradation of the LASA occurred at 150 °C via the retro-ROP of the five-membered disulfide ring, indicating their recyclability after usage. Conclusively, we envision that a silicone adhesive based on α-lipoic acid as a natural linker is more sustainable than conventional silicone thermosets because of its desired properties, strong adhesion, reversibility, and on-demand heat degradation.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhaoyutian Chu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Wang W, An Z, Wang Z, Wang S. Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chemistry 2024; 30:e202304349. [PMID: 38308610 DOI: 10.1002/chem.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Supramolecular reversible adhesives have garnered significant attention due to their potential applications in various fields. These adhesives exhibit remarkable properties such as reversible adhesion, self-healing, and high flexibility. This concept aims to present a comprehensive overview of the current research progress in developing supramolecular reversible adhesives. Firstly, the fundamentals of supramolecular chemistry and the principles underlying the design and synthesis of reversible adhesive systems are discussed. Next, the concept focuses on characterizing the reversible adhesion strength of supramolecular adhesive systems that have been developed. The adhesion performance of supramolecular reversible adhesives is summarized, highlighting their unique characteristics and promising applications. Finally, the challenges and future perspectives in the field of supramolecular reversible adhesives are discussed. The comprehensive overview provided in this concept aims to inspire further research and innovation in this exciting field.
Collapse
Affiliation(s)
- Wenbo Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zixin An
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Li Q, He P, Wang H, Xu Z, Zhan X, Liu Q, Zhang Q. Enhanced adhesive and mechanically robust silicone-based coating with excellent marine anti-fouling and anti-corrosion performances. Chemistry 2024; 30:e202303096. [PMID: 38140811 DOI: 10.1002/chem.202303096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
Poly(dimethylsiloxane) (PDMS) is widely used in marine antifouling coatings due to its low surface energy property. However, certain drawbacks of PDMS coatings such as poor surface adhesion, weak mechanical properties, and inadequate static antifouling performance have hindered its practical applications. Herein, condensation polymerization is utilized to prepare PDMS-based polythiamine ester (PTUBAF) coatings that consist of PDMS, polytetrahydrofuran (PTMG), 2, 3, 5, 6-tetrafluoro-1, 4-benzenedimethanol (TBD) as the main chains and isobornyl acrylate(IBA) as the antifouling group. The surface adhesion to the substrate is enhanced due to the hydrogen bond between the coated carbamate group and the hydroxyl group on the surface of the substrate. Mechanical properties of PTUBAF are significantly improved due to the benzene ring and six-membered ring biphase hard structure. The strong synergistic effect of bactericidal groups and low surface energy surface endows the PTUBAF coating with outstanding antifouling performance. Due to the low surface energy surface, the PTUBAF coatings are also found to possess excellent anti-corrosion. Furthermore, since the PTUBAF coatings exhibit a visible light transmittance of 91 %, they can applied as protective films for smartphones. The proposed method has the potential to boost the production and practical applications of silicone-based coatings.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Peng He
- Wuhan Second Ship Design and Research Institute, Wuhan, 430205, China
| | - Haihua Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ziqi Xu
- Wuhan Second Ship Design and Research Institute, Wuhan, 430205, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Quan Liu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, 324000, China
| |
Collapse
|
7
|
Lai J, Wang X, Zhao Q, Zhang C, Gong T, He L, Wang Z, Xia H. 3D Printing Self-Healing and Self-Adhesive Elastomers for Wearable Electronics in Amphibious Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16880-16892. [PMID: 38506556 DOI: 10.1021/acsami.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
To meet the demands of challenging usage scenarios, there is an increasing need for flexible electronic skins that can operate properly not only in terrestrial environments but also extend to complex aquatic conditions. In this study, we develop an elastomer by incorporating dynamic urea bonds and hydrogen bonds into the polydimethylsiloxane backbone, which exhibits excellent autonomous self-healing and reversible adhesive performance in both dry and wet environments. A multifunctional flexible sensor with excellent sensing stability, amphibious self-healing capacity, and amphibious self-adhesive performance is fabricated through solvent-free 3D printing. The sensor has a high sensing sensitivity (GF = 45.1) and a low strain response threshold (0.25%) and can be used to detect small human movements and physiological activities, such as muscle movement, joint movement, respiration, and heartbeat. The wireless wearable sensing system assembled by coupling this device with a bluetooth transmission system is suitable for monitoring strenuous human movement in amphibious environments, such as playing basketball, cycling, running (terrestrial environments), and swimming (aquatic environments). The design strategy provides insights into enhancing the self-healing and self-adhesive properties of soft materials and promises a prospective avenue for fabricating flexible electronic skin that can work properly in amphibious environments.
