1
|
Chen YQ, Zhu YJ, Wang ZY, Yu HP, Xiong ZC. A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8158-8170. [PMID: 39846438 DOI: 10.1021/acsami.4c17864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination. The as-prepared solar water evaporator consists of highly ordered ultralong hydroxyapatite (HAP) nanowires as a supporting backbone and heat insulator, MXene as a sunlight absorber, and hydrophilic hyaluronic acid methacryloyl (HAMA) as an interfacial bonding agent, and a modifier to reduce the water evaporation enthalpy. The MXene/ultralong HAP nanowires/HAMA (MHH) photothermal hydrogel evaporator with the multiscale-ordered hierarchical structure mimics the fish-gill structure. The highly ordered alignment of ultralong HAP nanowires is realized at multiple scales, from the nanoscale to the microscale to the macroscale and from 1D to 2D to 3D in the as-prepared photothermal hydrogel evaporator. The high-performance MHH photothermal hydrogel water evaporator exhibits high efficiency of photothermal conversion, low water evaporation enthalpy, excellent heat management capability, and high solar water evaporation performance. The water evaporation enthalpy decreases from 2431 J g-1 (pure water) to 1113 J g-1 using the MHH photothermal hydrogel evaporator. As a result, the high-performance MHH hydrogel water evaporator can realize a high water evaporation rate of 6.278 kg m-2 h-1 under one sun illumination (1 kW m-2). Moreover, the as-prepared MHH hydrogel evaporator is able to achieve a water evaporation rate of 4.931 kg m-2 h-1 using the real seawater sample, exhibiting excellent salt-rejecting performance. It is expected that the as-prepared MHH hydrogel evaporator has promising applications in high-performance seawater desalination and wastewater purification using the sustainable solar energy.
Collapse
Affiliation(s)
- Yu-Qiao Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Yi Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Mohammadpour L, Moghadasi H, Moosavi A. The influence of Nusselt number on dropwise condensation heat transfer for a single droplet on inclined and grooved surfaces. Sci Rep 2025; 15:527. [PMID: 39747523 PMCID: PMC11696381 DOI: 10.1038/s41598-024-84127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure. Drop's shape simulation was done utilizing the Surface Evolver (SE) software and the governing equations were solved based on the finite volume method. Moreover, for different Nusselt numbers ([Formula: see text]), the average heat flux was calculated by considering the effect of different inclination angles, contact angles, and saturation temperatures. Validation was performed by comparing the outcomes with the available data in the literature, and a satisfactory agreement was achieved. The study revealed that the average heat flux for a water droplet with the saturation temperature [Formula: see text] = 313 K on an inclined surface with an inclination angle of β = 90° increases by 151.79% when the Nu is increased from 510 to 740. Similarly, for a droplet on a rough surface with a roughness index of [Formula: see text] = 0.6, the increase in heat flux is 152%. Moreover, an increase in saturation temperature results in a higher heat flux for both inclined and rough surfaces. The augmentation follows a specific trend for each of the surfaces.
Collapse
Affiliation(s)
- Loghman Mohammadpour
- School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Hesam Moghadasi
- Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Ali Moosavi
- School of Mechanical Engineering, Center of Excellence in Energy Conversion, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Afshar M, Ghosh S, Mascaretti L, Kment Š, Casari CS, Naldoni A. Spaced Hybrid TiO 2/Au Nanotube Arrays with Tailored Optical Properties for Surface-Enhanced Raman Scattering. ACS OMEGA 2024; 9:48205-48212. [PMID: 39676961 PMCID: PMC11635504 DOI: 10.1021/acsomega.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/15/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
Controlling the overall geometry of plasmonic materials allows for tailoring their optical response and the effects that can be exploited to enhance the performance of a wide range of devices. This study demonstrates a simple method to control the size and distribution of gold (Au) nanoparticles grown on the surface of spaced titanium dioxide (TiO2) nanotubes by varying the deposition time of magnetron sputtering. While shorter depositions led to small and well-separated Au nanoparticles, longer depositions promoted the formation of quasi-continuous layers with small interparticle gaps. The optical spectra of Au/TiO2 nanotubes showed a region of strong absorption (200-550 nm) for all samples and a region of decreasing absorption with an increase of effective Au thickness (550-1100 nm). This behavior led to distinct trends in the Raman signal enhancement of the underlying TiO2 nanotubes depending on the excitation laser wavelength. Furthermore, the quasi-continuous layers formed at higher effective Au thicknesses promoted an amplification of the signal and an improvement in the detection limit of target molecules in surface-enhanced Raman scattering (SERS) experiments. These findings suggest a simple method for designing efficient devices with tailored light absorption and potential applications in detectors and other optical devices.
Collapse
Affiliation(s)
- Morteza Afshar
- Czech
Advanced Technology and Research Institute (CATRIN), Regional Centre
of Advanced Technologies and Materials Department, Palacký University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
| | - Subrata Ghosh
- Micro
and Nanostructured Materials Laboratory (NanoLab), Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Luca Mascaretti
- Czech
Advanced Technology and Research Institute (CATRIN), Regional Centre
of Advanced Technologies and Materials Department, Palacký University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Department
of Laser Physics and Photonics, Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University
in Prague, Břehová 7, 11519 Prague, Czech Republic
| | - Štěpán Kment
- Czech
Advanced Technology and Research Institute (CATRIN), Regional Centre
of Advanced Technologies and Materials Department, Palacký University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- CEET,
Nanotechnology Centre, VŠB-Technical
University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Carlo Spartaco Casari
- Micro
and Nanostructured Materials Laboratory (NanoLab), Department of Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Alberto Naldoni
- Czech
Advanced Technology and Research Institute (CATRIN), Regional Centre
of Advanced Technologies and Materials Department, Palacký University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| |
Collapse
|
4
|
Yu H, Jin H, Qiu M, Liang Y, Sun P, Cheng C, Wu P, Wang Y, Wu X, Chu D, Zheng M, Qiu T, Lu Y, Zhang B, Mai W, Yang X, Owens G, Xu H. Making Interfacial Solar Evaporation of Seawater Faster than Fresh Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414045. [PMID: 39548925 DOI: 10.1002/adma.202414045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Interfacial solar evaporation-based seawater desalination is regarded as one of the most promising strategies to alleviate freshwater scarcity. However, the solar evaporation rate of real seawater is significantly constricted by the ubiquitous salts present in seawater. In addition to the common issue of salt accumulation on the evaporation surface during solar evaporation, strong hydration between salt ions and water molecules leads to a lower evaporation rate for real seawater compared to pure water. Here a facile and general strategy is developed to reverse this occurrence, that is, making real seawater evaporation faster than pure water. By simply introducing specific mineral materials into the floating photothermal evaporator, ion exchange at air-water interfaces directly results in a decrease in seawater evaporation enthalpy, and consequently achieves much higher seawater evaporation rates compared to pure water. This process is spontaneously realized during seawater solar evaporation. Considering the current enormous clean water production from evaporation-based desalination plants, such an evaporation performance improvement can remarkably increase annual clean water production, benefiting millions of people worldwide.
