1
|
Lai JH, Wu DW, Huang CY, Hung LF, Wu CH, Ho LJ. USP18 induction regulates immunometabolism to attenuate M1 signal-polarized macrophages and enhance IL-4-polarized macrophages in systemic lupus erythematosus. Clin Immunol 2024; 265:110285. [PMID: 38880201 DOI: 10.1016/j.clim.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Effective treatment of systemic lupus erythematosus (SLE) remains an unmet need. Different subsets of macrophages play differential roles in SLE and the modulation of macrophage polarization away from M1 status is beneficial for SLE therapeutics. Given the pathogenic roles of type I interferons (IFN-I) in SLE, this study investigated the effects and mechanisms of a mitochondria localization molecule ubiquitin specific peptidase 18 (USP18) preserving anti-IFN effects and isopeptidase activity on macrophage polarization. After observing USP18 induction in monocytes from SLE patients, we studied mouse bone marrow-derived macrophages and showed that USP18 deficiency increased M1signal (LPS + IFN-γ treatment)-induced macrophage polarization, and the effects involved the induction of glycolysis and mitochondrial respiration and the expression of several glycolysis-associated enzymes and molecules, such as hypoxia-inducible factor-1α. Moreover, the effects on mitochondrial activities, such as mitochondrial DNA release and mitochondrial reactive oxygen species production were observed. In contrast, the overexpression of USP18 inhibited M1signal-mediated and enhanced interleukin-4 (IL-4)-mediated polarization of macrophages and the related cellular events. Moreover, the levels of USP18 mRNA expression showed tendency of correlation with the expression of metabolic enzymes in monocytes from patients with SLE. We thus concluded that by preserving anti-IFN effect and downregulating M1 signaling, promoting USP18 activity may serve as a useful approach for SLE therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC; Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - De-Wei Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Chuan-Yueh Huang
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Li-Feng Hung
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC
| | - Chien-Hsiang Wu
- Department of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Lin-Kou, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
2
|
Bredow C, Thery F, Wirth EK, Ochs S, Kespohl M, Kleinau G, Kelm N, Gimber N, Schmoranzer J, Voss M, Klingel K, Spranger J, Renko K, Ralser M, Mülleder M, Heuser A, Knobeloch KP, Scheerer P, Kirwan J, Brüning U, Berndt N, Impens F, Beling A. ISG15 blocks cardiac glycolysis and ensures sufficient mitochondrial energy production during Coxsackievirus B3 infection. Cardiovasc Res 2024; 120:644-657. [PMID: 38309955 PMCID: PMC11074791 DOI: 10.1093/cvr/cvae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024] Open
Abstract
AIMS Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/virology
- Coxsackievirus Infections/genetics
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Energy Metabolism
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/metabolism
- Glycolysis
- Host-Pathogen Interactions
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/virology
- Myocytes, Cardiac/pathology
- Protein Processing, Post-Translational
- Signal Transduction
- Ubiquitins/metabolism
- Ubiquitins/genetics
Collapse
Affiliation(s)
- Clara Bredow
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Fabien Thery
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Eva Katrin Wirth
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Sarah Ochs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Meike Kespohl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, Germany
| | - Nicolas Kelm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Niclas Gimber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - Jan Schmoranzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, Berlin, Germany
| | - Martin Voss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Karin Klingel
- University of Tübingen, Cardiopathology, Institute for Pathology and Neuropathology, Tübingen, Germany
| | - Joachim Spranger
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrueck-Center (MDC) for Molecular Medicine, Animal Phenotyping Platform, Berlin, Germany
| | - Klaus-Peter Knobeloch
- University of Freiburg, Institute of Neuropathology, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Patrick Scheerer
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, Germany
| | - Jennifer Kirwan
- Berlin Institute of Health at Charité Universitätsmedizin, Metabolomics, Charitéplatz 1 Berlin 10117, Germany
| | - Ulrike Brüning
- Berlin Institute of Health at Charité Universitätsmedizin, Metabolomics, Charitéplatz 1 Berlin 10117, Germany
| | - Nikolaus Berndt
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, Nuthetal, Germany
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, partner site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Kespohl M, Goetzke CC, Althof N, Bredow C, Kelm N, Pinkert S, Bukur T, Bukur V, Grunz K, Kaur D, Heuser A, Mülleder M, Sauter M, Klingel K, Weiler H, Berndt N, Gaida MM, Ruf W, Beling A. TF-FVIIa PAR2-β-Arrestin Signaling Sustains Organ Dysfunction in Coxsackievirus B3 Infection of Mice. Arterioscler Thromb Vasc Biol 2024; 44:843-865. [PMID: 38385286 DOI: 10.1161/atvbaha.123.320157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in β-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of β-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS These data provide insights into a TF-FVIIa signaling axis through PAR2-β-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.