Collapse
Affiliation(s)
- Jialiang Lai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaorong Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Qifan Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Gong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Lirong He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Wang X, Zhuang Z, Li X, Yao X. Droplet Manipulation on Bioinspired Slippery Surfaces: From Design Principle to Biomedical Applications. SMALL METHODS 2024; 8:e2300253. [PMID: 37246251 DOI: 10.1002/smtd.202300253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Droplet manipulation with high efficiency, high flexibility, and programmability, is essential for various applications in biomedical sciences and engineering. Bioinspired liquid-infused slippery surfaces (LIS), with exceptional interfacial properties, have led to expanding research for droplet manipulation. In this review, an overview of actuation principles is presented to illustrate how materials or systems can be designed for droplet manipulation on LIS. Recent progress on new manipulation methods on LIS is also summarized and their prospective applications in anti-biofouling and pathogen control, biosensing, and the development of digital microfluidics are presented. Finally, an outlook is made on the key challenges and opportunities for droplet manipulation on LIS.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Zhicheng Zhuang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518075, P. R. China
| |
Collapse
|
9
|
Garcia-Rodriguez JM, Wilker JJ. Positive Charge Influences on the Surface Interactions and Cohesive Bonding of a Catechol-Containing Polymer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470565 DOI: 10.1021/acsami.3c16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Achieving robust underwater adhesion remains challenging. Through generations of evolution, marine mussels have developed an adhesive system that allows them to anchor onto wet surfaces. Scientists have taken varied approaches to developing mussel-inspired adhesives. Mussel foot proteins are rich in lysine residues, which may play a role in the removal of salts from surfaces. Displacement of water and ions on substrates could then enable molecular contact with surfaces. The necessity of cations for underwater adhesion is still in debate. Here, we examined the performance of a methacrylate polymer containing quaternary ammonium and catechol groups. Varying amounts of charge in the polymers were studied. As opposed to protonated amines such as lysine, quaternary ammonium groups offer a nonreactive cation for isolating effects from only charge. Results shown for dry bonding demonstrated that cations tended to decrease bulk cohesion while increasing surface interactions. Stronger interactions at surfaces, along with weaker bulk bonding, indicate that cations decreased the cohesive forces. When under salt water, overall bulk adhesion also dropped with higher cation loadings. Surface attachment under salt water also dropped, indicating that the polymer cations could not displace surface waters or sodium ions. Salt did, however, appear to shield bulk cation-cation repulsions. These studies help to distinguish influences upon bulk cohesion from attachment at surfaces. The roles of cations in adhesion are complex, with both cohesive and surface bonding being relevant in different ways, sometimes even working in opposite directions.
Collapse
Affiliation(s)
- Jennifer M Garcia-Rodriguez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
10
|
Eder T, Mautner A, Xu Y, Reithofer MR, Bismarck A, Chin JM. Transparent PDMS Surfaces with Covalently Attached Lubricants for Enhanced Anti-adhesion Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10942-10952. [PMID: 38350021 PMCID: PMC10910447 DOI: 10.1021/acsami.3c17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Liquid-like surfaces featuring slippery, omniphobic, covalently attached liquids (SOCALs) reduce unwanted adhesion by providing a molecularly smooth and slippery surface arising from the high mobility of the liquid chains. Such SOCALs are commonly prepared on hard substrates, such as glass, wafers, or metal oxides, despite the importance of nonpolar elastomeric substrates, such as polydimethylsiloxane (PDMS) in anti-fouling or nonstick applications. Compared to polar elastomers, hydrophobic PDMS elastomer activation and covalent functionalization are significantly more challenging, as PDMS tends to display fast hydrophobic recovery upon activation as well as superficial cracking. Through the extraction of excess PDMS oligomers and fine-tuning of plasma activation parameters, homogeneously functionalized PDMS with fluorinated polysiloxane brushes could be obtained while at the same time reducing crack formation. Polymer brush mobility was increased through the addition of a smaller molecular silane linker to exhibit enhanced dewetting properties and reduced substrate swelling compared to functionalizations featuring hydrocarbon functionalities. Linear polymer brushes were verified by thermogravimetric analysis. The optical properties of PDMS remained unaffected by the activation in high-frequency plasma but were impacted by low-frequency plasma. Drastic decreases in solid adhesion of not just complex contaminants but even ice could be shown in horizontal push tests, demonstrating the potential of SOCAL-functionalized PDMS surfaces for improved nonstick applications.
Collapse
Affiliation(s)
- Tanja Eder
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
| | - Andreas Mautner
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Donau, Austria
| | - Yufeng Xu
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, U.K.
| | - Jia Min Chin
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
11
|
Qian Y, Ikura R, Kawai Y, Park J, Yamaoka K, Takashima Y. Improvement in Cohesive Properties of Adhesion Systems Using Movable Cross-Linked Materials with Stress Relaxation Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3935-3943. [PMID: 38116794 DOI: 10.1021/acsami.3c13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A strong, tough, and stable adhesion system used in various environments must be developed. A long-lasting adhesion system should effectively perform in the following five aspects: adhesion strength, toughness, energy dissipation property, self-restoration property, and creep resistance property. However, these properties are difficult to balance using conventional adhesives. Here, a new topological adhesion system using single-movable cross-network (SC) materials [SC(DMAAm) Adh] was designed. 3-(Trimethoxysilyl) propyl acrylate was used as the anchor, N,N-dimethyl acrylamide (DMAAm) was used as the main chain monomer, and γ-cyclodextrin (γ-CD) units acted as movable cross-links. The movable cross-links provided SC(DMAAm) Adh with energy dissipation properties, thereby improving its toughness. The γ-CD units also acted as bulky stoppers that provided a high adhesion strength and self-restoration properties. Moreover, the combination of the movable cross-links and bulky stoppers provided creep resistance to SC(DMAAm) Adh. The performance of the adhesion systems under different mobilities of the polymer chains was examined by adjusting the water content. In proper water-containing states, all mechanical properties of SC(DMAAm) Adh were better than those of the adhesion systems using homopolymers [P(DMAAm) Adh] and polymers with covalent cross-linking points [CP(DMAAm) Adh].
Collapse
Affiliation(s)
- Yunpeng Qian
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yusaku Kawai
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Yamaoka
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University. 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Ai L, Lin W, Cao C, Li P, Wang X, Lv D, Li X, Yang Z, Yao X. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Nat Commun 2023; 14:7723. [PMID: 38001116 PMCID: PMC10673831 DOI: 10.1038/s41467-023-43574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105 S m-1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m-3). Additionally, the dynamic interactions within our solder's surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics.