Collapse
Affiliation(s)
- Huimin Yu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Huanyu Jin
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Meijia Qiu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yunzheng Liang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Peng Sun
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Pan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Yida Wang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Min Zheng
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tong Qiu
- Materials Industrialization Engineering Research Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Gary Owens
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
5
|
Le TSD, Yang D, Nam HK, Lee Y, Lim CT, Lee BJ, Kim SW, Kim YJ. Low-Cost, Eco-Friendly, and High-Performance 3D Laser-Induced Graphene Evaporator for Continuous Solar-Powered Water Desalination. ACS NANO 2024. [PMID: 39556507 DOI: 10.1021/acsnano.4c12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Water scarcity has become a global challenge attributed to climate change, deforestation, population growth, and increasing water demand. While advanced water production plants are prevalent in urban areas, remote islands and sparsely populated regions face significant obstacles in establishing such technologies. Consequently, there is an urgent need for efficient, affordable, and sustainable water production technologies in these areas. Herein, we present a facile approach utilizing an ultrashort-pulsed laser to directly convert cotton fabric into graphene under ambient conditions. The resulting laser-induced graphene (LIG) demonstrates the highest light absorption efficiency of 99.0% and a broad absorption range (250-2500 nm). As an excellent solar absorber, LIG on cotton fabric can efficiently absorb 98.6% of the total solar irradiance and its surface temperature can reach 84.5 °C under sunlight without optical concentration. Moreover, we propose a cost-effective 3D LIG evaporator (LIGE) for continuous solar-powered desalination. This innovative design effectively mitigates salt formation issues and enhances the steam generation efficiency. The water evaporation rate and the solar-to-vapor conversion efficiency are measured to be around 1.709 kg m-2 h-1 and 95.1%, respectively, which surpass those reported in previous studies. The simplicity, durability, and continuous operational capability of the 3D LIGE offer promising prospects to address the growing challenges in global water scarcity.
Collapse
Affiliation(s)
- Truong-Son Dinh Le
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Dongwook Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Han Ku Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Younggeun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Bong Jae Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Seung-Woo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Young-Jin Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| |
Collapse
|
6
|
Morad M, Fahmi MS, Subaihi A, Alotaibi MT, Shahat A, Ali MEA. Photothermal effectiveness of microporous carbon nanospheres incorporated with polysulfone in direct contact membrane distillation. RSC Adv 2024; 14:30912-30923. [PMID: 39346526 PMCID: PMC11427996 DOI: 10.1039/d4ra05629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Carbon nano-spheres (CNS) were synthesized via a hydrothermal method using d-glucose as a precursor, followed by pyrolysis in a nitrogen atmosphere. The resulting CNS were integrated into polysulfone (PSF) membranes to enhance their photothermal properties. Characterization using various techniques revealed improved thermal properties upon CNS inclusion, with a notable increase in membrane surface temperature and enhancement of contact angle (CA) and liquid entry pressure (LEP). Composite PSF membranes containing varying CNS concentrations (0.25-5%) exhibited optimal performance at 3% CNS concentration, demonstrating enhanced morphological conformation and photothermal attributes. Evaluation under tungsten bulbs light using a photothermal membrane distillation system showed significant improvement in membrane distillation flux, achieving a maximum water flux of 7.73 L m-2 h-1 and a salt rejection rate of 99.9%. These findings highlight the potential of hydrothermal CNS in enhancing photothermal properties and membrane performance for applications in desalination and wastewater treatment.
Collapse
Affiliation(s)
- Moataz Morad
- Chemistry Department, Faculty of Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Mohamed S Fahmi
- Chemistry Department, Faculty of Science, Suez University P.O. Box: 43221 Suez Egypt
| | - Abdu Subaihi
- Department of Chemistry, University College in Al-Qunfudhah, Umm Al-Qura University Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University P.O. Box: 43221 Suez Egypt
| | - Mohamed E A Ali
- Egypt Desalination Research Center of Excellence, Hydrogeochemistry Department, Desert Research Center Cairo 11753 Egypt
| |
Collapse
|
7
|
Anukunwithaya P, Liu N, Liu S, Thanayupong E, Zhou L, Pimpha N, Min J, Chinsirikul W, Thitsartarn W, Koh JJ, He C. Low vaporization enthalpy of modified chitosan hydrogel for high performance solar evaporator. Carbohydr Polym 2024; 340:122304. [PMID: 38858008 DOI: 10.1016/j.carbpol.2024.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The high vaporization enthalpy of water attributed to the strong hydrogen bonds between water molecules is limiting the performance of solar evaporators. This work demonstrates a deliberate attempt to significantly reduce the vaporization enthalpy of water through the introduction of weak water-amine hydrogen bond interactions in hydrogel evaporators. In this article, bio-based chitosan-agarose/multiwalled carbon nanotube hydrogel film evaporators (CAMFEs) exhibit larger vaporization enthalpy reduction with the presence of primary amine groups in chitosan. An interplay between vaporization enthalpy reduction and water diffusivity leads to an optimal ratio of chitosan to agarose = 7:1 (CAMFE7) showing an impressive evaporation rate of 4.13 kg m-2 h-1 under 1 sun irradiation. CAMFE7 also exhibits excellent salt resistance, with a stable water evaporation rate, using brine water of up to 10 % salinity under continuous 1 sun irradiation. The high mechanical robustness together with its scalability makes CAMFE7 a highly promising material for practical drinking water production.
Collapse
Affiliation(s)
- Patsaya Anukunwithaya
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore; National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Nanxue Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Siqi Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Eknarin Thanayupong
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Lili Zhou
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| | - Nuttaporn Pimpha
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jiakang Min
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Wannee Chinsirikul
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| |
Collapse
|
8
|
Zhou S, Yang D, Xiang W, Guo Y, Yu Z, Wang J. An in-depth study of integrating cascaded photocatalytic H 2O 2 generation and activation with solar-driven interfacial evaporation for in-situ organic contaminant remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134963. [PMID: 38908186 DOI: 10.1016/j.jhazmat.2024.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Integrating cascaded photocatalytic H2O2 generation and subsequent activation of H2O2 (into ·OH radicals) with solar-driven interfacial evaporation techniques offers an effective and sustainable approach for in-situ treating water contaminated with organic substances. Unlike traditional water-dispersed catalysts, the interfacial evaporation approach presents unique challenges in photocatalytic reactions. We explored these dynamics using an AgI/PPy/MF interfacial photothermal set, achieving H2O2 production efficiency (approximately 1.53 mM/g/h) - three times higher than submerged counterparts. This efficiency is attributed to exceptional solar light absorption (about 95 %), a significant surface photothermal effect (raising temperatures by approximately 36 °C), and enhanced oxygen availability (38 times more than in water), all characteristic of the interfacial system. The in-situ activation of H2O2 into ·OH notably improves the degradation of organic pollutants, achieving up to 99 % removal efficiency. This comprehensive analysis highlights the potential of combining photocatalytic H2O2 processes with interfacial evaporation for efficiently purifying organically polluted water.
Collapse
Affiliation(s)
- Shuai Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dailin Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyu Xiang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Guo
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziwei Yu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Feng Y, Yao H, Sun Z, Liao Y, Wang J, Zhao R, Li Y. Optimized Photothermal Conversion Ability through Interband Transitions in FeCoNiCrMn High-Entropy-Alloy Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048298 DOI: 10.1021/acsami.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
High-entropy-alloy nanoparticles (HEA-NPs) composed of 3d transition metallic elements have attracted intensive attention in photothermal conversion regions due to their d-d interband transitions (IBTs). However, the effect arising from the unbalanced elemental ratio still needs more focus. In this work, FeCoNiCrMn HEA-NPs with different elemental ratios among Cr and Mn have been employed to clarify the impact of different composed elements on the optical absorption and photothermal conversion performance. It can be recognized that the unbalanced elemental ratio of HEA-NPs can reduce the photothermal performance. Density functional theory calculation demonstrated that d-d IBTs can be changed by the different composed element ratios, resulting in a number of insufficient filling regions around the Fermi level (±4 eV). As a result, the HEA-NPs (FeCoNiCr0.75Mn0.25) with a balanced elemental ratio exhibit the highest surface temperature of 97.6 °C under 1 sun irradiation, and the evaporation rate and energy conversion efficiency could reach 2.13 kg·m-2·h-1 and 93%, respectively, demonstrating effective solar steam generation behavior.
