1
|
Dai Y, Wang ZG, Zare RN. Unlocking the electrochemical functions of biomolecular condensates. Nat Chem Biol 2024; 20:1420-1433. [PMID: 39327453 DOI: 10.1038/s41589-024-01717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Dai Y, Zhou Z, Yu W, Ma Y, Kim K, Rivera N, Mohammed J, Lantelme E, Hsu-Kim H, Chilkoti A, You L. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024; 187:5951-5966.e18. [PMID: 39260373 PMCID: PMC11490381 DOI: 10.1016/j.cell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhengqing Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nelson Rivera
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Javid Mohammed
- Department of Immunology, Duke University, Durham, NC 27705, USA
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA.
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Immunology, Duke University, Durham, NC 27705, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Bisht AS, Kumari A, Meena A, Roy RK. Understanding Polyproline's Unusual Thermoresponsive Properties Using a Polyproline-Based Double Hydrophilic Block Copolymer. Biomacromolecules 2024. [PMID: 39413421 DOI: 10.1021/acs.biomac.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Polyproline is a unique thermoresponsive polymer characterized by large thermal and conformational hysteresis. This article employs polyproline-based double hydrophilic block copolymers (PNIPAMn-b-PLPm) to gain insight into polyproline's thermoresponsive mechanism. The amine-terminated poly(N-isopropylacrylamide) (NH2-PNIPAMm) was used as the macroinitiator for ring-opening polymerization of proline-NCA monomers, resulting in various block copolymers (PNIPAMn-b-PLPm) with varying PLP block lengths. Block copolymers' thermal phase transitions were compared with their homopolymer counterparts using turbidimetry, variable-temperature NMR, dynamic light scattering, and circular dichroism spectroscopy. These experiments revealed that regardless of their compositions, all block copolymers exhibited a two-stage collapse (TCP(PLP) > TCP(PNIPAM)) during the heating cycle. In contrast, only one clearing temperature (TCL) was observed during cooling. The observed clearing temperature is closely correlated to the clearing temperature of PNIPAM blocks, suggesting the role of water-soluble PNIPAM blocks in resolving the PLP blocks. Moreover, thermal and conformational hysteresis related to the polyproline block is significantly suppressed in the presence of a PNIPAM block. Linking PNIPAM blocks has two significant effects on PLP segments' thermoresponsive behavior. For example, during the heating cycle, the precollapsed PNIPAM chains (as TCP(PNIPAM) < TCP(PLP)) prevent orderly aggregation within the PLP block. Meanwhile, during the cooling cycle below the clearing temperature of the PNIPAM block, the PNIPAM chains impart water solubility (as TCL(PNIPAM) > TCL(PLP)) to the collapsed PLP chains. Overall, the PNIPAM block imparts water solubility and perturbs PLP chains to form the native aggregate structure, suppressing the hysteresis effect. Accordingly, the large thermal and conformational hysteresis associated with native PLP chains appears to result from a noninterfering aggregation above the critical temperature.
Collapse
Affiliation(s)
- Arjun Singh Bisht
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Ankita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Ankita Meena
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
4
|
Shult C, Gunderson K, Coffey SJ, McNally B, Brandt M, Smith L, Steczynski J, Olerich ER, Schroeder SE, Severson NJ, Hati S, Bhattacharyay S. Conformational fluidity of intrinsically disordered proteins in crowded environment: a molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-13. [PMID: 39285530 DOI: 10.1080/07391102.2024.2404531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 10/15/2024]
Abstract
The class of intrinsically disordered proteins lacks stable three-dimensional structures. Their flexibility allows them to engage in a wide variety of interactions with other biomolecules thus making them biologically relevant and efficient. The intrinsic disorders of these proteins, which undergo binding-induced folding, allow alterations in their topologies while conserving their binding sites. Due to the lack of well-defined three-dimensional structures in the absence of their physiological partners, the folding and the conformational dynamics of these proteins remained poorly understood. Particularly, it is unclear how these proteins exist in the crowded intracellular milieu. In the present study, molecular dynamic simulations of two intrinsically unstructured proteins and two controls (folded proteins) were conducted in the presence and absence of molecular crowders to obtain an in-depth insight into their conformational flexibility. The present study revealed that polymer crowders stabilize the disordered proteins through enthalpic as well as entropic effects that are significantly more than their monomeric counterpart. Taken together, the study delves deep into crowding effects on intrinsically disordered proteins and provides insights into how molecular crowders induce a significantly diverse ensemble of dynamic scaffolds needed to carry out diverse functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolyn Shult
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Keegan Gunderson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Stephen J Coffey
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Brenya McNally
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Michael Brandt
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Lucille Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Joshua Steczynski
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Ethan R Olerich
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Sydney E Schroeder
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Nathaniel J Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Sudeep Bhattacharyay
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| |
Collapse
|
5
|
Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H, Jensen GJ. Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612739. [PMID: 39314395 PMCID: PMC11419111 DOI: 10.1101/2024.09.12.612739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The NLRP3 inflammasome is a multi-protein molecular machine that mediates inflammatory responses in innate immunity. Its dysregulation has been linked to a large number of human diseases. Using cryogenic fluorescence-guided focused-ion-beam (cryo-FIB) milling and electron cryo-tomography (cryo-ET), we obtained 3-D images of the NLRP3 inflammasome in situ at various stages of its activation at macromolecular resolution. The cryo-tomograms unexpectedly reveal dense condensates of the human macrophage NLRP3 inflammasome that form within and around the microtubule organizing center (MTOC). We also find that following activation, the trans-Golgi network disperses and 50-nm NLRP3-associated vesicles appear which likely ferry NLRP3 to the MTOC. At later time points after activation, the electron-dense condensates progressively solidify and the cells undergo pyroptosis with widespread damaged mitochondria and autophagasomal structures.