Collapse
Affiliation(s)
- Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Weikang Lin
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyu Li
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhengbao Yang
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Huang W, Jiang X, Zhang Y, Tang Z, Sun Z, Liu Z, Zhao L, Liu Y. Robust superhydrophobic silicone/epoxy functional coating with excellent chemical stability and self-cleaning ability. NANOSCALE 2023; 15:17793-17807. [PMID: 37916998 DOI: 10.1039/d3nr04062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Superhydrophobic surfaces have attracted broad attention because of their unique water repellency but are restricted by poor wear resistance, weak adhesion to the substrate, and complex fabrication processes. Herein, a double-layer coating strategy consisting of the amino fluorine-silicone resin/epoxy resin (AFSR/EP) system is created. The system features a high hardness and transparent hydrophobic interface adhesive layer through the amine-epoxy "click" chemical reaction. The environmentally friendly resin system and low-cost nano-silica particles (n-SiO2) are composited and sprayed onto the substrate surface to form a superhydrophobic layer with outstanding robustness and excellent environmental stability. The prepared AFSR/EP@n-SiO2 composite coatings have a water contact angle of 161.1° and a sliding angle of 3.4°, demonstrating high superhydrophobic properties. Benefitting from the complementary advantages of silicone/epoxy resin, the prepared composite coatings maintain remarkable water repellency after various harsh environmental tests, including cyclic mechanical abrasion and tape-stripping, acid-base (pH 1 and pH 14) treatment, 10 wt% NaCl (pH 7) salt solution immersion, temperature treatment, knife scratching, and long-term ultraviolet radiation treatment, showing reinforced mechanical robustness and durable anti-corrosion stability. Notably, surface hardness of 5H and optical transparency over 80% can be achieved. The simple method offers a novel approach for the large-scale preparation of multifunctional superhydrophobic coatings.
Collapse
Affiliation(s)
- Weidong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiqiang Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Zicai Sun
- Dongguan Yimei Material Technology Co., Ltd., Dongguan, 523000, China
| | - Zhijun Liu
- Dongguan Yimei Material Technology Co., Ltd., Dongguan, 523000, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
14
|
Wang ZY, You Y, Li M, Rong MZ, Zhang MQ. Ultrastrong bonding, on-demand debonding, and easy re-bonding of non-sticking materials enabled by reversibly interlocked macromolecular networks-based Janus-like adhesive. MATERIALS HORIZONS 2023; 10:4398-4406. [PMID: 37466338 DOI: 10.1039/d3mh00514c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Simultaneously gluing hydrophobic and hydrophilic materials is a highly desired but intractable task. Herein, we developed a facile strategy using reversibly interlocked macromolecular networks (ILNs) as an adhesive. As shown by the proof-of-concept assembly of glass/ILNs/fluoropolymer (i.e., a simplified version of a photovoltaic module), the sandwiched ILNs were stratified after hot-pressing owing to temporary decrosslinking enabled by the built-in reversible covalent bonds. The fragmented component networks were enriched near their respective thermodynamically favored substrates to form a Janus-like structure. Strong elaborate interfacial bespoke chemical bonds and mechanical interlocking were thus established accompanied by the reconstruction of ILNs after cooling, which cooperated with the robust cohesion of the core part of the ILNs resulting from topological entanglements and led to a record-high peeling strength of 64.86 N cm-1. Also, the ILN-based Janus-like adhesive possessed reversible recyclability, adhesivity and on-demand de-bondability. The molecular design detailed in this study serves as a guide for developing a high-performance smart adhesive that firmly bonds non-sticking materials. Compared with existing Janus adhesives, our ILNs-based adhesive not only shows extremely useful reversibility but also greatly simplifies the adhesion process with no surface treatment required.
Collapse
Affiliation(s)
- Zheng Yue Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yang You
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Ming Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
15
|
Zhang Z, Wang L, Liu J, Yu H, Zhang X, Yin J, Luan S, Shi H. Water-Triggered Segment Orientation of Long-Lasting Anti-Biofouling Polyurethane Coatings on Biomedical Catheters via Solvent Exchange Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304379. [PMID: 37365958 DOI: 10.1002/smll.202304379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.
Collapse
Affiliation(s)
- Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jiaying Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
16
|
Lu G, Chen C, Wang Z, Wu X, Huang X, Luo J, Wang XL, He ML, Yao X. High-Performance Supramolecular Organogel Adhesives for Antimicrobial Applications in Diverse Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44194-44204. [PMID: 37677049 DOI: 10.1021/acsami.3c07295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Supramolecular organogel coatings that can disinfect the deposited microbial pathogens are emerging as an effective vehicle to prevent pathogen transmission. However, the development of anti-pathogen supramolecular adhesives with mechanical robustness and controlled oil inclusion is technically challenging. Here, we report supramolecular adhesives with mechanical integrity and robust interfacial adhesion over a wide range of biogenic antimicrobial oil. Bifunctional monomers are synthesized and assembled into linear polymers with semicrystalline stackings through hierarchical hydrogen bonds, where incorporated bioactive oil could regulate the semicrystalline stackings into nanosized crystalline domains through intermolecular hydrogen bonds. The abundant bonding motifs provided by the supramolecular cross-linked networks could accommodate oil molecules with high inclusion capability and provide more interfacial binding sites with high adhesion strength, and the nanosized crystalline domains could stabilize the organogel network and compensate for the interactions with oil molecules to enhance structural and mechanical stability. In addition, rapid healing, robust adhesion, and antimicrobial and antiviral properties of the resultant organogel coatings are demonstrated. This study paves the way for the development of high-performance antimicrobial supramolecular adhesives with controlled oil inclusion, showing potential applications in soft robotics, tissue engineering, and biomedical devices.