Collapse
Affiliation(s)
- Yanyan Feng
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Haiying Yao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Zhuo Sun
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jianzhao Wang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Rongzhi Zhao
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
10
|
Li H, Zhang W, Liao X, Xu L. Kirigami enabled reconfigurable three-dimensional evaporator arrays for dynamic solar tracking and high efficiency desalination. SCIENCE ADVANCES 2024; 10:eado1019. [PMID: 38924404 PMCID: PMC11204288 DOI: 10.1126/sciadv.ado1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
A kirigami-engineered composite hydrogel membrane is exploited for the construction of three dimensional (3D) solar-tracking evaporator arrays with outstanding evaporation performance and salt tolerance. The hybrid nanofiber network in the hydrogel membrane offers favorable water transport dynamics combined with excellent structural robustness, which are beneficial for the engineering of 3D dynamic structures. Periodic triangular cuts patterned into the membrane allow formation and reconfiguration of 3D conical arrays controlled by uniaxial stretching. With these structures, the tilt angles of the membrane surface are actively tuned to follow the solar trajectory, leading to a solar evaporation rate ~80% higher than that of static planar devices. Furthermore, the tapered 3D flaps and their micro-structured surfaces are capable of localized salt crystallization for prolonged solar desalination, enabling a stable evaporation rate of 3.4 kg m-2 hour-1 even in saturated brine. This versatile design may facilitate the implementation of solar evaporators for desalination and provide inspirations for other soft functional devices with dynamic 3D configurations.
Collapse
Affiliation(s)
- Hao Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weixin Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Xi Liao
- School of Construction Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- Department of Architecture, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
11
|
Jawed AS, Nassar L, Hegab HM, van der Merwe R, Al Marzooqi F, Banat F, Hasan SW. Recent developments in solar-powered membrane distillation for sustainable desalination. Heliyon 2024; 10:e31656. [PMID: 38828351 PMCID: PMC11140715 DOI: 10.1016/j.heliyon.2024.e31656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The freshwater shortage continues to be one of the greatest challenges affecting our planet. Although traditional membrane distillation (MD) can produce clean water regardless of climatic conditions, the process wastes a lot of energy. The technique of solar-powered membrane distillation (SPMD) has received a lot of interest in the past decade, thanks to the development of photothermal materials. SPMD is a promising replacement for the traditional MD based on fossil fuels, as it can prevent the harmful effects of emissions on the environment. Integrating green solar energy with MD can reduce the cost of the water purification process and secure freshwater production in remote areas. At this point, it is important to consider the most current progress of the SPMD system and highlight the challenges and prospects of this technology. Based on this, the background, recent advances, and principles of MD and SPMD, their configurations and mechanisms, fabrication methods, advantages, and current limitations are discussed. Detailed comparisons between SPMD and traditional MD, assessments of various standards for incorporating photothermal materials with desirable properties, discussions of desalination and other applications of SPMD and MD, and energy consumption rates are also covered. The final section addresses the potential of SPMD to outperform traditional desalination technology while improving water production without requiring a significant amount of electrical or high-grade thermal energy.
Collapse
Affiliation(s)
- Ahmad S. Jawed
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Lobna Nassar
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M. Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Riaan van der Merwe
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Faisal Al Marzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Wang Y, Wei T, Wang Y, Zeng J, Wang T, Wang Q, Zhang S, Zeng M, Wang F, Dai P, Jiang X, Hu M, Zhao J, Hu Z, Zhu J, Wang X. Quasi-waffle solar distiller for durable desalination of seawater. SCIENCE ADVANCES 2024; 10:eadk1113. [PMID: 38809973 PMCID: PMC11135395 DOI: 10.1126/sciadv.adk1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Water purification via interfacial solar steam generation exhibits promising potential. However, salt crystallization on evaporators reduces solar absorption and obstructs water supply. To address it, a waffle-shaped solar evaporator (WSE) has been designed. WSE is fabricated via a zinc-assisted pyrolysis route, combining low-cost biomass carbon sources, recyclable zinc, and die-stamping process. This route enables cost-effective production without the need of sophisticated processing. As compared to conventional plane-shaped evaporators, WSE is featured by extra sidewalls for triggering the convection with the synergistic solute and thermal Marangoni effects. Consequently, WSE achieves spontaneous salt rejection and durable evaporation stability. It has demonstrated continuous operation for more than 60 days in brine without fouling.
Collapse
Affiliation(s)
- Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Fengyue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Pengcheng Dai
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
13
|
Hu X, Yang J, Tu Y, Su Z, Guan Q, Ma Z. Hydrogel-Based Interfacial Solar-Driven Evaporation: Essentials and Trails. Gels 2024; 10:371. [PMID: 38920918 PMCID: PMC11202445 DOI: 10.3390/gels10060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Hydrogel-based interfacial solar-driven evaporation (ISDE) gives full play to the highly adjustable physical and chemical properties of hydrogel, which endows ISDE systems with excellent evaporation performance, anti-pollution properties, and mechanical behavior, making it more promising for applications in seawater desalination and wastewater treatment. This review systematically introduces the latest advances in hydrogel-based ISDE systems from three aspects: the required properties, the preparation methods, and the role played in application scenarios of hydrogels used in ISDE. Additionally, we also discuss the remaining challenges and potential opportunities in hydrogel-based ISDE systems. By summarizing the latest research progress, we hope that researchers in related fields have some insight into the unique advantages of hydrogels in the ISDE field and contribute our efforts so that ISDE technology reaches the finishing line of practical application on the hydrogel track.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Jianfang Yang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Yufei Tu
- School of Telecommunications and Intelligent Manufacturing, Sias University, Xinzheng 451150, China
| | - Zhen Su
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Qingqing Guan
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
14
|
Taranova A, Akbar K, Moretti E, Vomiero A, Pezzotti G, Morita T, Marin E, Zhu W. Temperature-Dependent Structural Properties of Nickel and Cobalt Selenite Hydrates as Solar Water Evaporators. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2482. [PMID: 38893746 PMCID: PMC11173136 DOI: 10.3390/ma17112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Solar water evaporation offers a promising solution to address global water scarcity, utilizing renewable energy for purification and desalination. Transition-metal selenite hydrates (specifically nickel and cobalt) have shown potential as solar absorbers with high evaporation rates of 1.83 and 2.34 kg∙m-2∙h-1, but the reported discrepancy in evaporation rate deserves further investigation. This investigation aims to clarify their thermal stability for applications and determine the underlying mechanisms responsible for the differences. Nickel and cobalt selenite hydrate compositions were synthesized and investigated via thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy to assess their temperature-induced structural and compositional variations. The results reveal distinct phase transitions and structural alterations under various temperature conditions for these two photothermal materials, providing valuable insights into the factors influencing water transportation and evaporation rates.
Collapse
Affiliation(s)
- Anastasiia Taranova
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (A.T.); (G.P.); (E.M.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy; (K.A.); (E.M.)
| | - Kamran Akbar
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy; (K.A.); (E.M.)
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy; (K.A.); (E.M.)
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy; (K.A.); (E.M.)
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (A.T.); (G.P.); (E.M.)
| | - Tatsuro Morita
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (A.T.); (G.P.); (E.M.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (A.T.); (G.P.); (E.M.)
| |
Collapse
|
15
|
Dai J, Wang H, Yang X, Lan L, Li S, Zhang G, Li R, Nie D, Zhang W. Spontaneous thermal energy transfer and anti-gravitational water pumping using Al 2O 3 fiber-enhanced flexible nonwoven material as a high-performance and self-floating solar evaporator. MATERIALS HORIZONS 2024; 11:2095-2105. [PMID: 38391254 DOI: 10.1039/d3mh02204h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Solar-driven evaporation is promising to address water scarcity. However, preserving the heat inside evaporators instead of allowing run-off, and synergistically utilizing it to wick water from the bulk, is still underexplored. Herein, a dual-functional bridge of longitudinal orientated channels of Al2O3 fibers (AOFs) embedded in a multi-layered nonwoven evaporator was proposed to create a buffer for spontaneous thermal conduction and anti-gravitational water pumping. As a self-floating system with high porosity and flexibility, benefiting from the strong water transporting ability and high thermal conductivity of the AOFs, a superhigh evaporation rate (2.79 kg m-2 h-1 under 1 sun) can be achieved with great stability and durability. This work highlights the potential of promoting thermal management using a large-scale vapour chamber and mass-producible nonwoven technology to prepare a high-performance evaporator for practical applications.