Collapse
Affiliation(s)
- Jue Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Man Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Venkat G Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
6
|
Giraldo-Castaño MC, Littlejohn KA, Avecilla ARC, Barrera-Villamizar N, Quiroz FG. Programmability and biomedical utility of intrinsically-disordered protein polymers. Adv Drug Deliv Rev 2024; 212:115418. [PMID: 39094909 PMCID: PMC11389844 DOI: 10.1016/j.addr.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates -genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.
Collapse
Affiliation(s)
- Maria Camila Giraldo-Castaño
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kai A Littlejohn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Natalia Barrera-Villamizar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Regina Chua Avecilla A, Thomas J, Quiroz FG. Genetically-encoded phase separation sensors for intracellular probing of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610365. [PMID: 39257779 PMCID: PMC11383673 DOI: 10.1101/2024.08.29.610365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomolecular condensates are dynamic membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically-disordered proteins (IDPs) often function as condensate scaffolds, fueled by their liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of these condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely sensitive to molecular-level fusions, risking distortion of the native biophysical properties of IDP-scaffolds and their assemblies. Probing epidermal condensates in mouse skin, we recently introduced genetically encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. The concept of LLPS-sensors involves a shift in focus from subcellular tracking of IDP-scaffolds to higher-level observations that report on the assembly and liquid-dynamics of their condensates. Towards advancing the repertoire of intracellular LLPS-sensors, here we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in early and late stages of intracellular LLPS dynamics. Benchmarking against scaffold-bound fluorescent reporters, we found that tunable ultraweak scaffold-sensor interactions are key to the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeremy Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
9
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
10
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
12
|
Patkar SS, Tang Y, Zhang T, Bisram AM, Saven JG, Pochan DJ, Kiick KL. Genetically Fused Resilin-like Polypeptide-Coiled Coil Bundlemer Conjugates Exhibit Tunable Multistimuli-Responsiveness and Undergo Nanofibrillar Assembly. Biomacromolecules 2024; 25:2449-2461. [PMID: 38484154 DOI: 10.1021/acs.biomac.3c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Peptide-based materials are diverse candidates for self-assembly into modularly designed and stimuli-responsive nanostructures with precisely tunable compositions. Here, we genetically fused computationally designed coiled coil-forming peptides to the N- and C-termini of compositionally distinct multistimuli-responsive resilin-like polypeptides (RLPs) of various lengths. The successful expression of these hybrid polypeptides in bacterial hosts was confirmed through techniques such as gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism spectroscopy and ultraviolet-visible turbidimetry demonstrated that despite the fusion of disparate structural and responsive units, the coiled coils remained stable in the hybrid polypeptides, and the sequence-encoded differences in thermoresponsive phase separation of the RLPs were preserved. Cryogenic transmission electron microscopy and coarse-grained modeling showed that after thermal annealing in solution, the hybrid polypeptides adopted a closed loop conformation and assembled into nanofibrils capable of further hierarchically organizing into cluster structures and ribbon-like structures mediated by the self-association tendency of the RLPs.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianren Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Arriana M Bisram
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
13
|
Strader RL, Shmidov Y, Chilkoti A. Encoding Structure in Intrinsically Disordered Protein Biomaterials. Acc Chem Res 2024; 57:302-311. [PMID: 38194282 PMCID: PMC11354101 DOI: 10.1021/acs.accounts.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In nature, proteins range from those with highly ordered secondary and tertiary structures to those that completely lack a well-defined three-dimensional structure, termed intrinsically disordered proteins (IDPs). IDPs are generally characterized by one or more segments that have a compositional bias toward small hydrophilic amino acids and proline residues that promote structural disorder and are called intrinsically disordered regions (IDRs). The combination of IDRs with ordered regions and the interactions between the two determine the phase behavior, structure, and function of IDPs. Nature also diversifies the structure of proteins and thereby their functions by hybridization of the proteins with other moieties such as glycans and lipids; for instance, post-translationally glycosylated and lipidated proteins are important cell membrane components. Additionally, diversity in protein structure and function is achieved in nature through cross-linking proteins within themselves or with other domains to create various topologies. For example, an essential characteristic of the extracellular matrix (ECM) is the cross-linking of its network components, including proteins such as collagen and elastin, as well as polysaccharides such as hyaluronic acid (HA). Inspired by nature, synthetic IDP (SynIDP)-based biomaterials can be designed by employing similar strategies with the goal of introducing structural diversity and hence unique physiochemical properties. This Account describes such materials produced over the past decade and following one or more of the following approaches: (1) incorporating highly ordered domains into SynIDPs, (2) conjugating SynIDPs to other moieties through either genetically encoded post-translational modification or chemical conjugation, and (3) engineering the topology of SynIDPs via chemical modification. These approaches introduce modifications to the primary structure of SynIDPs, which are then translated to unique three-dimensional secondary and tertiary structures. Beginning with completely disordered SynIDPs as the point of origin, structure may be introduced into SynIDPs by each of these three unique approaches individually along orthogonal axes or by combinations of the three, enabling bioinspired designs to theoretically span the entire range of three-dimensional structural possibilities. Furthermore, the resultant structures span a wide range of length scales, from nano- to meso- to micro- and even macrostructures. In this Account, emphasis is placed on the physiochemical properties and structural features of the described materials. Conjugates of SynIDPs to synthetic polymers and materials achieved by simple mixing of components are outside the scope of this Account. Related biomedical applications are described briefly. Finally, we note future directions for the design of functional SynIDP-based biomaterials.
Collapse
Affiliation(s)
- Rachel L. Strader
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
14
|
Sethi V, Cohen-Gerassi D, Meir S, Ney M, Shmidov Y, Koren G, Adler-Abramovich L, Chilkoti A, Beck R. Modulating hierarchical self-assembly in thermoresponsive intrinsically disordered proteins through high-temperature incubation time. Sci Rep 2023; 13:21688. [PMID: 38066072 PMCID: PMC10709347 DOI: 10.1038/s41598-023-48483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.