Collapse
Affiliation(s)
- Gang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhaoyue Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xuelian Wu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P. R. China
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, P. R. China
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xun-Li Wang
- Department of Physics, City University of Hong Kong, Hong Kong 999077, P. R. China
- Hong Kong Institute for Advanced Studies, City University of Hong Kong, Hong Kong 999077, P. R. China
- Center for Neutron Scattering, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
17
|
Xin Q, Ma Z, Sun S, Zhang H, Zhang Y, Zuo L, Yang Y, Xie J, Ding C, Li J. Supramolecular Self-Healing Antifouling Coating for Dental Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41403-41416. [PMID: 37623741 DOI: 10.1021/acsami.3c09628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In orthodontic treatment, orthodontic appliances are prone to bacterial infections, which pose a risk to oral health. Surface modification of orthodontic appliances has been explored to improve their antifouling properties and impart antibacterial capabilities, inhibiting initial bacterial adhesion and biofilm formation. However, coatings are susceptible to damage in the complex oral environment, leading to a loss of functionality. Here, we have prepared an antifouling self-healing coating based on supramolecular bonding by employing a simple spin coating method. The presence of the hydrophilic zwitterionic trimethylamine N-oxide (TMAO) and the hydrophobic antimicrobial moieties triclosan acrylate (TCSA) imparts to the polymers an amphiphilic structure and enhances the interaction with bacteria, resulting in excellent antimicrobial activity and surface antifouling properties. The multiple hydrogen bonds of ureido-pyrimidinone methacrylate (UPyMA) and ionic interactions contained in the polymers not only increased the adhesion of the coating to the material substrate (approximately 3 times) but also endowed the coating with the intrinsic self-healing ability to restore the antibiofouling properties at oral temperature and humidity. Finally, the polymer coating is biologically safe both in vitro and in vivo, showing no cytotoxic effects on cells and tissues. This research offers a promising avenue for improving the performance of orthodontic appliances and contributes to the maintenance and treatment of oral health.
Collapse
Affiliation(s)
- Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shiran Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Pan K, Zhu Z, Liu C, Tao S, Tang X, Wei X, Yang B. Flexible Transparent Hydrophobic Coating Films with Excellent Scratch Resistance Using Si-Doped Carbonized Polymer Dots as Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37209113 DOI: 10.1021/acsami.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Flexible transparent hydrophobic coating films with excellent scratch resistance have important applications in many fields, especially for optical materials. Herein, a hydrophobic composite coating film was prepared and used as a polymer film protective material by combining 3-glycidyloxypropyltrimethoxysilane (GPTMS)-modified Si-doped carbonized polymer dots (Si-CPDs) with mono-trimethoxysilyl-terminated poly(dimethyl siloxane) (PDMS). The Si-CPDs derived from tetramethyl disiloxane propylamine tetraacetic acid and multi-amino oligosiloxanes were successfully prepared via one-step hydrothermal method and then grafted by GPTMS to obtain modified Si-CPDs (mSi-CPDs). Among them, mSi-CPDs act as a matrix layer, and PDMS acts as a low-surface energy layer. Cross-linking the Si-O-Si network of the coating film was formed through sol-gel chemistry. Driven by the hydrophilic-hydrophobic effect, PDMS trends to aggregate at the film surface, thus avoiding the phase separation which can affect transparency. The highly cross-linked network and the presence of hard silica core provide a high hardness to stand the steel-wool scratch. Flexible polymer chains impart the coating film an outstanding bendability. Introduction of PDMS makes the coating film possess hydrophobicity and anti-graffiti function.
Collapse
Affiliation(s)
- Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyu Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
19
|
Jiang F, Wang J, Li B, Wu L. Organic-Cation Modulated Assembly Behaviors of a Ureidopyrimidone-Grafting Cluster. Molecules 2023; 28:molecules28093677. [PMID: 37175087 PMCID: PMC10180284 DOI: 10.3390/molecules28093677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Ureidopyrimidone (UPy) is an important building block for constructing functional supramolecular polymers and soft materials based on their characteristic quadruple hydrogen bonds. While the evidence from the single-crystal X-ray diffraction data for the existence of linear hydrogen bonding has still been absent up to now. To obtain the crystals of UPy-containing molecules with high quality, enhanced rigidity and crystallinity are expected. Herein, an inorganic Anderson-Evans type cluster [Mn(OH)6Mo6O18]3-, which can provide suitable stiffness and charge, is used as a linker to covalently anchor two UPy units. The prepared organic-inorganic polyanion with three negative charges has a linear architecture, which is prone to form an infinite one-dimensional structure based on the supramolecular forces. The results indicate that the combination models of UPy units can be conveniently modulated by organic counter cations with different sizes, and therefore three unreported models are observed under various conditions. The present study gives a unique understanding of the intermolecular interactions in UPy-based supramolecular polymers and also provides a simple tuning method, which benefits the construction of functional materials and the adjustment of their properties.
Collapse
Affiliation(s)
- Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiaxu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Hou C, Cao C, Ma R, Ai L, Hu Z, Huang Y, Yao X. Press-N-Go On-Skin Sensor with High Interfacial Toughness for Continuous Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11379-11387. [PMID: 36791211 DOI: 10.1021/acsami.2c22936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
On-skin electronic sensors are demanded for healthcare monitoring such as the continuous recording of biopotential and motion signals from patients. However, the mechanical mismatches and poor interface adhesion at the skin/sensor interfaces always cause high interfacial impedance and artifacts, frequent interfacial failure, and unexpected depletion of the device, which significantly limit the performance of the sensors. We here develop an on-skin sensor based on a conductive pressure-sensitive tape, which is assembled from supramolecular dual-cross-linked hydrogel composites. Both covalent and noncovalent cross-links in the hydrogel networks could harvest high flexibility, pressure-sensitive adhesion, and high interfacial toughness altogether, enabling a convenient "Press-N-Go" application of the sensor on human skin without additional pre/post-treatment on the skin or the senor. The high conformability and low resistivity of the tape can sustainably lower the interfacial impedance and thus improve signal quality in various measurement conditions. Our design provides a feasible path to develop interface-toughened on-skin electronics, which is desired in dynamic human-machine interfaces.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Rui Ma
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Zuojun Hu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
22
|
Fan ZW, Jin XL, Chen Y, Lu M, Wang YR, Yue K, Wen T, Tang L, Wu ZL, Sun T. Topology and Dynamic Regulations of Comb-like Polymers as Strong Adhesives. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Zhi Wei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Lin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengze Lu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi Ru Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Kang F, Yang Y, Wang W, Li Z. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Kang J, Li X, Zhou Y, Zhang L. Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. iScience 2023; 26:106022. [PMID: 36818300 PMCID: PMC9932134 DOI: 10.1016/j.isci.2023.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The preparation of water-based adhesives with high bonding strength for various substrates is challenging. Moreover, to construct a sustainable society, it is highly desirable to develop a cost-effective way to achieve the reuse of plastic wastes. Herein, using polymethylmethacrylate (PMMA) chemicals or wastes as raw materials, water-based adhesives with high bonding strength for various substrates are prepared through a simple one-step hydrolysis strategy. The adhesives possess the maximum bonding strength of 7.1 MPa to iron, 4.2 MPa to wood, and ∼1.5 MPa to plastics. The adhesives have a world-record bonding strength to metal when compared with that of current reported water-based adhesives. Our method is low cost, simple, environmentally friendly, and suitable for large-scale industrial production. More importantly, using plastic wastes as raw materials opens up a new and low-cost way to turn wastes into valuables, which will greatly contribute to construct a sustainable society.