Collapse
Affiliation(s)
- Meike Kespohl
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| | - Carl Christoph Goetzke
- Department of Pediatrics, Division of Pulmonology, Immunology and Critical Care Medicine (C.C.G.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Clinician Scientist Program, BIH (Berlin Institute of Health) Academy, BIH, Charité-Universitätsmedizin Berlin, Germany (C.C.G.)
- German Rheumatism Research Center, Leibniz Association, Berlin, Germany (C.C.G.)
| | - Nadine Althof
- German Federal Institute for Risk Assessment, Berlin, Germany (N.A.)
| | - Clara Bredow
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Nicolas Kelm
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Sandra Pinkert
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Thomas Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Valesca Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Kristin Grunz
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Dilraj Kaur
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Arnd Heuser
- Max-Delbrueck-Center for Molecular Medicine, Animal Phenotyping Platform, Berlin, Germany (A.H.)
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry (M.M.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Martina Sauter
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | - Karin Klingel
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | | | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité, Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany (N.B.)
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (N.B.)
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany (N.B.)
| | - Matthias M Gaida
- University Medical Center Mainz, Institute for Pathology, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- University Medical Center Mainz, Research Center for Immunotherapy, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University of Mainz, Germany (M.M.G.)
- TRON, Mainz, Germany (M.M.G.)
| | - Wolfram Ruf
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Antje Beling
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| |
Collapse
|
4
|
Lin C, Kuffour EO, Li T, Gertzen CGW, Kaiser J, Luedde T, König R, Gohlke H, Münk C. The ISG15-Protease USP18 Is a Pleiotropic Enhancer of HIV-1 Replication. Viruses 2024; 16:485. [PMID: 38675828 PMCID: PMC11053637 DOI: 10.3390/v16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Taolan Li
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| |
Collapse
|
5
|
Radke J, Meinhardt J, Aschman T, Chua RL, Farztdinov V, Lukassen S, Ten FW, Friebel E, Ishaque N, Franz J, Huhle VH, Mothes R, Peters K, Thomas C, Schneeberger S, Schumann E, Kawelke L, Jünger J, Horst V, Streit S, von Manitius R, Körtvélyessy P, Vielhaber S, Reinhold D, Hauser AE, Osterloh A, Enghard P, Ihlow J, Elezkurtaj S, Horst D, Kurth F, Müller MA, Gassen NC, Melchert J, Jechow K, Timmermann B, Fernandez-Zapata C, Böttcher C, Stenzel W, Krüger E, Landthaler M, Wyler E, Corman V, Stadelmann C, Ralser M, Eils R, Heppner FL, Mülleder M, Conrad C, Radbruch H. Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat Neurosci 2024; 27:409-420. [PMID: 38366144 DOI: 10.1038/s41593-024-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.
Collapse
Affiliation(s)
- Josefine Radke
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany.
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Lorenz Chua
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Foo Wei Ten
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ekaterina Friebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Naveed Ishaque
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Valerie Helena Huhle
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ronja Mothes
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Peters
- Institute of Pathology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Carolina Thomas
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Schumann
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leona Kawelke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Jünger
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Regina von Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Péter Körtvélyessy
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guerike University Magdeburg, Magdeburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Anja Osterloh
- Department of Pathology, University Medical Center Ulm, Ulm, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ihlow
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Department of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julia Melchert
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Camila Fernandez-Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institut für Biologie, Humboldt Universität, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victor Corman
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner, Berlin, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence NeuroCure, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
7
|
Lyu R, Wu J, He Y, You Q, Qian Y, Jiang N, Cai Y, Chen D, Wu Z. Folate supports IL-25-induced tuft cell expansion following enteroviral infections. FASEB J 2024; 38:e23430. [PMID: 38243751 DOI: 10.1096/fj.202301928r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.