Collapse
Affiliation(s)
- Jiamu Dai
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Hang Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Xiaochuan Yang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Liujia Lan
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Suying Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Ruiqing Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Du Nie
- College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China.
| |
Collapse
|
16
|
Chen L, Shi D, Kang X, Ma C, Zheng Q. Deep Learning Enabled Comprehensive Evaluation of Jumping-Droplet Condensation and Frosting. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693061 DOI: 10.1021/acsami.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Superhydrophobicity-enabled jumping-droplet condensation and frosting have great potential in various engineering applications, ranging from heat transfer processes to antifog/frost techniques. However, monitoring such droplets is challenging due to the high frequency of droplet behaviors, cross-scale distribution of droplet sizes, and diversity of surface morphologies. Leveraging deep learning, we develop a semisupervised framework that monitors the optical observable process of condensation and frosting. This system is adept at identifying transient droplet distributions and dynamic activities, such as droplet coalescence, jumping, and frosting, on a variety of superhydrophobic surfaces. Utilizing this transient and dynamic information, various physical properties, such as heat flux, jumping characteristics, and frosting rate, can be further quantified, conveying the heat transfer and antifrost performances of each surface perceptually and comprehensively. Furthermore, this framework relies on only a small amount of annotated data and can efficiently adapt to new condensation conditions with varying surface morphologies and illumination techniques. This adaptability is beneficial for optimizing surface designs to enhance condensation heat transfer and antifrosting performance.
Collapse
Affiliation(s)
- Li Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Diwei Shi
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Xinyue Kang
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Quanshui Zheng
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
- Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
17
|
Nnanna AA, Nnanna NA. Enhanced solar-driven evaporation and mineral extraction from hypersaline produced water using low-cost microporous photothermal foam. Heliyon 2024; 10:e29321. [PMID: 38681658 PMCID: PMC11053200 DOI: 10.1016/j.heliyon.2024.e29321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The beneficial reuse of produced water (PW) holds significant promise to alleviate water scarcity. However, it still suffers major limitations associated with the high cost of treatment due to energy consumption, economics of scale, and the complex physiochemical constituents. PW is a hypersaline (TDS ∼ 250,000 mg/l) oilfield water with bio-species, organic matter, anions, divalent cations, and radioactive elements. A sustainable treatment option is solar-driven floating photothermal evaporation (PTE), a desalination technology implemented for seawater characterized by simpler chemical compositions and low salinity. In this work, the photothermal evaporator for PW was fabricated using low-cost commercially available charcoal polyurethane foam. The engineered macrochannels and structural alterations created unique pathways for salt extraction and evaporation; and ensured hydrodynamic balance between the rates of capillary flow and evaporation. This novel design mitigated flooding or dry out on the evaporating surface and kept the system running steadily while simultaneously harvesting freshwater and valuable salts. The key findings from this work are (a) the development of a novel temperature ratio-based method to determine optimum PTE thickness that results in maximum evaporation and thermal localization, (b) the development of the empirical correlation between the rate of thermal localization, evaporation rate, and PTE thickness. It combines the interplay of convection, evaporative flux, conduction, heat capacitance, and thickness on the thermal response of PTE foam to incident solar flux, and (c) experimental evidence revealing efflorescence and subflorescence salt on the evaporating surface and pore, and (d) enhanced evaporation rate of 118 % or 71.6 kg/day-m2 of clean water from chemically complex hypersaline produced water. These findings are significant for the engineering design and estimation of the performance of a PTE in a solar-driven evaporation system.
Collapse
Affiliation(s)
- A.G. Agwu Nnanna
- Texas Water and Energy Institute, USA
- College of Engineering, The University of Texas Permian Basin, Midland, TX, 79707, USA
| | - Nnenne A. Nnanna
- Midland College Early College High School, Midland, TX, 79705, USA
| |
Collapse
|
18
|
Li X, Guo W, Hsu PC. Personal Thermoregulation by Moisture-Engineered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209825. [PMID: 36751106 DOI: 10.1002/adma.202209825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Personal thermal management can effectively manage the skin microenvironment, improve human comfort, and reduce energy consumption. In personal thermal-management technology, owing to the high latent heat of water evaporation in wet-response textiles, heat- and moisture-transfer coexist and interact with each other. In the last few years, with rapid advances in materials science and innovative polymers, humidity-sensitive textiles have been developed for personal thermal management. However, a large gap exists between the conceptual laboratory-scale design and actual textile. Here, moisture-responsive textiles based on flap opening and closing, those based on yarn/fiber deformation, and sweat-evaporation regulation based on textile design for personal thermoregulation are reviewed, and the corresponding mechanisms and research progress are discussed. Finally, the existing engineering and scientific limitations and future developments are considered to resolve the existing issues and accelerate the practical application of moisture-responsive textiles and related technologies.
Collapse
Affiliation(s)
- Xiuqiang Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Po-Chun Hsu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
19
|
Zhu Z, Xu J, Liang Y, Luo X, Chen J, Yang Z, He J, Chen Y. Bioinspired Solar-Driven Osmosis for Stable High Flux Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3800-3811. [PMID: 38350025 DOI: 10.1021/acs.est.3c08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The growing global water crisis necessitates sustainable desalination solutions. Conventional desalination technologies predominantly confront environmental issues such as high emissions from fossil-fuel-driven processes and challenges in managing brine disposal during the operational stages, emphasizing the need for renewable and environmentally friendly alternatives. This study introduces and assesses a bioinspired, solar-driven osmosis desalination device emulating the natural processes of mangroves with effective contaminant rejection and notable productivity. The bioinspired solar-driven osmosis (BISO) device, integrating osmosis membranes, microporous absorbent paper, and nanoporous ceramic membranes, was evaluated under different conditions. We conducted experiments in both controlled and outdoor settings, simulating seawater with a 3.5 wt % NaCl solution. With a water yield of 1.51 kg m-2 h-1 under standard solar conditions (one sun), the BISO system maintained excellent salt removal and accumulation resistance after up to 8 h of experiments and demonstrated great cavitation resistance even at 58.14 °C. The outdoor test recorded a peak rate of 1.22 kg m-2 h-1 and collected 16.5 mL in 8 h, showing its practical application potential. These results highlight the BISO device's capability to address water scarcity using a sustainable approach, combining bioinspired design with solar power, presenting a viable pathway in renewable-energy-driven desalination technology.
Collapse
Affiliation(s)
- Zihao Zhu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingzong Liang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianglong Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianyong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiacheng He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory on Functional Soft Matter, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Nouh ES, Liu T, Croft ZL, Liu G. Vascular Bundle for Exceptional Water Confinement, Transport, and Evaporation. ACS MATERIALS LETTERS 2024; 6:602-610. [PMID: 38333598 PMCID: PMC10848287 DOI: 10.1021/acsmaterialslett.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Nature, through billions of years of evolution, has constructed extremely efficient biosystems for transporting, confining, and vaporizing water. Mankind's ability to master water, however, is far from impeccable, and a sustainable supply of clean fresh water remains a global challenge. Here, we learn from Nature and prepare papyrus carbon (PC) from Egyptian papyrus paper as a sustainable solar desalination material. By taking advantage of the capillary pores from vascular bundles that are inherently built for transporting water in plants, PC achieves an evaporation rate of 4.1 kg m-2 h-1 in a passive single-stage device. Raman spectroscopy and thermal calorimetry show that the capillary pores pose a confinement effect to generate loosely hydrogen-bonded intermediate water, which substantially reduces the enthalpy of vaporization, allowing for exceptionally high energy efficiencies. The understanding is applicable to all nature-designed vascular plants and man-made separation and purification systems.