Collapse
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunlu Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China,Corresponding author
| |
Collapse
|
25
|
Wang ZH, Liu BW, Zeng FR, Lin XC, Zhang JY, Wang XL, Wang YZ, Zhao HB. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. SCIENCE ADVANCES 2022; 8:eadd8527. [PMID: 36516253 PMCID: PMC9750157 DOI: 10.1126/sciadv.add8527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Recyclable/reversible adhesives have attracted growing attention for sustainability and intelligence but suffer from low adhesion strength and poor durability in complex conditions. Here, we demonstrate an aromatic siloxane adhesive that exploits stimuli-responsive reversible assembly driven by π-π stacking, allowing for elimination and activation of interfacial interactions via infiltration-volatilization of ethanol. The robust cohesive energy from water-insensitive siloxane assembly enables durable strong adhesion (3.5 MPa shear strength on glasses) on diverse surfaces. Long-term adhesion performances are realized in underwater, salt, and acid/alkali solutions (pH 1-14) and at low/high temperatures (-10-90°C). With reversible assembly/disassembly, the adhesive is closed-loop recycled (~100%) and reused over 100 times without adhesion loss. Furthermore, the adhesive has unique combinations of high transparency (~98% in the visible light region of 400-800 nm) and flame retardancy. The experiments and theoretical calculations reveal the corresponding mechanism at the molecular level. This π-π stacking-driven siloxane assembly strategy opens up an avenue for high-performance adhesives with circular life and multifunctional integration.
Collapse
|
26
|
Sun P, Qin B, Xu J, Zhang X. High‐Performance Supramolecular Adhesives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peng Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bo Qin
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Zhao K, Liu Y, Ren Y, Li B, Li J, Wang F, Ma C, Ye F, Sun J, Zhang H, Liu K. Molecular Engineered Crown‐Ether‐Protein with Strong Adhesion over a Wide Temperature Range from −196 to 200 °C. Angew Chem Int Ed Engl 2022; 61:e202207425. [DOI: 10.1002/anie.202207425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Yubin Ren
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Chao Ma
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Jing Sun
- East China Normal University China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
- Department of Chemistry Tsinghua University 100084 Beijing China
| |
Collapse
|
28
|
Chen S, Li Z, Wu Y, Mahmood N, Lortie F, Bernard J, Binder WH, Zhu J. Hydrogen‐Bonded Supramolecular Polymer Adhesives: Straightforward Synthesis and Strong Substrate Interaction. Angew Chem Int Ed Engl 2022; 61:e202203876. [DOI: 10.1002/anie.202203876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (HUST) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China
| | - Zeke Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (HUST) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China
| | - Yanggui Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (HUST) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China
| | - Nasir Mahmood
- Institute of Chemistry, Chair of Macromolecular Chemistry Faculty of Natural Sciences II Martin-Luther University Halle-Wittenberg Kurth-Mothes-Strasse 2 06120 Halle (Saale) Germany
| | - Frédéric Lortie
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Lyon 1, INSA Lyon, UJM 69621 Villeurbanne cedex France
| | - Julien Bernard
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères Université Lyon 1, INSA Lyon, UJM 69621 Villeurbanne cedex France
| | - Wolfgang H. Binder
- Institute of Chemistry Martin-Luther University Halle-Wittenberg von Danckelmann-Platz 4 06120 Halle Saale) Germany
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (HUST) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) Wuhan 430074 China
| |
Collapse
|
29
|
Shome A, Das A, Borbora A, Dhar M, Manna U. Role of chemistry in bio-inspired liquid wettability. Chem Soc Rev 2022; 51:5452-5497. [PMID: 35726911 DOI: 10.1039/d2cs00255h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemistry and topography are the two distinct available tools for customizing different bio-inspired liquid wettability including superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superoleophilicity, and liquid infused slippery property. In nature, various living species possessing super and special liquid wettability inherently comprises of distinctly patterned surface topography decorated with low/high surface energy. Inspired from the topographically diverse natural species, the variation in surface topography has been the dominant approach for constructing bio-inspired antiwetting interfaces. However, recently, the modulation of chemistry has emerged as a facile route for the controlled tailoring of a wide range of bio-inspired liquid wettability. This review article aims to summarize the various reports published over the years that has elaborated the distinctive importance of both chemistry and topography in imparting and modulating various bio-inspired wettability. Moreover, this article outlines some obvious advantages of chemical modulation approach over topographical variation. For example, the strategic use of the chemical approach has allowed the facile, simultaneous, and independent tailoring of both liquid wettability and other relevant physical properties. We have also discussed the design of different antiwetting patterned and stimuli-responsive interfaces following the strategic and precise alteration of chemistry for various prospective applications.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.,Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India
| |
Collapse
|
30
|
Zhao K, Liu Y, Ren Y, Li B, Li J, Wang F, Ma C, Ye F, Sun J, Zhang H, Liu K. Molecular Engineered Crown‐Ether–Protein with Strong Adhesion over a Wide Temperature Range from ‐196 to 200°C. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kelu Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yawei Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yubin Ren
- Tsinghua University Department of Chemistry Department of Chemistry CHINA
| | - Bo Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jingjing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Fan Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization 5625 Renmin St, Guilin Road, Chaoyang District 130022 Changchun CHINA
| | - Chao Ma
- Tsinghua University Department of Chemistry CHINA
| | - Fangfu Ye
- Chinese Academy of Sciences Institute of Physics Institute of Physics CHINA
| | - Jing Sun
- Ulm University: Universitat Ulm Institute of Organic Chemistry GERMANY
| | | | - Kai Liu
- Tsinghua University Department of Chemistry qinghua yuan 100084 Beijing CHINA
| |
Collapse
|
31
|
Chen S, Li Z, Wu Y, Mahmood N, Lortie F, Bernard J, Binder WH, Zhu J. Hydrogen‐Bonded Supramolecular Polymer Adhesives: Straightforward Synthesis and Strong Substrate Interaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Senbin Chen