Collapse
Affiliation(s)
- Vaishali Sethi
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Dana Cohen-Gerassi
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sagi Meir
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Gil Koren
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Roy Beck
- School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
15
|
Sethi V, Cohen-Gerassi D, Meir S, Ney M, Shmidov Y, Koren G, Adler-Abramovich L, Chilkoti A, Beck R. Modulating Hierarchical Self-Assembly In Thermoresponsive Intrinsically Disordered Proteins Through High-Temperature Incubation Time. RESEARCH SQUARE 2023:rs.3.rs-3306733. [PMID: 37720053 PMCID: PMC10503869 DOI: 10.21203/rs.3.rs-3306733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to β-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.
Collapse
Affiliation(s)
- Vaishali Sethi
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sagi Meir
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gil Koren
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Roy Beck
- Raymond and Beverly School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
16
|
Emamyari S, Mirzaei M, Mohammadinejad S, Fazli D, Fazli H. Impact of flexibility on the aggregation of polymeric macromolecules. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:66. [PMID: 37522950 DOI: 10.1140/epje/s10189-023-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Dependence of the dimerization probability and the aggregation behavior of polymeric macromolecules on their flexibility is studied using Langevin dynamics simulations. It is found that the dimerization probability is a non-monotonic function of the polymers persistence length. For a given value of inter-polymer attraction strength, semiflexible polymers have lower dimerization probability relative to flexible and rigid polymers of the same length. The threshold temperature of the formation of aggregates in a many-polymer system and its dependence on the polymers persistence length is also investigated. The simulation results of two- and many-polymer systems are in good agreement and show how the amount of flexibility affects the dimerization and the aggregation behaviors of polymeric macromolecules.
Collapse
Affiliation(s)
- Soheila Emamyari
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran
| | - Masoud Mirzaei
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran
| | - Sarah Mohammadinejad
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran
| | - Davood Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran.
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Yousef Sobouti Blvd., Zanjan, 45137-66731, Iran.
| |
Collapse
|
17
|
Abstract
Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.
Collapse
Affiliation(s)
- Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Samuel R. Cohen
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
18
|
Dai Y, You L, Chilkoti A. Engineering synthetic biomolecular condensates. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359769 PMCID: PMC10107566 DOI: 10.1038/s44222-023-00052-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 06/28/2023]
Abstract
The concept of phase-separation-mediated formation of biomolecular condensates provides a new framework to understand cellular organization and cooperativity-dependent cellular functions. With growing understanding of how biological systems drive phase separation and how cellular functions are encoded by biomolecular condensates, opportunities have emerged for cellular control through engineering of synthetic biomolecular condensates. In this Review, we discuss how to construct synthetic biomolecular condensates and how they can regulate cellular functions. We first describe the fundamental principles by which biomolecular components can drive phase separation. Next, we discuss the relationship between the properties of condensates and their cellular functions, which informs the design of components to create programmable synthetic condensates. Finally, we describe recent applications of synthetic biomolecular condensates for cellular control and discuss some of the design considerations and prospective applications.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
19
|
Chittari SS, Obermeyer AC, Knight AS. Investigating Fundamental Principles of Nonequilibrium Assembly Using Temperature-Sensitive Copolymers. J Am Chem Soc 2023; 145:6554-6561. [PMID: 36913711 DOI: 10.1021/jacs.3c00883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Both natural biomaterials and synthetic materials benefit from complex energy landscapes that provide the foundation for structure-function relationships and environmental sensitivity. Understanding these nonequilibrium dynamics is important for the development of design principles to harness this behavior. Using a model system of poly(ethylene glycol) methacrylate-based thermoresponsive lower critical solution temperature (LCST) copolymers, we explored the impact of composition and stimulus path on nonequilibrium thermal hysteretic behavior. Through turbidimetry analysis of nonsuperimposable heat-cool cycles, we observe that LCST copolymers show clear hysteresis that varies as a function of pendent side chain length and hydrophobicity. Hysteresis is further impacted by the temperature ramp rate, as insoluble states can be kinetically trapped under optimized temperature protocols. This systematic study brings to light fundamental principles that can enable the harnessing of out-of-equilibrium effects in synthetic soft materials.
Collapse
Affiliation(s)
- Supraja S Chittari
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Abigail S Knight
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Garcia Garcia C, Patkar SS, Wang B, Abouomar R, Kiick KL. Recombinant protein-based injectable materials for biomedical applications. Adv Drug Deliv Rev 2023; 193:114673. [PMID: 36574920 DOI: 10.1016/j.addr.2022.114673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramadan Abouomar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19176, USA.