Collapse
Affiliation(s)
- El Said
A. Nouh
- Department
of Chemistry, Macromolecules Innovation Institute,
and Department of Materials
Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Nuclear
Materials Authority, P.O. 530, El Maadi, Cairo Egypt
| | - Tianyu Liu
- Department
of Chemistry, Macromolecules Innovation Institute,
and Department of Materials
Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zacary L. Croft
- Department
of Chemistry, Macromolecules Innovation Institute,
and Department of Materials
Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Guoliang Liu
- Department
of Chemistry, Macromolecules Innovation Institute,
and Department of Materials
Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Zhang P, Wang H, Wang J, Ji Z, Qu L. Boosting the Viable Water Harvesting in Solar Vapor Generation: From Interfacial Engineering to Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303976. [PMID: 37667471 DOI: 10.1002/adma.202303976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Indexed: 09/06/2023]
Abstract
Continuously increasing demand for the life-critical water resource induces severe global water shortages. It is imperative to advance effective, economic, and environmentally sustainable strategies to augment clean water supply. The present work reviews recent reports on the interfacial engineering to devices design of solar vapor generation (SVG) system for boosting the viability of drinkable water harvesting. Particular emphasis is placed on the basic principles associated with the interfacial engineering of solar evaporators capable of efficient solar-to-thermal conversion and resulting freshwater vapor via eliminating pollutants from quality-impaired water sources. The critical configurations manufacturing of the devices for fast condensation is then highlighted to harvest potable liquid water. Fundamental and practical challenges, along with prospects for the targeted materials architecture and devices modifications of SVG system are also outlined, aiming to provide future directions and inspiring critical research efforts in this emerging and exciting field.
Collapse
Affiliation(s)
- Panpan Zhang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Haiyang Wang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Wang
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Ji
- National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Liangti Qu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Zheng H, Fan J, Chen A, Li X, Xie X, Liu Y, Ding Z. Enhancing Solar-Driven Water Purification by Multiscale Biomimetic Evaporators Featuring Lamellar MoS 2/GO Heterojunctions. ACS NANO 2024; 18:3115-3124. [PMID: 38251850 DOI: 10.1021/acsnano.3c08648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Solar-powered steam generation holds a strong sustainability in facing the global water crisis, while the production efficiency and antifouling performance remain challenges. Inspired by river moss, a multiscale biomimetic evaporator is designed, where the key photothermal conversion film composed of lamellar MoS2/graphene oxides (GO) can significantly enhance the evaporation efficiency and solve the problem of fouling. First-level leaf-like MoS2/GO nanosheets, obtained by a modified hydrothermal synthesis with an assisted magnetic-field rotation stirring, are self-assembled into a second-level nanoporous film, which achieves an evaporation rate (ER) of 1.69 kg m-2 h-1 under 1 sun illumination and an excellent self-cleaning ability. The tertiary-bionic evaporator with a macroscopic crownlike shape further enhances the ER to 3.20 kg m-2 h-1, 189% above that of planar film, yielding 20.25 kg m2 of freshwater from seawater during a daytime exposure of 6 h. The exceptional outcomes originate from the macroscopic biomimetic design and the microscopic integration of heterojunction interfaces between the MoS2 and GO interlayers and the nanoporous surface. The biomimetic evaporator indicates a potential direction through surface/interface regulation of photothermal nanomaterials for water desalination.
Collapse
Affiliation(s)
- Haotian Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jiahui Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Aiying Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiaofeng Xie
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Yong Liu
- Key Laboratory of Light weight and high strength structural materials of Jiang xi Province, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhiyi Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
23
|
Jin M, Qu X, Li J, Deng L, Han Z, Chen S, Wang H. Bacterial cellulose-based film with self-floating hierarchical porous structure for efficient solar-driven interfacial evaporation. Carbohydr Polym 2023; 321:121324. [PMID: 37739511 DOI: 10.1016/j.carbpol.2023.121324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Interface solar water evaporation is a mean of rapidly evaporating water using solar energy. However, it is still a challenge to obtain solar evaporators with simple assembly, durability and high photothermal performance. Here, we demonstrated an effective post foaming strategy for treating nitrogen-doped reduced graphene oxide/bacterial cellulose film (F-NRGO@BC) prepared by a simple in situ culture method. The composite film contains hierarchical porous structure and bubbles on the film, achieving an integrated self-floating interface evaporator with excellent light absorption (96.5 %) and high toughness (200.18 kJ m-3). Porous structure and low enthalpy of F-NRGO@BC make a high evaporation rate of 1.68 kg m-2 h-1 and a low thermal conductivity of 0.644 W m-1 K-1 to ensure effective energy efficiency and heat insulation. This design of controlling surface morphology and internal structure provides a novel way for large-scale preparation and high-performance evaporator.
Collapse
Affiliation(s)
- Mengtian Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
24
|
Chen B, Wang X, Mi W. Dirac semimetallic Janus Ni-trihalide monolayer with strain-tunable magnetic anisotropy and electronic properties. Phys Chem Chem Phys 2023; 25:28638-28650. [PMID: 37874663 DOI: 10.1039/d3cp04261h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Two-dimensional (2D) ferromagnetic (FM) semiconductors have been paid much attention due to the potential applications in spintronics. Here, the electronic and magnetic properties of 2D Janus Ni-trihalide monolayer Ni2X3Y3 (X, Y = I, Br, Cl; X ≠ Y) are investigated by first-principle calculations. The properties of Ni2X3Y3 (X, Y = I, Br, Cl; X ≠ Y) monolayers are compared by selecting the NiCl3 monolayer as the reference material. Ni2X3Y3 monolayers have two distinct magnetic ground states of ferromagnetic (FM) and antiferromagnetic (AFM). In the Ni2X3Y3 monolayer, two different orbital splits were observed, one semiconductor state and the other semimetal state. The semimetal state of Ni2X3Y3 can be tuned to semiconductor or metallic state when biaxial strain is applied. The magnetic anisotropy energy (MAE) of the Ni2X3Y3 monolayer can display variations compared to that of the NiCl3 monolayer, with the direction of easy magnetization being influenced by the specific halogen elements present. The easy magnetization direction of Ni2X3Y3 can also be changed by applying biaxial strain. The Tc of Ni2X3Y3 is predicted to be about 100 K according to the calculation of the EAFM-EFM model. The design of the Janus Ni2X3Y3 structure has expanded the range of 2D magnetic materials, a significant contribution has been made to the advancement of spintronics and its applications.