Collapse
Affiliation(s)
- Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Science, Ningxia University, Yinchuan, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Egners A, Cramer T, Wallach I, Berndt N. Kinetic Modeling of Hepatic Metabolism and Simulation of Treatment Effects. Methods Mol Biol 2024; 2769:211-225. [PMID: 38315400 DOI: 10.1007/978-1-0716-3694-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Mathematical modeling is a promising strategy to fill the experimentally unapproachable knowledge gaps about the relative contribution of various molecular processes to cellular metabolic function. To this end, we developed detailed kinetic models of the central metabolism of different cell types, comprising multiple metabolic functionalities. We used the model to simulate metabolic changes in several cell types under different experimental settings in health and disease. In this way, we show that it is possible to decipher and characterize the relative influence of various metabolic pathways and enzymes to overall metabolic performance and phenotype.Quantitative Systems Metabolism (QSM™) allows quantitative assessment of metabolic functionality and metabolic profiling based on proteomic data. Here, we describe the technique, namely, molecular resolved kinetic modeling, underlying QSM™. We explain the necessary steps for the generation of cell-specific models to functionally interpret proteomic data and point out some unresolved challenges and open questions.
Collapse
Affiliation(s)
- Antje Egners
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Thorsten Cramer
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Iwona Wallach
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
9
|
Upton EM, Schlievert PM, Zhang Y, Rauckhorst AJ, Taylor EB, Radoshevich L. Glycerol monolaurate inhibits Francisella novicida growth and is produced intracellularly in an ISG15-dependent manner. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000905. [PMID: 37954520 PMCID: PMC10638595 DOI: 10.17912/micropub.biology.000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid monoester with antimicrobial properties. Francisella tularensis is an agent of bioterrorism known for its unique lipopolysaccharide structure and low immunogenicity. Here we assessed whether exogenous GML would inhibit the growth of Francisella novicida . GML potently impeded Francisella growth and survival in vitro . To appraise the metabolic response to infection, we used GC-MS to survey the metabolome, and surprisingly, observed intracellular GML production following Francisella infection. Notably, the ubiquitin-like protein ISG15 was necessary for increased GML levels induced by bacterial infection, and enhanced ISG15 conjugation correlated with GML levels following serum starvation.
Collapse
Affiliation(s)
- Ellen M. Upton
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Patrick M. Schlievert
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Shahryari M, Keller S, Meierhofer D, Wallach I, Safraou Y, Guo J, Marticorena Garcia SR, Braun J, Makowski MR, Sack I, Berndt N. On the relationship between metabolic capacities and in vivo viscoelastic properties of the liver. Front Bioeng Biotechnol 2023; 10:1042711. [PMID: 36698634 PMCID: PMC9868178 DOI: 10.3389/fbioe.2022.1042711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is the central metabolic organ. It constantly adapts its metabolic capacity to current physiological requirements. However, the relationship between tissue structure and hepatic function is incompletely understood; this results in a lack of diagnostic markers in medical imaging that can provide information about the liver's metabolic capacity. Therefore, using normal rabbit livers, we combined magnetic resonance elastography (MRE) with proteomics-based kinetic modeling of central liver metabolism to investigate the potential role of MRE for predicting the liver's metabolic function in vivo. Nineteen New Zealand white rabbits were investigated by multifrequency MRE and positron emission tomography (PET). This yielded maps of shear wave speed (SWS), penetration rate (PR) and standardized uptake value (SUV). Proteomic analysis was performed after the scans. Hepatic metabolic functions were assessed on the basis of the HEPATOKIN1 model in combination with a model of hepatic lipid-droplet metabolism using liquid chromatography-mass spectrometry. Our results showed marked differences between individual livers in both metabolic functions and stiffness properties, though not in SUV. When livers were divided into 'stiff' and 'soft' subgroups (cutoff SWS = 1.6 m/s), stiff livers showed a lower capacity for triacylglycerol storage, while at the same time showing an increased capacity for gluconeogenesis and cholesterol synthesis. Furthermore, SWS was correlated with gluconeogenesis and PR with urea production and glutamine exchange. In conclusion, our study indicates a close relationship between the viscoelastic properties of the liver and metabolic function. This could be used in future studies to predict non-invasively the functional reserve capacity of the liver in patients.