- Huazhong University of Science and Technology Luoyu Road 1037 Wuhan CHINA
| | - Zeke Li
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Yanggui Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Nasir Mahmood
- Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat II Chemie Physik und Mathematik Chair of Macromolecular Chemistry GERMANY
| | - Frédéric Lortie
- INSA Lyon: Institut National des Sciences Appliquees de Lyon IMP UMR 5223 FRANCE
| | - Julien Bernard
- INSA Lyon: Institut National des Sciences Appliquees de Lyon IMP UMR 5223 FRANCE
| | - Wolfgang H. Binder
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Chair of Macromolecular Chemistry GERMANY
| | - Jintao Zhu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
32
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Dong S, Wu Q, Zhang W, Xia G, Yang L, Cui J. Slippery Passive Radiative Cooling Supramolecular Siloxane Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4571-4578. [PMID: 35020361 DOI: 10.1021/acsami.1c22673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer coatings with comprehensive properties including passive radiative cooling, anti-fouling, and self-healing constitute a promising energy-saving strategy but have not been well documented yet. Herein, we reported a class of novel multifunctional supramolecular polysiloxane composite coatings showing the combination of these features. The coatings have a hybrid structure with a slippery liquid-infused porous surface and a gradient polymer-Al2O3 composite matrix constructed by reversible hydrogen bonding. The gradient matrix consists of a polymer-rich top and a particle-rich bottom favoring coating attachment on rigid substrates. Such a complex structure can be obtained by simply casting the suspending solutions of the polydimethylsiloxane (PDMS)-urea copolymer and Al2O3 on substrates followed by swelling silicone oil. Obtained coatings display good passive daytime radiative cooling (a temperature drop of ∼2 °C), self-healing ability, and anti-fouling properties. Since the comprehensive performances and the facile fabrication, the coatings should have application potential for various thermal management purposes.
Collapse
Affiliation(s)
- Shihua Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qian Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Guifeng Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Li Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
34
|
Hou Y, Zhu G, Cui J, Wu N, Zhao B, Xu J, Zhao N. Superior Hard but Quickly Reversible Si-O-Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings. J Am Chem Soc 2021; 144:436-445. [PMID: 34965113 DOI: 10.1021/jacs.1c10455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A coating with programmable multifunctionality based on application requirements is desirable. However, it is still a challenge to prepare a hard and flexible coating with a quick self-healing ability. Here, a hard but reversible Si-O-Si network enabled by aminopropyl-functionalized poly(silsesquioxane) and triethylamine (TEA) was developed. On the basis of this Si-O-Si network, basic coatings with excellent transparency, hardness, flexibility, and quick self-healing properties can be prepared by filling soft polymeric micelles into hard poly(silsesquioxane) networks. The highly cross-linked continuous network endows the coating with a hardness (H = 0.83 GPa) higher than those of most polymers (H < 0.3 GPa), while the uniformly dispersed micelles decrease the Young's modulus (E = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an H/E of 14.1% and an elastic recovery rate (We) of 86.3%. Scratches (∼50 μm) on the coating can be healed within 4 min. The hybrid composition of poly(silsesquioxane) networks also shows great advantages in integration with other functional components to realize programmable multifunctionality without diminishing the basic properties. This nanocomposite design provides a route toward the preparation of materials with excellent comprehensive functions without trade-offs between these properties.
Collapse
Affiliation(s)
- Yi Hou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Guangda Zhu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Jie Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Ningning Wu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Bintao Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.,Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong 518060, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
35
|
Lai J, Huang S, Wu S, Li F, Dong S. Adhesion behaviour of bulk supramolecular polymers via pillar[5]arene-based molecular recognition. Chem Commun (Camb) 2021; 57:13317-13320. [PMID: 34812444 DOI: 10.1039/d1cc05518f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pillar[n]arenes were rarely used as the building blocks for supramolecular adhesives. Herein, pillar[5]arene-based supramolecular polymer materials with tough adhesion behaviours on different substrates were prepared, with adhesion strengths up to 4.75 MPa. Strong and long-term dichloromethane-resistant adhesion performances were successfully obtained.
Collapse
Affiliation(s)
- Jinlei Lai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiyu Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shuanggen Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
36
|
Cao C, Huang X, Lv D, Ai L, Chen W, Hou C, Yi B, Luo J, Yao X. Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization. MATERIALS HORIZONS 2021; 8:3399-3408. [PMID: 34679157 DOI: 10.1039/d1mh00924a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gallium-based liquid metals (LMs) are emerging candidates for the development of metal/polymer-based flexible circuits in wearable electronics. However, the high surface energies of LMs make them easily depleted from the polymer matrix and therefore substantially suppress the stretchability of the conductive composites. Here, we reveal that a dynamic interplay between the LM and the polyvinylidene fluoride (PVDF) copolymer can help to address these issues. Weak and abundant interfacial polarization interactions between the PVDF copolymer and the oxide layer allow continuous and adaptive configuration of the compartmented LM channels, enabling ultra-stretchability of the composites. The conductive LM-polymer composites can maintain their structural integrity with a high surface conductivity and small resistance changes under large strains from 1000% to 10 000%. Taking advantage of their flexible processability under mild conditions and exceptional performance, our design strategy allows the scalable fabrication of conductive LM-polymer composites for a range of applications in wearable devices and sensors.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Weilong Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Jingdong Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China.