Collapse
Affiliation(s)
- Bo Chen
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaocha Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenbo Mi
- Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
25
|
Liao X, Lim YJ, Khayet M, Liao Y, Yao L, Zhao Y, Razaqpur AG. Applications of electrically conductive membranes in water treatment via membrane distillation: Joule heating, membrane fouling/scaling/wetting mitigation and monitoring. WATER RESEARCH 2023; 244:120511. [PMID: 37651868 DOI: 10.1016/j.watres.2023.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Membrane distillation (MD) is a thermally driven separation process that is driven by phase change. The core of this technology is the hydrophobic microporous membrane that prevents mass transfer of the liquid while allowing the vapor phase to pass through the membrane's pores. Currently, MD is challenged by its high energy consumption and membrane degradation due to fouling, scaling and wetting. The use of electrically conductive membranes (ECMs) is a promising alternative method to overcome these challenges by inducing localized Joule heating, as well as mitigating and monitoring membrane fouling/scaling/wetting. The objective of this review is to consolidate recent advances in ECMs from the standpoint of conductive materials, membrane fabrication methodologies, and applications in MD processes. First, the mechanisms of ECMs-based MD processes are reviewed. Then the current trends in conductive materials and membrane fabrication methods are discussed. Thereafter, a comprehensive review of ECMs in MD applications is presented in terms of the different processes using Joule heating and various works related to membrane fouling, scaling, and wetting control and monitoring. Key insights in terms of energy consumption, economic viability and scalability are furnished to provide readers with a holistic perspective of the ECMs potential to achieve better performances and higher efficiencies in MD. Finally, we illustrate our perspectives on the innovative methods to address current challenges and provide insights for advancing new ECMs designs. Overall, this review sums up the current status of ECMs, looking at the wide range of conductive materials and array of fabrication methods used thus far, and putting into perspective strategies to deliver a more competitive ECMs-based MD process in water treatment.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China
| | - Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Mohamed Khayet
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, No. 2 Sun Simiao Road, Cangzhou 061108, PR China.
| | - Lei Yao
- School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yali Zhao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety/Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
26
|
Yang Z, Li D, Yang K, Chen L, Wang J, Zhu X, Chen B. Optimized Water Supply in a Solar Evaporator for Simultaneous Freshwater Production and Salt Recycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13047-13055. [PMID: 37607016 DOI: 10.1021/acs.est.3c03457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Solar desalination has shown great potential in alleviating global water scarcity. However, the trade-off between energy efficiency and salt rejection remains a challenge, restricting its practical applications. In this study, we report a three-dimensional nitrocellulose membrane-based evaporator featuring a high evaporation rate (1.5 kg m-2 h-1) and efficient salt precipitation at the edges. Additionally, the salt is isolated from the photothermal area of the evaporator and falls automatically with a salt recovery rate of 97 g m-2 h-1 in brine with 10 wt % salt content. The distinctive performance is attributed to the precise water supply control, which was adjusted by changing the resistance force and driven force in the evaporator. With a high evaporation rate, stable performance, and specific salt recovery ability, this solar evaporation structure holds great potential in water desalination and resource recovery.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dawei Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kaijie Yang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lei Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
27
|
Ma W, Chen W, Li D, Liu Y, Yin J, Tu C, Xia Y, Shen G, Zhou P, Deng L, Zhang L. Deep learning empowering design for selective solar absorber. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3589-3601. [PMID: 39635349 PMCID: PMC11502052 DOI: 10.1515/nanoph-2023-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 12/07/2024]
Abstract
The selective broadband absorption of solar radiation plays a crucial role in applying solar energy. However, despite being a decade-old technology, the rapid and precise designs of selective absorbers spanning from the solar spectrum to the infrared region remain a significant challenge. This work develops a high-performance design paradigm that combines deep learning and multi-objective double annealing algorithms to optimize multilayer nanostructures for maximizing solar spectral absorption and minimum infrared radiation. Based on deep learning design, we experimentally fabricate the designed absorber and demonstrate its photothermal effect under sunlight. The absorber exhibits exceptional absorption in the solar spectrum (calculated/measured = 0.98/0.94) and low average emissivity in the infrared region (calculated/measured = 0.08/0.19). This absorber has the potential to result in annual energy savings of up to 1743 kW h/m2 in areas with abundant solar radiation resources. Our study opens a powerful design method to study solar-thermal energy harvesting and manipulation, which will facilitate for their broad applications in other engineering applications.
Collapse
Affiliation(s)
- Wenzhuang Ma
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Chen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology Xiamen University Xiamen, Fujian361005, China
| | - Degui Li
- School of Ocean Information Engineering, Jimei University, Xiamen361021, China
| | - Yue Liu
- School of Ocean Information Engineering, Jimei University, Xiamen361021, China
| | - Juhang Yin
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chunzhi Tu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yunlong Xia
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Gefei Shen
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Peiheng Zhou
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Longjiang Deng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Zhang
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
28
|
Nguyen DT, Lee S, Lopez KP, Lee J, Straub AP. Pressure-driven distillation using air-trapping membranes for fast and selective water purification. SCIENCE ADVANCES 2023; 9:eadg6638. [PMID: 37450594 PMCID: PMC10348675 DOI: 10.1126/sciadv.adg6638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and N-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.
Collapse
Affiliation(s)
- Duong T. Nguyen
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sangsuk Lee
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kian P. Lopez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anthony P. Straub
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
29
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
30
|
Hu T, Zhang J, Xia J, Li X, Tao P, Deng T. A Review on Recent Progress in Preparation of Medium-Temperature Solar-Thermal Nanofluids with Stable Dispersion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1399. [PMID: 37110985 PMCID: PMC10141638 DOI: 10.3390/nano13081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Direct absorption of sunlight and conversion into heat by uniformly dispersed photothermal nanofluids has emerged as a facile way to efficiently harness abundant renewable solar-thermal energy for a variety of heating-related applications. As the key component of the direct absorption solar collectors, solar-thermal nanofluids, however, generally suffer from poor dispersion and tend to aggregate, and the aggregation and precipitation tendency becomes even stronger at elevated temperatures. In this review, we overview recent research efforts and progresses in preparing solar-thermal nanofluids that can be stably and homogeneously dispersed under medium temperatures. We provide detailed description on the dispersion challenges and the governing dispersion mechanisms, and introduce representative dispersion strategies that are applicable to ethylene glycol, oil, ionic liquid, and molten salt-based medium-temperature solar-thermal nanofluids. The applicability and advantages of four categories of stabilization strategies including hydrogen bonding, electrostatic stabilization, steric stabilization, and self-dispersion stabilization in improving the dispersion stability of different type of thermal storage fluids are discussed. Among them, recently emerged self-dispersible nanofluids hold the potential for practical medium-temperature direct absorption solar-thermal energy harvesting. In the end, the exciting research opportunities, on-going research need and possible future research directions are also discussed. It is anticipated that the overview of recent progress in improving dispersion stability of medium-temperature solar-thermal nanofluids can not only stimulate exploration of direct absorption solar-thermal energy harvesting applications, but also provide a promising means to solve the fundamental limiting issue for general nanofluid technologies.
Collapse
|
31
|
Li D, Xu C, Zhang H, Li J, Liu F, Huang J, Guo Z. 8FIGURE4 Biomimetic Kevlar Aerogel for Sewage Treatment and All-day Fresh Water Production. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
32
|
Distributed desalination using solar energy: A technoeconomic framework to decarbonize nontraditional water treatment. iScience 2023; 26:105966. [PMID: 36756368 PMCID: PMC9900398 DOI: 10.1016/j.isci.2023.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Desalination using renewable energy offers a route to transform our incumbent linear consumption model to a circular one. This transition will also shift desalination from large-scale centralized coastal facilities toward modular distributed inland plants. This new scale of desalination can be satisfied using solar energy to decarbonize water production, but additional considerations, such as storage and inland brine management, become important. Here, we evaluate the levelized cost of water for 16 solar desalination system configurations at 2 different salinities. For fossil fuel-driven plants, we find that zero-liquid discharge is economically favorable to inland brine disposal. For renewable desalination, we discover that solar-thermal energy is superior to photovoltaics due to low thermal storage cost and that energy storage, despite being expensive, outperforms water storage as the latter has a low utilization factor. The analysis also yields a promising outlook for solar desalination by 2030 as solar generation and storage costs decrease.