Collapse
Affiliation(s)
- Mehrgan Shahryari
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Keller
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan R. Marticorena Garcia
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus R. Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Faculty of Medicine, Munich, Germany
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Nikolaus Berndt,
| |
Collapse
|
11
|
Innate Immunity in Cardiovascular Diseases-Identification of Novel Molecular Players and Targets. J Clin Med 2023; 12:jcm12010335. [PMID: 36615135 PMCID: PMC9821340 DOI: 10.3390/jcm12010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.
Collapse
|
12
|
Albert M, Vázquez J, Falcón-Pérez JM, Balboa MA, Liesa M, Balsinde J, Guerra S. ISG15 Is a Novel Regulator of Lipid Metabolism during Vaccinia Virus Infection. Microbiol Spectr 2022; 10:e0389322. [PMID: 36453897 PMCID: PMC9769738 DOI: 10.1128/spectrum.03893-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | | | - María A. Balboa
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Jesús Balsinde
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Munnur D, Banducci-Karp A, Sanyal S. ISG15 driven cellular responses to virus infection. Biochem Soc Trans 2022; 50:1837-1846. [PMID: 36416643 DOI: 10.1042/bst20220839] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
One of the hallmarks of antiviral responses to infection is the production of interferons and subsequently of interferon stimulated genes. Interferon stimulated gene 15 (ISG15) is among the earliest and most abundant proteins induced upon interferon signalling, encompassing versatile functions in host immunity. ISG15 is a ubiquitin like modifier that can be conjugated to substrates in a process analogous to ubiquitylation and referred to as ISGylation. The free unconjugated form can either exist intracellularly or be secreted to function as a cytokine. Interestingly, ISG15 has been reported to be both advantageous and detrimental to the development of immunopathology during infection. This review describes recent findings on the role of ISG15 in antiviral responses in human infection models, with a particular emphasis on autophagy, inflammatory responses and cellular metabolism combined with viral strategies of counteracting them. The field of ISGylation has steadily gained momentum; however much of the previous studies of virus infections conducted in mouse models are in sharp contrast with recent findings in human cells, underscoring the need to summarise our current understanding of its potential antiviral function in humans and identify knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
- Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Adrianna Banducci-Karp
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| |
Collapse
|
14
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
15
|
Mackert O, Wirth EK, Sun R, Winkler J, Liu A, Renko K, Kunz S, Spranger J, Brachs S. Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption. Mol Metab 2022; 64:101563. [PMID: 35944898 PMCID: PMC9418990 DOI: 10.1016/j.molmet.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.
Collapse
Affiliation(s)
- Olena Mackert
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Rongwan Sun
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Jennifer Winkler
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Aoxue Liu
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
16
|
Sahoo DK, Borcherding DC, Chandra L, Jergens AE, Atherly T, Bourgois-Mochel A, Ellinwood NM, Snella E, Severin AJ, Martin M, Allenspach K, Mochel JP. Differential Transcriptomic Profiles Following Stimulation with Lipopolysaccharide in Intestinal Organoids from Dogs with Inflammatory Bowel Disease and Intestinal Mast Cell Tumor. Cancers (Basel) 2022; 14:3525. [PMID: 35884586 PMCID: PMC9322748 DOI: 10.3390/cancers14143525] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with chronic intestinal inflammation and promotes intestinal cancer progression in the gut. While the interplay between LPS and intestinal immune cells has been well-characterized, little is known about LPS and the intestinal epithelium interactions. In this study, we explored the differential effects of LPS on proliferation and the transcriptome in 3D enteroids/colonoids obtained from dogs with naturally occurring gastrointestinal (GI) diseases including inflammatory bowel disease (IBD) and intestinal mast cell tumor. The study objective was to analyze the LPS-induced modulation of signaling pathways involving the intestinal epithelia and contributing to colorectal cancer development in the context of an inflammatory (IBD) or a tumor microenvironment. While LPS incubation resulted in a pro-cancer gene expression pattern and stimulated proliferation of IBD enteroids and colonoids, downregulation of several cancer-associated genes such as Gpatch4, SLC7A1, ATP13A2, and TEX45 was also observed in tumor enteroids. Genes participating in porphyrin metabolism (CP), nucleocytoplasmic transport (EEF1A1), arachidonic acid, and glutathione metabolism (GPX1) exhibited a similar pattern of altered expression between IBD enteroids and IBD colonoids following LPS stimulation. In contrast, genes involved in anion transport, transcription and translation, apoptotic processes, and regulation of adaptive immune responses showed the opposite expression patterns between IBD enteroids and colonoids following LPS treatment. In brief, the crosstalk between LPS/TLR4 signal transduction pathway and several metabolic pathways such as primary bile acid biosynthesis and secretion, peroxisome, renin-angiotensin system, glutathione metabolism, and arachidonic acid pathways may be important in driving chronic intestinal inflammation and intestinal carcinogenesis.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Dana C. Borcherding
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Lawrance Chandra
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Todd Atherly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - N. Matthew Ellinwood
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Elizabeth Snella
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (N.M.E.); (E.S.)
