1
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406324. [PMID: 39754328 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| |
Collapse
|
2
|
Lu Y, Yin X, Li M, Ma W, Du S, Wang Z, Qiu N, Zhao X. Dual-plasmonic eccentric nanostructure with prominent colorimetric and photothermal performance to detect zearalenone by dual signal immunochromatography assay. Talanta 2024; 286:127487. [PMID: 39736205 DOI: 10.1016/j.talanta.2024.127487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
In the study, an eccentric heterogeneous core-shell nanomaterial Au@Cu2-xSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%. As proof of concept, we applied Au@Cu2-xSe as a signal amplification marker in LFIA for the rapid detection of zearalenone (ZEN), enabling dual-mode quantitative detection via colorimetric and photothermal signals (CM/PT). The Au@Cu2-xSe-LFIA demonstrated a cut-off value of 10 ng/mL in colorimetric mode and 5 ng/mL in photothermal mode, representing a two fold increase in sensitivity compared to traditional AuNPs-based LFIAs. The outstanding colorimetric signal and prominent photothermal signal make the proposed Au@Cu2-xSe nanomaterial show better application prospects in CM/PT mode detection in LFIA, providing broad application prospects for the broad-spectrum detection of mycotoxins in food in the future.
Collapse
Affiliation(s)
- Yangyang Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanlu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sining Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zixuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nannan Qiu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science (2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China.
| |
Collapse
|
3
|
Kosaristanova L, Bytesnikova Z, Fialova T, Pekarkova J, Svec P, Ondreas F, Jemelikova V, Ridoskova A, Makovicky P, Sivak L, Dolejska M, Zouharova M, Slama P, Adam V, Smerkova K. In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis. J Anim Sci Biotechnol 2024; 15:173. [PMID: 39707565 DOI: 10.1186/s40104-024-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Frantisek Ondreas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Vendula Jemelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 9, Ostrava - Vítkovice, 700 03, Czech Republic
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovak Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Microbiology, Faculty of Medicine, Charles University, Alej Svobody 76, Pilsen, 323 00, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.
| |
Collapse
|
4
|
Yu M, Wu H, Hu H, Cheng Y, Qin Y, Yang K, Hu C, Guo W, Kong Y, Zhao W, Cheng X, Jiang H, Wang S. Emerging near-infrared targeting diagnostic and therapeutic strategies for ischemic cardiovascular and cerebrovascular diseases. Acta Biomater 2024:S1742-7061(24)00682-2. [PMID: 39577483 DOI: 10.1016/j.actbio.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ischemic cardiovascular and cerebrovascular diseases (ICCDs), including thrombosis, ischemic stroke and atherosclerosis, represent a significant threat to human health, and there is an urgent requirement for the implementation of emerging diagnostic and therapeutic approaches to improve symptoms and prognosis. As a promising noninvasive modality offering high spatial and temporal resolution with favorable biocompatible properties, near-infrared (NIR) light has demonstrated a vast and profound potential in the biomedical field in recent years. Meanwhile, nanomedicine carriers are undergoing rapid development due to their high specific surface area, elevated drug loading capacity, and unique physicochemical properties. The combination of NIR light with targeted nanoprobes modified with different functional components not only maintains the high penetration depth of NIR irradiation in biological tissues but also significantly enhances the targeting specificity at the lesion site. This strategy allows for the realization of on-demand drug release and photothermal effects, thus inspiring promising avenues for the diagnosis and treatment of ICCDs. However, the clinical translation of NIR imaging and therapy is still hindered by significant obstacles. The existing literature has provided a comprehensive overview of the advancements in NIR-based nanomedicine research. However, there is a notable absence of reviews that summarize the NIR-mediated targeting strategies against ICCDs in imaging and therapy. Therefore, this review concludes the application of the emerging targeting probes combined with NIR radiation for ICCDs classified by molecular targets, analyzes the current challenges, and provides improvement strategies and prospects for further clinical translation. STATEMENT OF SIGNIFICANCE: Ischemic cardiovascular and cerebrovascular diseases (ICCDs) represent a significant threat to human health. Recently, near-infrared (NIR) light combined with targeting probes have been employed for the diagnosis and treatment of ICCDs, offering exceptional advantages including rapid feedback, high penetration depth, on-demand drug release, and favorable biocompatibility. However, there is a notable absence of reviews that summarize the NIR light-mediated targeting strategies for the imaging and therapy of ICCDs. Therefore, this review summarizes the emerging targeting probes combined with NIR light classified by molecular targets, and the proposes potential improvement strategies for clinical translation. This review elucidates the potential and current status of NIR-based techniques in ICCDs, while also serving as a reference point for additional targeted therapeutic strategies for ICCDs.