| |
Collapse
|
22
|
Zhang T, Peruch F, Weber A, Bathany K, Fauquignon M, Mutschler A, Schatz C, Garbay B. Solution behavior and encapsulation properties of fatty acid-elastin-like polypeptide conjugates. RSC Adv 2023; 13:2190-2201. [PMID: 36712617 PMCID: PMC9835928 DOI: 10.1039/d2ra06603c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications because they are biosourced, biocompatible and biodegradable. With the aim of developing ELP-based micelles for drug delivery applications we have synthesized 15 acyl-ELP compounds by conjugating myristic, palmitic, stearic, oleic or linoleic acid to the N-terminus of three ELPs differing in molar mass. The ELP-fatty acid conjugates have interesting solution behavior. They form micelles at low temperatures and aggregate above the cloud point temperature (Tcp). The critical micelle concentration depends on the fatty acid nature while the micelle size is mainly determined by the ELP block length. We were able to show that ELPs were better hydrated in the micelles than in their individual state in solution. The micelles are stable in phosphate-buffered saline at temperatures below the Tcp, which can vary between 20 °C and 38 °C depending on the length or hydrophilicity of the ELP. Acyl-ELP micelles were loaded with the small hydrophobic molecule Nile red. The encapsulation efficiency and release kinetics showed that the best loading conditions were achieved with the largest ELP conjugated to stearic acid.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Amélie Weber
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Katell Bathany
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248F-33600 PessacFrance
| | - Martin Fauquignon
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| |
Collapse
|
23
|
Ginell GM, Holehouse AS. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. Methods Mol Biol 2023; 2563:95-116. [PMID: 36227469 DOI: 10.1007/978-1-0716-2663-4_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular organization is determined by a combination of membrane-bound and membrane-less biomolecular assemblies that range from clusters of tens of molecules to micrometer-sized cellular bodies. Over the last decade, membrane-less assemblies have come to be referred to as biomolecular condensates, reflecting their ability to condense specific molecules with respect to the remainder of the cell. In many cases, the physics of phase transitions provides a conceptual framework and a mathematical toolkit to describe the assembly, maintenance, and dissolution of biomolecular condensates. Among the various quantitative and qualitative models applied to understand intracellular phase transitions, the stickers-and-spacers framework offers an intuitive yet rigorous means to map biomolecular sequences and structure to the driving forces needed for higher-order assembly. This chapter introduces the fundamental concepts behind the stickers-and-spacers model, considers its application to different biological systems, and discusses limitations and misconceptions around the model.
Collapse
Affiliation(s)
- Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
24
|
Molecular and environmental determinants of biomolecular condensate formation. Nat Chem Biol 2022; 18:1319-1329. [DOI: 10.1038/s41589-022-01175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
|
25
|
Badreldin M, Le Scouarnec R, Lecommandoux S, Harrisson S, Bonduelle C. Memory Effect in Thermoresponsive Proline-based Polymers. Angew Chem Int Ed Engl 2022; 61:e202209530. [PMID: 36107726 PMCID: PMC9828171 DOI: 10.1002/anie.202209530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/12/2023]
Abstract
We report that synthetic polymers consisting of L-proline monomer units exhibit temperature-driven aggregation in water with unprecedented hysteresis. This protein-like behavior is robust and governed by the chirality of the proline units. It paves the way to new processes, driven by either temperature or ionic strength changes, such as a simple "with memory" thermometer.
Collapse
Affiliation(s)
- Mostafa Badreldin
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| | | | | | - Simon Harrisson
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| | - Colin Bonduelle
- CNRSBordeaux INP, LCPO, UMR 5629University BordeauxF-33600PessacFrance) E.
| |
Collapse
|
26
|
Pramounmat N, Asaei S, Hostert JD, Young K, von Recum HA, Renner JN. Grafting of short elastin-like peptides using an electric field. Sci Rep 2022; 12:18682. [PMID: 36333395 PMCID: PMC9636273 DOI: 10.1038/s41598-022-21672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Surface-grafted elastin has found a wide range of uses such as sensing, tissue engineering and capture/release applications because of its ability to undergo stimuli-responsive phase transition. While various methods exist to control surface grafting in general, it is still difficult to control orientation as attachment occurs. This study investigates using an electric field as a new approach to control the surface-grafting of short elastin-like polypeptide (ELP). Characterization of ELP grafting to gold via quartz crystal microbalance with dissipation, atomic force microscopy and temperature ramping experiments revealed that the charge/hydrophobicity of the peptides, rearrangement kinetics and an applied electric field impacted the grafted morphology of ELP. Specifically, an ELP with a negative charge on the opposite end of the surface-binding moiety assembled in a more upright orientation, and a sufficient electric field pushed the charge away from the surface compared to when the same peptide was assembled in no electric field. In addition, this study demonstrated that assembling charged ELP in an applied electric field impacts transition behavior. Overall, this study reveals new strategies for achieving desirable and predictable surface properties of surface-bound ELP.
Collapse
Affiliation(s)
- Nuttanit Pramounmat
- grid.67105.350000 0001 2164 3847Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, USA
| | - Sogol Asaei
- grid.67105.350000 0001 2164 3847Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, USA
| | - Jacob D. Hostert
- grid.67105.350000 0001 2164 3847Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, USA
| | | | - Horst A. von Recum
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Julie N. Renner
- grid.67105.350000 0001 2164 3847Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
27
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
28
|
Bizmark N, Caggiano NJ, Liu JX, Arnold CB, Prud'homme RK, Datta SS, Priestley RD. Hysteresis in the thermally induced phase transition of cellulose ethers. SOFT MATTER 2022; 18:6254-6263. [PMID: 35946517 DOI: 10.1039/d2sm00564f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.
Collapse
Affiliation(s)
- Navid Bizmark
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Nicholas J Caggiano
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jason X Liu
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig B Arnold
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Rodney D Priestley
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
29
|
Chen Z, Liu B, Gong Z, Huang H, Gong Y, Xiao W. Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (-)-Epigallocatechin-3-Gallate Nanoparticles. Molecules 2022; 27:molecules27154894. [PMID: 35956844 PMCID: PMC9370321 DOI: 10.3390/molecules27154894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia.
Collapse
Affiliation(s)
- Zhiyin Chen
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- College of Agriculture & Biotechnology, Hunan University of Humanities, Science & Technology, Loudi 417000, China;
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Baogui Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
| | - Hua Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Minis-Try of Agriculture and Rural Affairs, Guang-Dong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Re-Search, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yihui Gong
- College of Agriculture & Biotechnology, Hunan University of Humanities, Science & Technology, Loudi 417000, China;
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Z.C.); (B.L.); (Z.G.)