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, P. R. China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
37
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
38
|
Yu J, Chen C, Gilchrist JB, Buffet JC, Wu Z, Mo G, Xie F, O'Hare D. Aged layered double hydroxide nanosheet-polyvinyl alcohol dispersions for enhanced gas barrier coating performance. MATERIALS HORIZONS 2021; 8:2823-2833. [PMID: 34486636 DOI: 10.1039/d1mh00433f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Whilst applying a coating layer to a polymer film is a routine approach to enhance the gas barrier properties of the film, it is counter-intuitive to consider that the gas barrier performance of the film would improve by ageing the coating dispersion for weeks before application. Herein, we report that the oxygen barrier performance of a 12 μm PET film coated with a dispersion of inorganic nanosheets in polyvinyl alcohol can be significantly enhanced by ageing this coating dispersion for up to 8 weeks before application. We found up to a 37-fold decrease in the oxygen transmission rate (OTR) of the PET coated film using aged dispersions of [Mg0.66Al0.33(OH)2](NO3)0.33 layered double hydroxide nanosheets (Mg2Al-LDH NS) in polyvinyl alcohol (PVA) compared to the film coated with an equivalent freshly prepared LDH/PVA dispersion. A limiting OTR value of 0.31 cc m-2 day-1 was achieved using the PET film coated with a 3 week aged LDH NS/PVA dispersion. X-ray diffraction experiments show that the degree of in plane alignment of LDH NS on the PET film surface increased significantly from 70.6 ± 0.6 to 86.7 ± 0.6 (%) (100% represents complete alignment of LDH NS platelets on the film surface) for the 4 week aged dispersion compared to the freshly prepared layer. We postulate that when the Mg2Al-LDH NS are aged in PVA the coiled PVA aggregates start to unwrap and attach onto the Mg2Al-LDH NS through hydrogen bonding and eventually form a hydrogen bonded ordered network that facilitates the alignment of nanosheet dispersions during the coating process. Our results suggest that the ageing of inorganic nanosheet dispersions in PVA or other potential hydrogen bonding adhesive systems could be a general approach to improve the alignment of the nanosheets on the polymer film surface once applied and thus improve their performance characteristics for barrier coating applications.
Collapse
Affiliation(s)
- Jingfang Yu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | - Jean-Charles Buffet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fei Xie
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
39
|
Shi CY, Zhang Q, Wang BS, Chen M, Qu DH. Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44860-44867. [PMID: 34499480 DOI: 10.1021/acsami.1c11679] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
40
|
Samanta S, Kim S, Saito T, Sokolov AP. Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. J Phys Chem B 2021; 125:9389-9401. [PMID: 34324809 DOI: 10.1021/acs.jpcb.1c03511] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymeric materials play critical role in many current technologies. Among them, adaptive polymeric materials with dynamic (reversible) bonds exhibit unique properties and provide exciting opportunities for various future technologies. Dynamic bonds enable structural rearrangements in polymer networks in specific conditions. Replacement of a few covalent bonds by dynamic bonds can enhance polymeric properties, e.g., strongly improve the toughness and the adhesive properties of polymers. Moreover, they provide recyclability and enable new properties, such as self-healing and shape memory effects. We briefly overview new developments in the field of polymers with dynamic bonds and current understanding of their dynamic properties. We further highlight several examples of unique properties of polymers with dynamic bonds and provide our perspectives for them to be used in many current and future applications.
Collapse
Affiliation(s)
- Subarna Samanta
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sungjin Kim
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
41
|
Huang X, Lv D, Ai LQ, Cheng SH, Yao X. Aggregate Engineering in Supramolecular Polymers via Extensive Non-covalent Networks. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Dhyani A, Wang J, Halvey AK, Macdonald B, Mehta G, Tuteja A. Design and applications of surfaces that control the accretion of matter. Science 2021; 373:373/6552/eaba5010. [PMID: 34437123 DOI: 10.1126/science.aba5010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces' scale-up and commercialization.