| | - Andrew J. Severin
- Office of Biotechnology’s Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA;
| | | | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.C.B.); (L.C.); (A.E.J.); (T.A.); (A.B.-M.); (K.A.)
| | - Jonathan P. Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, Jalil AT, Bokov DO, Mustafa YF, Noroozbeygi M, Karampoor S, Mirzaei R. Coronavirus disease 2019 (COVID-19) update: From metabolic reprogramming to immunometabolism. J Med Virol 2022; 94:4611-4627. [PMID: 35689351 PMCID: PMC9350347 DOI: 10.1002/jmv.27929] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
The field of immunometabolism investigates and describes the effects of metabolic rewiring in immune cells throughout activation and the fates of these cells. Recently, it has been appreciated that immunometabolism plays an essential role in the progression of viral infections, cancer, and autoimmune diseases. Regarding COVID‐19, the aberrant immune response underlying the progression of diseases establishes two major respiratory pathologies, including acute respiratory distress syndrome (ARDS) or pneumonia‐induced acute lung injury (ALI). Both innate and adaptive immunity (T cell‐based) were impaired in the course of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. Current findings have deciphered that macrophages (innate immune cells) are involved in the inflammatory response seen in COVID‐19. It has been demonstrated that immune system cells can change metabolic reprogramming in some conditions, including autoimmune diseases, cancer, and infectious disease, including COVID‐19. The growing findings on metabolic reprogramming in COVID‐19 allow an exploration of metabolites with immunomodulatory properties as future therapies to combat this hyperinflammatory response. The elucidation of the exact role and mechanism underlying this metabolic reprograming in immune cells could help apply more precise approaches to initial diagnosis, prognosis, and in‐hospital therapy. This report discusses the latest findings from COVID‐19 on host metabolic reprogramming and immunometabolic responses.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | - Sara Sohrabi Athar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.,Department of Human Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Kentingan, Surakarta, Indonesia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - D O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Voss M, Pinkert S, Kespohl M, Gimber N, Klingel K, Schmoranzer J, Laue M, Gaida M, Kloetzel PM, Beling A. A Conserved Cysteine Residue in Coxsackievirus B3 Protein 3A with Implication for Elevated Virulence. Viruses 2022; 14:v14040769. [PMID: 35458499 PMCID: PMC9029043 DOI: 10.3390/v14040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Enteroviruses (EV) are implicated in an extensive range of clinical manifestations, such as pancreatic failure, cardiovascular disease, hepatitis, and meningoencephalitis. We recently reported on the biochemical properties of the highly conserved cysteine residue at position 38 (C38) of enteroviral protein 3A and demonstrated a C38-mediated homodimerization of the Coxsackievirus B3 protein 3A (CVB3-3A) that resulted in its profound stabilization. Here, we show that residue C38 of protein 3A supports the replication of CVB3, a clinically relevant member of the enterovirus genus. The infection of HeLa cells with protein 3A cysteine 38 to alanine mutants (C38A) attenuates virus replication, resulting in comparably lower virus particle formation. Consistently, in a mouse infection model, the enhanced virus propagation of CVB3-3A wt in comparison to the CVB3-3A[C38A] mutant was confirmed and found to promote severe liver tissue damage. In contrast, infection with the CVB3-3A[C38A] mutant mitigated hepatic tissue injury and ameliorated the signs of systemic inflammatory responses, such as hypoglycemia and hypothermia. Based on these data and our previous report on the C38-mediated stabilization of the CVB3-3A protein, we conclude that the highly conserved amino acid C38 in protein 3A enhances the virulence of CVB3.