Collapse
|
33
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
34
|
Gnanasekaran A, Rajaram K. Flake-like CuO nanostructure coated on flame treated eucalyptus wood evaporator for efficient solar steam generation at outdoor conditions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Zhao Q, Wu Z, Xu X, Yang R, Ma H, Xu Q, Zhang K, Zhang M, Xu J, Lu B. Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Zhu L, Wang W, Zhao P, Wang S, Yang K, Shi H, Xu M, Dong Y. Silicon carbide catalytic ceramic membranes with nano-wire structure for enhanced anti-fouling performance. WATER RESEARCH 2022; 226:119209. [PMID: 36240708 DOI: 10.1016/j.watres.2022.119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Membrane fouling is a critical challenge for current ceramic membranes, which suffer from low flux and insufficient removal. Development of self-cleaning catalytic ceramic membranes is promising to address this challenge. Herein, we design heterogeneous silicon carbide ceramic membranes featuring a novel structure of g-C3N4-decorated β-SiC nano-wire catalytic functional layer, which enables enhanced anti-fouling self-cleaning performance. At chemical harsh (alkaline or especially acidic) conditions, the nano-wire membrane exhibits catalysis-enhanced removal performance for organic contaminants. Unlike conventional particle-packing membrane structure, such a nano-wire network membrane structure has not only high porosity (56.1%), but exceptional water permeance (110 L·m-2·h-1·bar-1) and removal (100%) of organic substance under simulated sunlight, outperforming state-of-the-art organic membranes and ceramic membranes. Superoxide radical (∙O2-) was experimentally confirmed to be major reactive species responsible for self-cleaning function. We also propose a catalytic mechanism model with radical formation pathway, enabled by the as-formed g-C3N4@β-SiC heterojunction structure with reduced electron-hole recombination. This work would provide new insights into not only rational design of next-generation ceramic membranes with self-cleaning function but also more applications of efficient treatment of refractory wastewaters containing degradable organic substances by using such membranes.
Collapse
Affiliation(s)
- Li Zhu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China; Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China
| | - Wei Wang
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China
| | - Pei Zhao
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China
| | - Shulin Wang
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China
| | - Kun Yang
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, NY, 12180, United States
| | - Hebin Shi
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China
| | - Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China.
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
37
|
Chiavazzo E. Critical aspects to enable viable solar-driven evaporative technologies for water treatment. Nat Commun 2022; 13:5813. [PMID: 36192433 PMCID: PMC9529900 DOI: 10.1038/s41467-022-33533-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
While passive solar-driven evaporative systems promise higher economic and environmental sustainability in water treatment, many challenges remain for their effective adoption. Here, the author identifies three main pillars and corresponding issues which future research should focus on to bring these technologies to the next maturity level.
Collapse
Affiliation(s)
- Eliodoro Chiavazzo
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
- Clean Water Center, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
38
|
Huang Z, Liu Y, Li S, Lee CS, Zhang XH. From Materials to Devices: Rationally Designing Solar Steam System for Advanced Applications. SMALL METHODS 2022; 6:e2200835. [PMID: 36100465 DOI: 10.1002/smtd.202200835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Solar-driven water vaporization for freshwater production attracts significant interest due to its potential for solving global water scarcity problems. In this review, the recent development of management strategies via diverse rational designs in terms of light, thermal, water, and anti-salt fouling for enhancement of overall vaporization efficiency, is summarized. For device design, a host-guest concept is raised for clearly elaborating the detailed function and interaction between the solar-thermal material and the substrates. In addition, the rising technologies derived from solar vaporization, such as energy generation, photocatalysis, dehumidification, salt harvesting, sterilization, and biofuel production, are also highlighted. This review provides a new horizon toward the development of solar technologies and practical applications.
Collapse
Affiliation(s)
- Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
39
|
Alam MK, He M, Chen W, Wang L, Li X, Qin X. Stable and Salt-Resistant Janus Evaporator Based on Cellulose Composite Aerogels from Waste Cotton Fabric. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41114-41121. [PMID: 36040314 DOI: 10.1021/acsami.2c12750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar steam generation has been considered a promising approach for using renewable solar energy to produce clean water from seawater and wastewater. It shows great potential for alleviating water shortages. However, salt accumulation and system longevity are challenges which impede the widespread use of evaporators. This paper reports a stable Janus evaporator with thickness controllable hydrophilic and hydrophobic layers based on cellulose composite aerogels, which were extracted from waste cotton fabric by a two-step freeze-drying process. The obtained glutaraldehyde cross-linked carbon nanotubes/cellulose Janus aerogel exhibited an attractive solar steam generation rate of 1.81 kg·m-2·h-1 and a light-to-vapor efficiency of up to 92.5% in 1 sun illumination. Moreover, the Janus solar steam generator could pledge stable and sustainable solar-driven water evaporation performance within a 10 h test, showing a high salt-resistant property in simulated seawater. In addition, the developed solar evaporator also had a good purification effect on dye wastewater. These findings suggest its potential ability for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Md Kowsar Alam
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mantang He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenjing Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liming Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
40
|
Janus Biopolymer Sponge with Porous Structure Based on Water Hyacinth Petiole for Efficient Solar Steam Generation. Int J Mol Sci 2022; 23:ijms23169185. [PMID: 36012457 PMCID: PMC9408865 DOI: 10.3390/ijms23169185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 01/08/2023] Open
Abstract
Solar-driven steam generation for desalination is a facile, sustainable, and energy-saving approach to produce clean freshwater. However, the complicated fabrication process, high cost, potential environmental impact, and salt crystallization of conventional evaporators limit their large-scale application. Herein, we present a sustainable Janus evaporator based on a biopolymer sponge from the water hyacinth petiole (WHP) for high-performance solar steam generation. The freeze-dried WHP maintained its original porous structure and aligned channels well, and therefore holds the capability for rapid water transport due to strong capillary action. The WHP coated with carbon nanotubes/ethyl cellulose paste on its surface (WHP-C) gains a good photothermal property, thus achieving an efficient solar steam generation with a rate of 1.50 kg m−2 h−1 under 1 sun irradiation. Moreover, the WHP-C after hydrophobic modification by fluorocarbon (WHP-CH) is endowed with high water repellency and exhibits good salt resistance during long-term solar desalination. Additionally, we demonstrate that a stable wet surface that enables efficient water supply and vapor escape is also significant to the successive desalination of a solar evaporator. Our work provides new insights into the high-value utilization of biomass waste, i.e., water hyacinth, and the development of sustainable interfacial solar evaporators for the environmentally friendly production of freshwater.
Collapse
|
41
|
Sun Z, Ahmad M, Wang S. Ion transport property, structural features, and applications of cellulose-based nanofluidic platforms — A review. Carbohydr Polym 2022; 289:119406. [DOI: 10.1016/j.carbpol.2022.119406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
42
|
Zhang F, Zhang G. A novel model concerning the independence of emissivity and absorptivity for enhancing the sustainability of radiant cooling technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55675-55690. [PMID: 35320473 DOI: 10.1007/s11356-022-19110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Radiant cooling technology is a sustainable technology for improving built environment. The past research only studied the thermal performance (e.g., radiant heat flux) based on Kirchhoff's law while the accuracy and its reasons were seldom analyzed. This article points out that it is necessary to analyze the precondition before applying Kirchhoff's law directly, because emissivity may not be equal to absorptivity on radiant surfaces. The independence of the emissivity and absorptivity is considered in the new model based on the inapplicability of Kirchhoff's law. The analysis of sensitivity and relative deviation are performed to investigate the reasons for errors. The sensitivity of emissivity is about 20%-40% more sensitive to radiant heat flux than the absorptivity. Furthermore, the deviation of the heat flux can reach up to 20% when the absorptivity is in the range from 0.4 to 0.9. This deviation is close to the error range of 21.8% estimated in the past. Thence, the discussion based on the theoretical analysis, shows that the errors in past studies were highly caused by the oversimplified preconditions for applying Kirchhoff's law and the impact of surface absorption was ignored. Additionally, the validation in the past experiments was highly coincidence, since the key independent tests of the absorptivity and radiant heat flux were neglected. Comprehensively, the new model is valuable to provide a reliable solution for future design and analysis of radiant heat exchange when a radiant surface is not locally equilibrium.