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha 410128, China
- Correspondence: ; Tel.: +86-0731-84635304; Fax: +86-0731-84635306
| |
Collapse
|
30
|
Murcia G, Nieto C, Sellaro R, Prat S, Casal JJ. Hysteresis in PHYTOCHROME-INTERACTING FACTOR 4 and EARLY-FLOWERING 3 dynamics dominates warm daytime memory in Arabidopsis. THE PLANT CELL 2022; 34:2188-2204. [PMID: 35234947 PMCID: PMC9134080 DOI: 10.1093/plcell/koac078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/16/2022] [Indexed: 05/26/2023]
Abstract
Despite the identification of temperature sensors and downstream components involved in promoting stem growth by warm temperatures, when and how previous temperatures affect current plant growth remain unclear. Here we show that hypocotyl growth in Arabidopsis thaliana during the night responds not only to the current temperature but also to preceding daytime temperatures, revealing a short-term memory of previous conditions. Daytime temperature affected the levels of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and LONG HYPOCOTYL 5 (HY5) in the nucleus during the next night. These factors jointly accounted for the observed growth kinetics, whereas nighttime memory of prior daytime temperature was impaired in pif4 and hy5 mutants. PIF4 promoter activity largely accounted for the temperature-dependent changes in PIF4 protein levels. Notably, the decrease in PIF4 promoter activity triggered by cooling required a stronger temperature shift than the increase caused by warming, representing a typical hysteretic effect; this hysteretic pattern required EARLY-FLOWERING 3 (ELF3). Warm temperatures promoted the formation of nuclear condensates of ELF3 in hypocotyl cells during the afternoon but not in the morning. These nuclear speckles showed poor sensitivity to subsequent cooling. We conclude that ELF3 achieves hysteresis and drives the PIF4 promoter into the same behavior, enabling a short-term memory of daytime temperature conditions.
Collapse
Affiliation(s)
| | | | - Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Salomé Prat
- Department of Plant Molecular Genetics, CNB-CSIC, Madrid, 28049, Spain
| | | |
Collapse
|
31
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
32
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
33
|
Lee JS, Kang MJ, Lee JH, Lim DW. Injectable Hydrogels of Stimuli-Responsive Elastin and Calmodulin-Based Triblock Copolypeptides for Controlled Drug Release. Biomacromolecules 2022; 23:2051-2063. [PMID: 35411765 DOI: 10.1021/acs.biomac.2c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A variety of block copolypeptides with stimuli responsiveness have been of growing interest for dynamic self-assembly. Here, multistimuli-responsive triblock copolypeptides composed of thermosensitive elastin-based polypeptides (EBP) and ligand-responsive calmodulin (CalM) were genetically engineered, over-expressed, and nonchromatographically purified by inverse transition cycling. Diluted EBP-CalM-EBP (ECE) triblock copolypeptides under physiological conditions self-assembled into vesicles at the nanoscale by temperature-triggered aggregation of the EBP block with lower critical solution temperature behaviors. Furthermore, concentrated ECE triblock copolypeptides under identical conditions exhibited thermally induced gelation, resulting in physically crosslinked hydrogels. They showed controlled rheological and mechanical properties depending on the conformational change of the CalM middle block induced by binding either Ca2+ or Ca2+ and trifluoperazines (TFPs) as ligands. In addition, both Ca2+-free and Ca2+-bound ECE triblock copolypeptide hydrogels exhibited biocompatibility, while those bound to both Ca2+ and TFPs showed severe cytotoxicity because of controlled TFP release of the CalM blocks. The ECE triblock hydrogels with stimuli responsiveness would be useful as injectable drug delivery depots for biomedical applications.
Collapse
Affiliation(s)
- Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Jeong Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
34
|
Rapp PB, Silverman BR. Viscoelastic Phase Patterning in Artificial Protein Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter B. Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Bradley R. Silverman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
35
|
Gonzalez-Obeso C, Backlund FG, Kaplan DL. Charge-Modulated Accessibility of Tyrosine Residues for Silk-Elastin Copolymer Cross-Linking. Biomacromolecules 2022; 23:760-765. [PMID: 35113522 PMCID: PMC9211056 DOI: 10.1021/acs.biomac.1c01192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modulation of reaction kinetics with horseradish peroxidase (HRP)-catalyzed cross-linking of proteins remains a useful strategy to modulate hydrogel formation. Here, we demonstrate that the presence of positively charged lysines in silk-elastin-like polymers impacts the thermal transition temperature of these proteins, while the location in the primary sequence modulates the reactivity of the tyrosines. The positively charged lysine side chains decreased π-π interactions among the tyrosines and reduced the rate of formation and number of HRP-mediated dityrosine bonds, dependent on the proximity of the charged group to the tyrosine. The results suggest that the location of repulsive charges can be used to tailor the reaction kinetics for enzymatic cross-linking, providing further control of gelation rates for in situ gel formation and the resulting protein-based gel characteristics.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| | - Fredrik G Backlund
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4, Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
36
|
Cohan MC, Shinn MK, Lalmansingh JM, Pappu RV. Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins. J Mol Biol 2022; 434:167373. [PMID: 34863777 PMCID: PMC10178624 DOI: 10.1016/j.jmb.2021.167373] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 01/21/2023]
Abstract
Sequence-ensemble relationships of intrinsically disordered proteins (IDPs) are governed by binary patterns such as the linear clustering or mixing of specific residues or residue types with respect to one another. To enable the discovery of potentially important, shared patterns across sequence families, we describe a computational method referred to as NARDINI for Non-random Arrangement of Residues in Disordered Regions Inferred using Numerical Intermixing. This work was partially motivated by the observation that parameters that are currently in use for describing different binary patterns are not interoperable across IDPs of different amino acid compositions and lengths. In NARDINI, we generate an ensemble of scrambled sequences to set up a composition-specific null model for the patterning parameters of interest. We then compute a series of pattern-specific z-scores to quantify how each pattern deviates from a null model for the IDP of interest. The z-scores help in identifying putative non-random linear sequence patterns within an IDP. We demonstrate the use of NARDINI derived z-scores by identifying sequence patterns in three well-studied IDP systems. We also demonstrate how NARDINI can be deployed to study archetypal IDPs across homologs and orthologs. Overall, NARDINI is likely to aid in designing novel IDPs with a view toward engineering new sequence-function relationships or uncovering cryptic ones. We further propose that the z-scores introduced here are likely to be useful for theoretical and computational descriptions of sequence-ensemble relationships across IDPs of different compositions and lengths.