Collapse
Affiliation(s)
- Martin Voss
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
| | - Sandra Pinkert
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
| | - Meike Kespohl
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Side Berlin, 10117 Berlin, Germany
| | - Niclas Gimber
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, 10117 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University of Tübingen, 72016 Tübingen, Germany;
| | - Jan Schmoranzer
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Advanced Medical Bioimaging Core Facility, 10117 Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, Advanced Light and Electron Microscopy (ZBS 4), 13353 Berlin, Germany;
| | - Matthias Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, 55131 Mainz, Germany
| | - Peter-Michael Kloetzel
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
| | - Antje Beling
- Institute of Biochemistry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.V.); (S.P.); (M.K.); (N.G.); (J.S.); (P.-M.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Side Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-187; Fax: +49-30-450-528-921
| |
Collapse
|
19
|
Patel SJ, Liu N, Piaker S, Gulko A, Andrade ML, Heyward FD, Sermersheim T, Edinger N, Srinivasan H, Emont MP, Westcott GP, Luther J, Chung RT, Yan S, Kumari M, Thomas R, Deleye Y, Tchernof A, White PJ, Baselli GA, Meroni M, De Jesus DF, Ahmad R, Kulkarni RN, Valenti L, Tsai L, Rosen ED. Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b. Sci Transl Med 2022; 14:eabh3831. [PMID: 35320000 PMCID: PMC9162056 DOI: 10.1126/scitranslmed.abh3831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.
Collapse
Affiliation(s)
- Suraj J. Patel
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Digestive and Liver Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Liu
- Harvard Medical School, Boston, MA 02115, USA
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children’s Hospital, Boston, MA 02215, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Sam Piaker
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Maynara L. Andrade
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nufar Edinger
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Margo P. Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Gregory P. Westcott
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raymond T. Chung
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Manju Kumari
- Department of Cardiology, Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Reeby Thomas
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yann Deleye
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - André Tchernof
- Institut Universitaire de Cardiologie and Pneumologie de Québec–Université Laval (IUCPQUL), Québec City, Canada
| | - Phillip J. White
- Duke Molecular Physiology Institute and Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido A. Baselli
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario F. De Jesus
- Harvard Medical School, Boston, MA 02115, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rohit N. Kulkarni
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
- Precision Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol 2021; 22:1416-1427. [PMID: 34663977 DOI: 10.1038/s41590-021-01035-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/25/2021] [Indexed: 01/20/2023]
Abstract
Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.
Collapse
|
21
|
González-Amor M, García-Redondo AB, Jorge I, Zalba G, Becares M, Ruiz-Rodríguez MJ, Rodríguez C, Bermeo H, Rodrigues-Díez R, Rios FJ, Montezano AC, Martínez-González J, Vázquez J, Redondo JM, Touyz RM, Guerra S, Salaices M, Briones AM. Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovasc Res 2021; 118:3250-3268. [PMID: 34672341 PMCID: PMC9799052 DOI: 10.1093/cvr/cvab321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
AIMS Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown. METHODS AND RESULTS Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage. ISG15 expression positively correlated with systolic and diastolic blood pressure and carotid intima-media thickness in human peripheral blood mononuclear cells. Consistently, Isg15 expression was enhanced in aorta from hypertension models and in angiotensin II (AngII)-treated vascular cells and macrophages. Proteomics revealed differential expression of proteins implicated in cardiovascular function, extracellular matrix and remodelling, and vascular redox state in aorta from AngII-infused ISG15-/- mice. Moreover, ISG15-/- mice were protected against AngII-induced hypertension, vascular stiffness, elastin remodelling, endothelial dysfunction, and expression of inflammatory and oxidative stress markers. Conversely, mice with excessive ISGylation (USP18C61A) show enhanced AngII-induced hypertension, vascular fibrosis, inflammation and reactive oxygen species (ROS) generation along with elastin breaks, aortic dilation, and rupture. Accordingly, human and murine abdominal aortic aneurysms showed augmented ISG15 expression. Mechanistically, ISG15 induces vascular ROS production, while antioxidant treatment prevented ISG15-induced endothelial dysfunction and vascular remodelling. CONCLUSION ISG15 is a novel mediator of vascular damage in hypertension through oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Ana B García-Redondo