Collapse
Affiliation(s)
- Abhishek Dhyani
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Alex Kate Halvey
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Brian Macdonald
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Geeta Mehta
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Anish Tuteja
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA. .,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan-Ann Arbor, MI, USA
| |
Collapse
|
43
|
Ma X, Zhou D, Liu L, Wang L, Yu H, Li L, Feng S. Reprocessable Supramolecular Elastomers of Poly(Siloxane–Urethane) via Self‐Complementary Quadruple Hydrogen Bonding. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiyang Ma
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Debo Zhou
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- Shandong Dongyue Organosilicone Materials Co., Ltd. Zibo 25640 P. R. China
| | - Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- Weihai New Era Chemical Co., Ltd. Weihai 264205 P. R. China
| | - Huidong Yu
- Shandong Qilu Zhonghe Technology Co., Ltd. Jinan 250101 P. R. China
| | - Lei Li
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
44
|
Liu J, Sun Y, Zhou X, Li X, Kappl M, Steffen W, Butt H. One-Step Synthesis of a Durable and Liquid-Repellent Poly(dimethylsiloxane) Coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100237. [PMID: 33955585 PMCID: PMC11468872 DOI: 10.1002/adma.202100237] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Coatings with low sliding angles for liquid drops have a broad range of applications. However, it remains a challenge to have a fast, easy, and universal preparation method for coatings that are long-term stable, robust, and environmentally friendly. Here, a one-step grafting-from approach is reported for poly(dimethylsiloxane) (PDMS) brushes on surfaces through spontaneous polymerization of dichlorodimethylsilane fulfilling all these requirements. Drops of a variety of liquids slide off at tilt angles below 5°. This non-stick coating with autophobicity can reduce the waste of water and solvents in cleaning. The strong covalent attachment of the PDMS brush to the substrate makes them mechanically robust and UV-tolerant. Their resistance to high temperatures and to droplet sliding erosion, combined with the low film thickness (≈8 nm) makes them ideal candidates to solve the long-term degradation issues of coatings for heat-transfer surfaces.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Yuling Sun
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Xiaoteng Zhou
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Xiaomei Li
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Michael Kappl
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Werner Steffen
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| | - Hans‐Jürgen Butt
- Max Planck Institute for Polymer ResearchAckermannweg 10MainzD‐55128Germany
| |
Collapse
|
45
|
Jiang J, Zheng H, Liu H, Zhai W. Tunable cell structure and mechanism in porous thermoplastic polyurethane micro-film fabricated by a diffusion-restricted physical foaming process. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Hou C, Xu C, Yi B, Huang X, Cao C, Lee Y, Chen S, Yao X. Mechano-Induced Assembly of a Nanocomposite for "Press-N-Go" Coatings with Highly Efficient Surface Disinfection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19332-19341. [PMID: 33871976 DOI: 10.1021/acsami.1c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using antimicrobial coatings to control the spread of pathogenic microbes is appreciated in public and healthcare settings, but the performance of most antimicrobial coatings could not fulfill the increasing requirements, particularly the ease of preparation, high durability, rapid response, and high killing efficiency. Herein, we develop a new type of mechano-induced assembly of nanocomposite coating by simple "Press-N-Go" procedures on various substrates such as glassware, gloves, and fabrics, in which the coating shows strong adhesion, high shear stability, and high stiffness, making it durable in daily use to withstand common mechanical deformation and scratches. The coating also shows remarkable disinfection effectiveness over 99.9% to clinically significant multiple drug-resistant bacterial pathogens upon only 6 s near-infrared irradiation, which can be further improved to over 99.9999% upon another 6 s treatment. We envision that the coating can provide convenience and values to control pathogen spread for easily contaminated substrates in high-risk areas.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chen Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xin Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Youngjin Lee
- Department of Neuroscience, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518075, P. R. China
| |
Collapse
|
47
|
Xu J, Chen J, Zhang Y, Liu T, Fu J. A Fast Room-Temperature Self-Healing Glassy Polyurethane. Angew Chem Int Ed Engl 2021; 60:7947-7955. [PMID: 33432671 DOI: 10.1002/anie.202017303] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/19/2022]
Abstract
We designed and synthesized a colorless transparent glassy polyurethane assembled using low-molecular-weight oligomers carrying a large number of loosely packed weak hydrogen bonds (H-bonds), which has a glass transition temperature (Tg ) up to 36.8 °C and behaves unprecedentedly robust stiffness with a tensile Young's modulus of 1.56±0.03 GPa. Fast room-temperature self-healing was observed in this polymer network: the broken glassy polyurethane (GPU) specimen can recover to a tensile strength up 7.74±0.76 MPa after healing for as little as 10 min, which is prominent compared to reported room-temperature self-healing polymers. The high density of loose-packed hydrogen bonds can reversibly dissociate/associate below Tg of GPU (that is secondary relaxation), which enables the reconfiguration of the damaged network in the fractured interfaces, despite the extremely slow diffusion dynamics of molecular chains under room temperature. This GPU shows potential application as an optical lens.
Collapse
Affiliation(s)
- JianHua Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, No 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - JiaoYang Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, No 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - YaNa Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, No 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - Tong Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, No 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| | - JiaJun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, No 200, XiaoLingWei Road, Nanjing, 210094, P. R. China
| |
Collapse
|
48
|
Xu J, Chen J, Zhang Y, Liu T, Fu J. A Fast Room‐Temperature Self‐Healing Glassy Polyurethane. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- JianHua Xu
- School of Chemical Engineering Nanjing University of Science and Technology No 200, XiaoLingWei Road Nanjing 210094 P. R. China
| | - JiaoYang Chen
- School of Chemical Engineering Nanjing University of Science and Technology No 200, XiaoLingWei Road Nanjing 210094 P. R. China
| | - YaNa Zhang
- School of Chemical Engineering Nanjing University of Science and Technology No 200, XiaoLingWei Road Nanjing 210094 P. R. China
| | - Tong Liu
- School of Chemical Engineering Nanjing University of Science and Technology No 200, XiaoLingWei Road Nanjing 210094 P. R. China
| | - JiaJun Fu
- School of Chemical Engineering Nanjing University of Science and Technology No 200, XiaoLingWei Road Nanjing 210094 P. R. China
| |
Collapse
|
49
|
Fu X, Qiu Y, Zhao Y. Lipid incorporated synthetic hydrogels show cartilage-like lubrication. Sci Bull (Beijing) 2021; 66:409-410. [PMID: 36654174 DOI: 10.1016/j.scib.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiao Fu
- Department of General Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yudong Qiu
- Department of General Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China.
| | - Yuanjin Zhao
- Department of General Surgery, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
50
|
Petrus R, Utko J, Gniłka R, Fleszar MG, Lis T, Sobota P. Solvothermal Alcoholysis Method for Recycling High-Consistency Silicone Rubber Waste. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rafał Petrus
- Faculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland
| | - Józef Utko
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Radosław Gniłka
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, 147 Stablowicka, 54-066 Wrocław, Poland
| | - Mariusz G. Fleszar
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, 147 Stablowicka, 54-066 Wrocław, Poland
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Piotr Sobota
- Łukasiewicz Research Network−PORT Polish Center for Technology Development, 147 Stablowicka, 54-066 Wrocław, Poland
| |
Collapse
|