Collapse
Affiliation(s)
- Megan C Cohan
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA
| | - Min Kyung Shinn
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA
| | | | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, MO 63130, USA.
| |
Collapse
|
37
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
38
|
Ghosh M, Majkowska A, Mirsa R, Bera S, Rodríguez-Cabello JC, Mata A, Adler-Abramovich L. Disordered Protein Stabilization by Co-Assembly of Short Peptides Enables Formation of Robust Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:464-473. [PMID: 34941264 DOI: 10.1021/acsami.1c22136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular self-assembly is a spontaneous natural process resulting in highly ordered nano to microarchitectures. We report temperature-independent formation of robust stable membranes obtained by the spontaneous interaction of intrinsically disordered elastin-like polypeptides (ELPs) with short aromatic peptides at temperatures both below and above the conformational transition temperature of the ELPs. The membranes are stable over time and display durability over a wide range of parameters including temperature, pH, and ultrasound energy. The morphology and composition of the membranes were analyzed using microscopy. These robust structures support preosteoblast cell adhesion and proliferation as well as pH-dependent cargo release. Simple noncovalent interactions with short aromatic peptides can overcome conformational restrictions due to the phase transition to facilitate the formation of complex bioactive scaffolds that are stable over a wide range of environmental parameters. This approach offers novel possibilities for controlling the conformational restriction of intrinsically disordered proteins and using them in the design of new materials.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The Centre for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Chemistry, Techno India University, EM-4, EM Block, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Anna Majkowska
- School of Engineering & Materials Science, Queen Mary University of London, London E1 4NS, U.K
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K
| | - Rajkumar Mirsa
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The Centre for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Santu Bera
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The Centre for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, U.K
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- The Centre for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Cracking the Skin Barrier: Liquid-Liquid Phase Separation Shines under the Skin. JID INNOVATIONS 2021; 1:100036. [PMID: 34909733 PMCID: PMC8659386 DOI: 10.1016/j.xjidi.2021.100036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Central to forming and sustaining the skin’s barrier, epidermal keratinocytes (KCs) fluxing to the skin surface undergo a rapid and enigmatic transformation into flat, enucleated squames. At the crux of this transformation are intracellular keratohyalin granules (KGs) that suddenly disappear as terminally differentiating KCs transition to the cornified skin surface. Defects in KGs have long been linked to skin barrier disorders. Through the biophysical lens of liquid-liquid phase separation (LLPS), these enigmatic KGs recently emerged as liquid-like membraneless organelles whose assembly and subsequent pH-triggered disassembly drive squame formation. To stimulate future efforts toward cracking the complex process of skin barrier formation, in this review, we integrate the key concepts and foundational work spanning the fields of LLPS and epidermal biology. We review the current progress in the skin and discuss implications in the broader context of membraneless organelles across stratifying epithelia. The discovery of environmentally sensitive LLPS dynamics in the skin points to new avenues for dissecting the skin barrier and for addressing skin barrier disorders. We argue that skin and its appendages offer outstanding models to uncover LLPS-driven mechanisms in tissue biology.
Collapse
Key Words
- 3D, three-dimensional
- AD, atopic dermatitis
- CE, cornified envelope
- EDC, epidermal differentiation complex
- ER, endoplasmic reticulum
- IDP, intrinsically-disordered protein
- KC, keratinocyte
- KG, keratohyalin granule
- LCST, lower critical solution temperature
- LLPS, liquid-liquid phase separation
- PTM, post-translational modification
- TG, trichohyalin granule
- UCST, upper critical solution temperature
Collapse
|
40
|
Seal M, Jash C, Jacob RS, Feintuch A, Harel YS, Albeck S, Unger T, Goldfarb D. Evolution of CPEB4 Dynamics Across its Liquid-Liquid Phase Separation Transition. J Phys Chem B 2021; 125:12947-12957. [PMID: 34787433 PMCID: PMC8647080 DOI: 10.1021/acs.jpcb.1c06696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Indexed: 12/31/2022]
Abstract
Knowledge about the structural and dynamic properties of proteins that form membrane-less organelles in cells via liquid-liquid phase separation (LLPS) is required for understanding the process at a molecular level. We used spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the dynamic properties (rotational diffusion) of the low complexity N-terminal domain of cytoplasmic polyadenylation element binding-4 protein (CPEB4NTD) across its LLPS transition, which takes place with increasing temperature. We report the coexistence of three spin labeled CPEB4NTD (CPEB4*) populations with distinct dynamic properties representing different conformational spaces, both before and within the LLPS state. Monomeric CPEB4* exhibiting fast motion defines population I and shows low abundance prior to and following LLPS. Populations II and III are part of CPEB4* assemblies where II corresponds to loose conformations with intermediate range motions and population III represents compact conformations with strongly attenuated motions. As the temperature increased the population of component II increased reversibly at the expense of component III, indicating the existence of an III ⇌ II equilibrium. We correlated the macroscopic LLPS properties with the III ⇌ II exchange process upon varying temperature and CPEB4* and salt concentrations. We hypothesized that weak transient intermolecular interactions facilitated by component II lead to LLPS, with the small assemblies integrated within the droplets. The LLPS transition, however, was not associated with a clear discontinuity in the correlation times and populations of the three components. Importantly, CPEB4NTD exhibits LLPS properties where droplet formation occurs from a preformed microscopic assembly rather than the monomeric protein molecules.