- Present address. Departamento de Fisiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain. This manuscript was handled by Deputy Editor Dr David G. Harrison
| | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Guillermo Zalba
- Departamento de Bioquímica y Genética, Instituto de Investigación Sanitaria de Navarra, Facultad de Ciencias, Universidad de Navarra, C/ Irunlarrea, 1, Pamplona 31008 Navarra, Spain
| | - Martina Becares
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - María J Ruiz-Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Institut de Recerca Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí, 77, 08041 Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Hugo Bermeo
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Jose Martínez-González
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain,Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), C/ Rosselló, 161, 08036, Barcelona, Spain,Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Juan Miguel Redondo
- CIBER de Enfermedades Cardiovasculares, ISCIII, Spain,Grupo de Regulación Génica en Remodelado Cardiovascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place Glasgow G12 8TA, Glasgow, UK
| | - Susana Guerra
- Departamento de Medicina Preventiva y Microbiología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Instituto de Investigación Hospital La Paz, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, 28029 Madrid, Spain,CIBER de Enfermedades Cardiovasculares, ISCIII, Spain
| | | |
Collapse
|
22
|
Thery F, Martina L, Asselman C, Zhang Y, Vessely M, Repo H, Sedeyn K, Moschonas GD, Bredow C, Teo QW, Zhang J, Leandro K, Eggermont D, De Sutter D, Boucher K, Hochepied T, Festjens N, Callewaert N, Saelens X, Dermaut B, Knobeloch KP, Beling A, Sanyal S, Radoshevich L, Eyckerman S, Impens F. Ring finger protein 213 assembles into a sensor for ISGylated proteins with antimicrobial activity. Nat Commun 2021; 12:5772. [PMID: 34599178 PMCID: PMC8486878 DOI: 10.1038/s41467-021-26061-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.
Collapse
Affiliation(s)
- Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lia Martina
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Madeleine Vessely
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Heidi Repo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Clara Bredow
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kevin Leandro
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nele Festjens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bart Dermaut
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Antje Beling
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Berlin, Germany
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
23
|
Thery F, Eggermont D, Impens F. Proteomics Mapping of the ISGylation Landscape in Innate Immunity. Front Immunol 2021; 12:720765. [PMID: 34447387 PMCID: PMC8383068 DOI: 10.3389/fimmu.2021.720765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
During infection, pathogen sensing and cytokine signaling by the host induce expression of antimicrobial proteins and specialized post-translational modifications. One such protein is ISG15, a ubiquitin-like protein (UBL) conserved among vertebrates. Similar to ubiquitin, ISG15 covalently conjugates to lysine residues in substrate proteins in a process called ISGylation. Mice deficient for ISGylation or lacking ISG15 are strongly susceptible to many viral pathogens and several intracellular bacterial pathogens. Although ISG15 was the first UBL discovered after ubiquitin, the mechanisms behind its protective activity are poorly understood. Largely, this stems from a lack of knowledge on the ISG15 substrate repertoire. To unravel the antiviral activity of ISG15, early studies used mass spectrometry-based proteomics in combination with ISG15 pulldown. Despite reporting hundreds of ISG15 substrates, these studies were unable to identify the exact sites of modification, impeding a clear understanding of the molecular consequences of protein ISGylation. More recently, a peptide-based enrichment approach revolutionized the study of ubiquitin allowing untargeted discovery of ubiquitin substrates, including knowledge of their exact modification sites. Shared molecular determinants between ISG15 and ubiquitin allowed to take advantage of this technology for proteome-wide mapping of ISG15 substrates and modification sites. In this review, we provide a comprehensive overview of mass spectrometry-based proteomics studies on protein ISGylation. We critically discuss the relevant literature, compare reported substrates and sites and make suggestions for future research.