Collapse
Affiliation(s)
- Mengran Yu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Huijun Wu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Haoyuan Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Ye Cheng
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Youran Qin
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Kaiqing Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - ChangHao Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Wei Guo
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Yuxuan Kong
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Weiwen Zhao
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Xueqin Cheng
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China
| | - Hong Jiang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China.
| | - Songyun Wang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan 430061, China.
| |
Collapse
|
5
|
Huang Y, Li J, Yu Z, Li J, Liang K, Deng Y. Elaborated Bio-Heterojunction With Robust Sterilization Effect for Infected Tissue Regeneration via Activating Competent Cell-Like Antibacterial Tactic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414111. [PMID: 39397342 DOI: 10.1002/adma.202414111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT) has been a powerful strategy to combat bacterial infection. However, the compact cell membranes of pathogenic bacteria, especially drug-resistant bacteria, significantly diminish the efficiency of heat conduction and impede the entrance of reactive oxygen species (ROS) into cells, resulting in unsatisfactory sterilization. Enlightened by the membrane feature of competent bacteria, herein a MXene/CaO2 bio-heterojunction (MC bio-HJ) is elaborated to achieve rapid disinfection and promote infected tissue regeneration through activating competent cell-like antibacterial tactics. The bio-HJ first compels pathogenic bacteria to become a competent cell-like stage through the coordination of Ca2+ and membrane phospholipid, and potentiates the membrane permeability. Assisted by near infrared (NIR) irradiation, the heat and ROS generated from PTT and PDT of bio-HJ easily pass through bacterial membrane and drastically perturb bacterial metabolism, leading to rapid disinfection. More importantly, employing two in vivo infected model of mice, it have corroborated that the MC bio-HJs not only effectively accelerate MRSA-infected cutaneous regeneration, but also considerably boost osseointegration in an infected bone defect after coating on orthopedic implants. As envisaged, this work demonstrates a novel therapeutic tactic with robust antibacterial effect to remedy infected tissue regeneration through activating competent cell-like stage.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Jialun Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Zhaohan Yu
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Jiyao Li
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Kunneng Liang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
6
|
Liu WS, Chen Z, Lu ZM, Dong JH, Wu JH, Gao J, Deng D, Li M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J Control Release 2024; 371:406-428. [PMID: 38849093 DOI: 10.1016/j.jconrel.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Preventing the recurrence of melanoma after surgery and accelerating wound healing are among the most challenging aspects of melanoma management. Photothermal therapy has been widely used to treat tumors and bacterial infections and promote wound healing. Owing to its efficacy and specificity, it may be used for postoperative management of tumors. However, its use is limited by the uncontrollable distribution of photosensitizers and the likelihood of damage to the surrounding normal tissue. Hydrogels provide a moist environment with strong biocompatibility and adhesion for wound healing owing to their highly hydrophilic three-dimensional network structure. In addition, these materials serve as excellent drug carriers for tumor treatment and wound healing. It is possible to combine the advantages of both of these agents through different loading modalities to provide a powerful platform for the prevention of tumor recurrence and wound healing. This review summarizes the design strategies, research progress and mechanism of action of hydrogels used in photothermal therapy and discusses their role in preventing tumor recurrence and accelerating wound healing. These findings provide valuable insights into the postoperative management of melanoma and may guide the development of promising multifunctional hydrogels for photothermal therapy.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zhuo Chen