Collapse
Affiliation(s)
- Manas Seal
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Chandrima Jash
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Reeba Susan Jacob
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yair Shalom Harel
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shira Albeck
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tamar Unger
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Department of Biological Regulation, Department of Structural
Biology, and Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
41
|
Agarwal A, Rai SK, Avni A, Mukhopadhyay S. An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid-liquid phase separation. Proc Natl Acad Sci U S A 2021; 118:e2100968118. [PMID: 34737230 PMCID: PMC8609423 DOI: 10.1073/pnas.2100968118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) along with other biomolecules is proposed to control critical cellular functions, whereas aberrant phase transitions are associated with a range of neurodegenerative diseases. Here, we show that a disease-associated stop codon mutation of the prion protein (PrP) at tyrosine 145 (Y145Stop), resulting in a truncated, highly disordered, N-terminal IDR, spontaneously phase-separates into dynamic liquid-like droplets. Phase separation of this highly positively charged N-terminal segment is promoted by the electrostatic screening and a multitude of weak, transient, multivalent, intermolecular interactions. Single-droplet Raman measurements, in conjunction with an array of bioinformatic, spectroscopic, microscopic, and mutagenesis studies, revealed a highly mobile internal organization within the liquid-like condensates. The phase behavior of Y145Stop is modulated by RNA. Lower RNA:protein ratios promote condensation at a low micromolar protein concentration under physiological conditions. At higher concentrations of RNA, phase separation is abolished. Upon aging, these highly dynamic liquid-like droplets gradually transform into ordered, β-rich, amyloid-like aggregates. These aggregates formed via phase transitions display an autocatalytic self-templating characteristic involving the recruitment and binding-induced conformational conversion of monomeric Y145Stop into amyloid fibrils. In contrast to this intrinsically disordered truncated variant, the wild-type full-length PrP exhibits a much lower propensity for both condensation and maturation into amyloids, hinting at a possible protective role of the C-terminal domain. Such an interplay of molecular factors in modulating the protein phase behavior might have much broader implications in cell physiology and disease.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India;
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| |
Collapse
|
42
|
Zhao Y, Kremer K. Proline Isomerization Regulates the Phase Behavior of Elastin-Like Polypeptides in Water. J Phys Chem B 2021; 125:9751-9756. [PMID: 34424695 PMCID: PMC8419842 DOI: 10.1021/acs.jpcb.1c04779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Responsiveness of polypeptides and polymers in aqueous solution plays an important role in biomedical applications and in designing advanced functional materials. Elastin-like polypeptides (ELPs) are a well-known class of synthetic intrinsically disordered proteins (IDPs), which exhibit a lower critical solution temperature (LCST) in pure water and in aqueous solutions. Here, we compare the influence of cis/trans proline isomerization on the phase behavior of single ELPs in pure water. Our results reveal that proline isomerization tunes the conformational behavior of ELPs while keeping the transition temperature unchanged. We find that the presence of the cis isomers facilitates compact structures by preventing peptide-water hydrogen bonding while promoting intramolecular interactions. In other words, the LCST transition of ELPs with all proline residues in the cis state occurs with almost no noticeable conformational change.
Collapse
Affiliation(s)
- Yani Zhao
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
43
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
44
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
45
|
Li NK, Xie Y, Yingling YG. Insights into Structure and Aggregation Behavior of Elastin-like Polypeptide Coacervates: All-Atom Molecular Dynamics Simulations. J Phys Chem B 2021; 125:8627-8635. [PMID: 34288691 DOI: 10.1021/acs.jpcb.1c02822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stimuli-responsive character of elastin-like polypeptides (ELP) has led to their use in a wide range of applications. The temperature-triggered aggregation, or LCST behavior, of ELPs is a complex and multistep phenomenon, which proposed to include the structural transitions, loss of hydrophobic hydration, expulsion of water molecules and physical association of chains. Thus, the origin and detailed mechanism of LCST in ELPs is difficult to elucidate. Here, to gain insights into structure and dynamics of coacervates, we performed all-atom molecular dynamics simulations of 27 90-mer ELPs in explicit water at 350 K. Two sequences, poly(VGPVG)18 and poly(VPGVG)18, were examined due to their experimentally observed differences in thermal hysteresis albeit identical overall composition but different arrangement of amino acids. The simulation results indicate that surface hydrophobicity of poly(VGPVG) aggregate is less than that of the poly(VPGVG) aggregate, and there are marked changes in torsion angles and the propensities of secondary structural motifs during the aggregation process. Moreover, there are significant differences between structure of a single polypeptide in water and structure within the aggregate. Overall, the aggregation process is driven by the formation of peptide-peptide interactions whereas the average hydration of peptides remains almost the same between dissolved and aggregated states. Even though the aggregation is driven by the hydrophobic interactions, ELP coacervate has no hydrophobic core and contains many water molecules. Overall, our findings provide an insight into the sequence-dependent structure of coacervates and molecular behavior of individual peptides during aggregation.