Collapse
Affiliation(s)
- Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| |
Collapse
|
24
|
Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021; 32:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar K Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
25
|
Goetzke CC, Althof N, Neumaier HL, Heuser A, Kaya Z, Kespohl M, Klingel K, Beling A. Mitigated viral myocarditis in A/J mice by the immunoproteasome inhibitor ONX 0914 depends on inhibition of systemic inflammatory responses in CoxsackievirusB3 infection. Basic Res Cardiol 2021; 116:7. [PMID: 33523326 PMCID: PMC7851025 DOI: 10.1007/s00395-021-00848-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
A preclinical model of troponin I-induced myocarditis (AM) revealed a prominent role of the immunoproteasome (ip), the main immune cell-resident proteasome isoform, in heart-directed autoimmunity. Viral infection of the heart is a known trigger of cardiac autoimmunity, with the ip enhancing systemic inflammatory responses after infection with a cardiotropic coxsackievirusB3 (CV). Here, we used ip-deficient A/J-LMP7-/- mice to investigate the role of ip-mediated effects on adaptive immunity in CV-triggered myocarditis and found no alteration of the inflammatory heart tissue damage or cardiac function in comparison to wild-type controls. Aiming to define the impact of the systemic inflammatory storm under the control of ip proteolysis during CV infection, we targeted the ip in A/J mice with the inhibitor ONX 0914 after the first cycle of infection, when systemic inflammation has set in, well before cardiac inflammation. During established acute myocarditis, the ONX 0914 treatment group had the same reduction in cardiac output as the controls, with inflammatory responses in heart tissue being unaffected by the compound. Based on these findings and with regard to the known anti-inflammatory role of ONX 0914 in CV infection, we conclude that the efficacy of ip inhibitors for CV-triggered myocarditis in A/J mice relies on their immunomodulatory effects on the systemic inflammatory reaction.
Collapse
Affiliation(s)
- Carl Christoph Goetzke
- Department of Pediatrics, Division of Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin, Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Nadine Althof
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hannah Louise Neumaier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
| | - Arndt Heuser
- Animal Phenotyping Platform, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Ziya Kaya
- Universitätsklinikum Heidelberg, Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Side Heidelberg, Heidelberg, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Side Berlin, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Side Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Role of Host-Mediated Post-Translational Modifications (PTMs) in RNA Virus Pathogenesis. Int J Mol Sci 2020; 22:ijms22010323. [PMID: 33396899 PMCID: PMC7796338 DOI: 10.3390/ijms22010323] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.
Collapse
|
27
|
Enhancement of HIV-1 Env-Specific CD8 T Cell Responses Using Interferon-Stimulated Gene 15 as an Immune Adjuvant. J Virol 2020; 95:JVI.01155-20. [PMID: 33115866 DOI: 10.1128/jvi.01155-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Induction of the endogenous innate immune system by interferon (IFN) triggers the expression of many proteins that serve like alarm bells in the body, activating an immune response. After a viral infection, one of the genes activated by IFN induction is the IFN-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein that undergoes a reversible posttranslational modification (ISGylation). ISG15 protein can also act unconjugated, intracellularly and secreted, acting as a cytokine. Although ISG15 has an essential role in host defense responses to microbial infection, its role as an immunomodulator in the vaccine field remains to be defined. In this investigation, we showed that ISG15 exerts an immunomodulatory role in human immunodeficiency virus (HIV) vaccines. In mice, after priming with a DNA-ISG15 vector mixed with a DNA expressing HIV-1 gp120 (DNA-gp120), followed by a booster with a modified vaccinia virus Ankara (MVA) vector expressing HIV-1 antigens, both wild-type ISG15-conjugated (ISG15-wt) and mutant unconjugated (ISG15-mut) proteins act as immune adjuvants by increasing the magnitude and quality of HIV-1-specific CD8 T cells, with ISG15-wt providing better immunostimulatory activity than ISG15-mut. The HIV-1 Env-specific CD8 T cell responses showed a predominant T effector memory (TEM) phenotype in all groups. Moreover, the amount of DNA-gp120 used to immunize mice could be reduced 5-fold after mixing with DNA-ISG15 without affecting the potency and the quality of the HIV-1 Env-specific immune responses. Our study clearly highlights the potential use of the IFN-induced ISG15 protein as immune adjuvant to enhance immune responses to HIV antigens, suggesting that this molecule might be exploitable for prophylactic and therapeutic vaccine approaches against pathogens.IMPORTANCE Our study described the potential role of ISG15 as an immunomodulatory molecule in the optimization of HIV/AIDS vaccine candidates. Using a DNA prime-MVA boost immunization protocol, our results indicated an increase in the potency and the quality of the HIV-1 Env-specific CD8 T cell response. These results highlight the adjuvant potency of ISG15 to elicit improved viral antigen presentation to the immune system, resulting in an enhanced HIV-1 vaccine immune response. The DNA-ISG15 vector could find applicability in the vaccine field in combination with other nucleic acid-based vector vaccines.
Collapse
|