Collapse
Affiliation(s)
- Fan Zhang
- College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, Hunan, China
| | - Guoqiang Zhang
- College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China.
- National Center for International Research Collaboration in Building Safety and Environment, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
43
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Janus Co@C/NCNT photothermal membrane with multiple optical absorption for highly efficient solar water evaporation and wastewater purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Investigating the effects of carbon-based nanofluids on the interfacial evaporation of salt water under infrared light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Zhou S, He R, Pei J, Liu W, Huang Z, Liu X, Wang J. Self-Regulating Solar Steam Generators Enable Volatile Organic Compound Removal through In Situ H 2O 2 Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10474-10482. [PMID: 35762836 DOI: 10.1021/acs.est.2c02067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial solar steam generation for clean water production suffers from volatile organic compound (VOC) contamination during solar-to-steam conversion. Here, we present a solar steam generator based on the integration of melamine foam (MF), polydopamine (PDA), and Ag/AgCl particles. Together with the high photothermal conversion efficiency (ca. 87.8%, 1 kW/m2) achieved by the PDA thin film, the Ag/AgCl particles can efficiently activate the localized generation of H2O2 and •OH in situ, thus degrading the VOCs during the rapid vapor generation. The generation of H2O2 and •OH in situ also facilitates the creation of a buffer zone containing H2O2 and •OH for the rapid removal of organic pollutants in the surrounding water attracted to the solar vapor generator, demonstrating a self-cleaning steam generator toward various volatile compounds such as phenol, aniline, 2,4-dichlorophenol, and N,N-dimethylformamide in a wide range of concentrations.
Collapse
Affiliation(s)
- Shuai Zhou
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruihua He
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
| | - Jianchuan Pei
- College of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiping Liu
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaohong Huang
- Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117549, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Bian Y, Ye Z, Zhao G, Tang K, Teng Y, Chen S, Zhao L, Yuan X, Zhu S, Ye J, Lu H, Yang Y, Fu L, Gu S. Enhanced Contactless Salt-Collecting Solar Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34151-34158. [PMID: 35830567 DOI: 10.1021/acsami.2c09063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar desalination is expected to solve the problem of global water shortage. Yet its stability is plagued by salt accumulation. Here, a paper-based thermal radiation-enabled evaporation system (TREES) is demonstrated to achieve sustainable and highly efficient salt-collecting desalination, featuring a dynamic evaporation front based on the accumulated salt layer where water serves as its own absorber via energy down-conversion. When processing 7 wt % brine, it continuously evaporates water at a high rate─2.25 L m-2 h-1 under 1 sun illumination─which is well beyond the input solar energy limit for over 366 h. It is revealed that such enhanced evaporation arises from the unique vertical evaporation wall of the paper-TREES, which captures the thermal energy from the heated bottom efficiently and gains extra energy from the warmer environment. These findings provide novel insights into the design of next-generation salt-harvesting solar evaporators and take a step further to advance their applications in green desalination.
Collapse
Affiliation(s)
- Yue Bian
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Research School of Physics, Australian National University, Acton 2601, Australia
| | - Zhihao Ye
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Gengyou Zhao
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Kun Tang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Teng
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Si Chen
- School of the Environment, Nanjing University, Nanjing 210093, China
| | - Lijuan Zhao
- School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xiu Yuan
- Computer Science and Engineering, University of California, San Diego, California 92093, United States
| | - Shunming Zhu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiandong Ye
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hai Lu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lan Fu
- Research School of Physics, Australian National University, Acton 2601, Australia
| | - Shulin Gu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
48
|
Ibrahim I, Hossain SM, Seo DH, McDonagh A, Foster T, Shon HK, Tijing L. Insight into the role of polydopamine nanostructures on nickel foam-based photothermal materials for solar water evaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zhang Q, Yin X, Zhang C, Li Y, Xiang K, Luo W, Qiao X. Self-Assembled Supercrystals Enhance the Photothermal Conversion for Solar Evaporation and Water Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202867. [PMID: 35754302 DOI: 10.1002/smll.202202867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Photothermal materials can convert renewable solar energy into thermal energy and have great potential for solar water evaporation. Copper sulfide (Cu2- x S) is an easily available and inexpensive plasmonic material with a high photothermal conversion efficiency and can be applied to solar evaporation and water purification. Monodispersed Cu7 S4 nanoparticles (NPs) and supercrystalline self-assembled superparticles are obtained via wet chemical synthesis and micelle self-assembly. The photothermal properties of the superstructures are investigated using the finite difference time domain method and laser radiation photothermography. The results show that the electromagnetic field intensity and photothermal efficiency of the self-assembly are significantly higher than those of isolated NPs, which is due to the plasmonic coupling of the NPs. The evaporation efficiency of the superstructure is significantly higher than that of isolated NPs, the metal salt ion and total organic carbon concentrations in the waterbody significantly decrease after evaporation, and the water polluted by high salt and organic dye concentrations is purified. The water quality significantly improves after the lake water from Fuxian Lake in the Yunnan-Guizhou Plateau of China is used for solar evaporation. The color changes from pale yellow to colorless and the ion and total organic carbon contents significantly decrease.
Collapse
Affiliation(s)
- Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, No. 1500, University Road, Ji'nan, 250358, China
| | - Xiaomeng Yin
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Ji'nan, 250012, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun, North First Street, Beijing, 100190, China
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, No. 32 Hunan Road, Xingyi, 562400, China
| | - Yiming Li
- College of Geography and Environment, Shandong Normal University, No. 1500, University Road, Ji'nan, 250358, China
| | - Kunjiao Xiang
- College of Geography and Environment, Shandong Normal University, No. 1500, University Road, Ji'nan, 250358, China
| | - Wenlei Luo
- Fuxianhu Station of Plateau Deep Lake Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xuezhi Qiao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Ji'nan, 250012, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun, North First Street, Beijing, 100190, China
- Fuxianhu Station of Plateau Deep Lake Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
50
|
Lyu S, Tang Z, Song Q, Yang Z, Duan Y. Formation of Liquid Film in Heterogeneous Condensation of Water Vapor: Effects of Solid-Fluid Interaction and Sulfuric Acid Component. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7085-7097. [PMID: 35617688 DOI: 10.1021/acs.langmuir.2c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the phenomenon of filmwise condensation on solid surfaces is vital for industrial processes such as air pollutant control and desalination. In this work, we study the formation of condensed liquid films via molecular dynamics simulations, and the effects of solid-fluid interactions and the sulfuric acid component are given major attention. Water is chosen as the fluid, while the solid-fluid interaction is modified to characterize different solid surfaces. The results show that as the solid-fluid interaction decreases, the solid surface transforms from a completely wetting surface to a partially wetting surface, and the film formation process shows significant differences. The condensed liquid on the completely wetting surface forms small liquid films, which merge to form a complete film covering the surface. With the enhancement of solid-fluid interaction, the condensation rate increases first and then remains virtually invariant, resulting in a film formation time that decreases first and then maintains constant. The condensed liquid on the partially wetting surfaces appears as nanodroplets, and the coalescence between nanodroplets leads to the formation of the liquid film. It is found that the stronger the solid-fluid interaction, the more the coalesced droplets tend to be pinned at nucleation sites, the easier it is to form a liquid film, and the shorter the time required for droplet merging. The sulfuric acid component accelerates liquid film formation on both completely wetting and partially wetting surfaces, but the effect of sulfuric acid is more significant on partially wetting surfaces. The 5% molar fraction of sulfuric acid reduces the nucleation time by 72% and increases the condensation rate by 137% under partial wetting, while the same amount of sulfuric acid only increases the nucleation rate by 6% on the completely wetting surface.
Collapse
Affiliation(s)
- Shuhang Lyu
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zuozhou Tang
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qiang Song
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhen Yang
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuanyuan Duan
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|