Collapse
Affiliation(s)
- Nan K Li
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuxin Xie
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
46
|
Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021; 30:1294-1314. [PMID: 33930220 PMCID: PMC8197432 DOI: 10.1002/pro.4093] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Biomolecular condensation via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins/regions (IDPs/IDRs), with and without nucleic acids, has drawn widespread interest due to the rapidly unfolding role of phase-separated condensates in a diverse range of cellular functions and human diseases. Biomolecular condensates form via transient and multivalent intermolecular forces that sequester proteins and nucleic acids into liquid-like membrane-less compartments. However, aberrant phase transitions into gel-like or solid-like aggregates might play an important role in neurodegenerative and other diseases. Tau, a microtubule-associated neuronal IDP, is involved in microtubule stabilization, regulates axonal outgrowth and transport in neurons. A growing body of evidence indicates that tau can accomplish some of its cellular activities via LLPS. However, liquid-to-solid transition resulting in the abnormal aggregation of tau is associated with neurodegenerative diseases. The physical chemistry of tau is crucial for governing its propensity for biomolecular condensation which is governed by various intermolecular and intramolecular interactions leading to simple one-component and complex multi-component condensates. In this review, we aim at capturing the current scientific state in unveiling the intriguing molecular mechanism of phase separation of tau. We particularly focus on the amalgamation of existing and emerging biophysical tools that offer unique spatiotemporal resolutions on a wide range of length- and time-scales. We also discuss the link between quantitative biophysical measurements and novel biological insights into biomolecular condensation of tau. We believe that this account will provide a broad and multidisciplinary view of phase separation of tau and its association with physiology and disease.
Collapse
Affiliation(s)
- Sandeep K. Rai
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Priyanka Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
47
|
Shapiro DM, Ney M, Eghtesadi SA, Chilkoti A. Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications. J Phys Chem B 2021; 125:6740-6759. [PMID: 34143622 DOI: 10.1021/acs.jpcb.1c01146] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase separation of biomolecules has become the focus of intense research in the past decade, with a growing body of research implicating this phenomenon in essentially all biological functions, including but not limited to homeostasis, stress responses, gene regulation, cell differentiation, and disease. Excellent reviews have been published previously on the underlying physical basis of liquid-liquid phase separation (LLPS) of biological molecules (Nat. Phys. 2015, 11, 899-904) and LLPS as it occurs natively in physiology and disease (Science 2017, 357, eaaf4382; Biochemistry 2018, 57, 2479-2487; Chem. Rev. 2014, 114, 6844-6879). Here, we review how the theoretical physical basis of LLPS has been used to better understand the behavior of biomolecules that undergo LLPS in natural systems and how this understanding has also led to the development of novel synthetic systems that exhibit biomolecular phase separation, and technologies that exploit these phenomena. In part 1 of this Review, we explore the theory behind the phase separation of biomolecules and synthetic macromolecules and introduce a few notable phase-separating biomolecules. In part 2, we cover experimental and computational methods used to study phase-separating proteins and how these techniques have uncovered the mechanisms underlying phase separation in physiology and disease. Finally, in part 3, we cover the development and applications of engineered phase-separating polypeptides, ranging from control of their self-assembly to create defined supramolecular architectures to reprogramming biological processes using engineered IDPs that exhibit LLPS.
Collapse
Affiliation(s)
- Daniel Mark Shapiro
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Max Ney
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Seyed Ali Eghtesadi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
48
|
Song WW, Qian ZG, Liu H, Chen HF, Kaplan DL, Xia XX. On-Demand Regulation of Dual Thermosensitive Protein Hydrogels. ACS Macro Lett 2021; 10:395-400. [PMID: 35549223 DOI: 10.1021/acsmacrolett.1c00062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite considerable progress having been made in thermosensitive protein hydrogels, regulating their thermal transitions remains a challenge due to the intricate molecular structures and interactions of the underlying protein polymers. Here we report a genetic fusion strategy to tune the unique dual thermal transitions of the C-terminal domain (CTD) of spider major ampullate spidroin 1, and explore the regulation mechanism by biophysical characterization and molecular dynamics simulations. We found that the fusion of elastin-like polypeptides (ELPs) tuned the dual transition temperatures of CTD to a physiologically relevant window, by introducing extra hydrogen bonding at low temperatures and hydrophobic interactions at high temperatures. The resulting hydrogels constructed from the fusion proteins were demonstrated to be a promising vehicle for cell preservation and delivery. This study provides insights on the regulation of the dual thermosensitive protein hydrogels and suggests a potential application of the hydrogels for consolidated cell storage and delivery.
Collapse
Affiliation(s)
- Wen-Wen Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
49
|
Bharadwaj S, Nayar D, Dalgicdir C, van der Vegt NFA. An interplay of excluded-volume and polymer-(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J Chem Phys 2021; 154:134903. [PMID: 33832270 DOI: 10.1063/5.0046746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cosolvent effects on the coil-globule transitions in aqueous polymer solutions are not well understood, especially in the case of amphiphilic cosolvents that preferentially adsorb on the polymer and lead to both polymer swelling and collapse. Although a predominant focus in the literature has been placed on the role of polymer-cosolvent attractive interactions, our recent work has shown that excluded-volume interactions (repulsive interactions) can drive both preferential adsorption of the cosolvent and polymer collapse via a surfactant-like mechanism. Here, we further study the role of polymer-(co)solvent attractive interactions in two kinds of polymer solutions, namely, good solvent (water)-good cosolvent (alcohol) (GSGC) and poor solvent-good cosolvent (PSGC) solutions, both of which exhibit preferential adsorption of the cosolvent and a non-monotonic change in the polymer radius of gyration with the addition of the cosolvent. Interestingly, at low concentrations, the polymer-(co)solvent energetic interactions oppose polymer collapse in the GSGC solutions and contrarily support polymer collapse in the PSGC solutions, indicating the importance of the underlying polymer chemistry. Even though the alcohol molecules are preferentially adsorbed on the polymer, the trends of the energetic interactions at low cosolvent concentrations are dominated by the polymer-water energetic interactions in both the cases. Therefore, polymer-(co)solvent energetic interactions can either reinforce or compensate the surfactant-like mechanism, and it is this interplay that drives coil-to-globule transitions in polymer solutions. These results have implications for rationalizing the cononsolvency transitions in real systems such as polyacrylamides in aqueous alcohol solutions where the understanding of microscopic driving forces is still debatable.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Cahit Dalgicdir
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
50
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|