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jin-Hua Dong
- Women and Children Hospital Affiliated to Jiaxing University, 2468 Middle Ring Eastern Road, Jiaxing City, Zhejiang 314000, People's Republic of China
| | - Jin-Hui Wu
- Ophthalmology Department of the Third Affiliated Hospital of Naval Medical University, Shanghai 201805, People's Republic of China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, People's Republic of China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Yi Y, Sun S, Wang T, Tang J, Peng Z, Huang W, Zeng W, Wu M. Biodegradable and Efficient Charge-Migrated Z-Scheme Heterojunction Amplifies Cancer Ferroptosis by Blocking Defensive Redox System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309206. [PMID: 38149505 DOI: 10.1002/smll.202309206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianqi Wang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jia Tang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenxin Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meiying Wu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
8
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
9
|
Rao W, Yue Q, Gao S, Lei M, Lin T, Pan X, Hu J, Fan G. Visible-light-driven water-soluble zinc oxide quantum dots for efficient control of citrus canker. PEST MANAGEMENT SCIENCE 2024; 80:3022-3034. [PMID: 38318944 DOI: 10.1002/ps.8010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a devastating bacterial disease that reduces citrus yield and quality, posing a serious threat to the citrus industry. Several conventional chemicals have been used to control citrus canker. However, this approach often leads to the excessive use of chemical agents, can exacerbate environmental pollution and promotes the development of resistant Xcc. Therefore, there is significant interest in the development of efficient and environmentally friendly technologies to control citrus canker. RESULTS In this study, water-soluble ZnO quantum dots (ZnO QDs) were synthesised as an efficient nanopesticide against Xcc. The results showed that the antibacterial activity of ZnO QDs irradiated with visible light [half-maximal effective concentration (EC50) = 33.18 μg mL-1] was ~3.5 times higher than that of the dark-treated group (EC50 = 114.80 μg mL-1). ZnO QDs induced the generation of reactive oxygen species (•OH, •O- 2 and 1O2) under light irradiation, resulting in DNA damage, cytoplasmic destruction, and decreased catalase and superoxide dismutase activities. Transcription analysis showed downregulation of Xcc genes related to 'biofilms, virulence, adhesion' and 'DNA transfer' exposure to ZnO QDs. More importantly, ZnO QDs also promoted the growth of citrus. CONCLUSION This research provides new insights into the photocatalytic antibacterial mechanisms of ZnO QDs and supports the development of more efficient and safer ZnO QDs-based nanopesticides to control citrus canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Meiling Lei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| |
Collapse
|
10
|
Jiang W, Peng J, Jiang N, Zhang W, Liu S, Li J, Duan D, Li Y, Peng C, Yan Y, Zhao Y, Han G. Chitosan Phytate Nanoparticles: A Synergistic Strategy for Effective Dental Caries Prevention. ACS NANO 2024; 18:13528-13537. [PMID: 38747549 DOI: 10.1021/acsnano.3c11806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Collapse
Affiliation(s)
- Weibo Jiang
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Orthodontics, Wuxi Stomatology Hospital, Health Road 6, Wuxi 214001, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Nan Jiang
- Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yongfa Yan
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, LRB 806, Worcester, Massachusetts 01605, United States
| |
Collapse
|
11
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Hao Y, Qi Z, Ge Y, Pan T, Yu L, Li P. A redox-responsive macrocycle based on the crown ether C7Te for enhanced bacterial inhibition. J Mater Chem B 2024; 12:2587-2593. [PMID: 38363549 DOI: 10.1039/d3tb02791k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Due to increasing bacterial resistance to disinfectants, there is an urgent need for new therapeutic agents and strategies to effectively inhibit bacteria. Accordingly, we have designed and synthesized a novel crown ether known as C7Te, and its oxidized form C7TeO. These compounds have demonstrated antibacterial effectiveness against Gram-negative E. coli (BL21). Notably, C7Te has the capability to enhance the inhibition of E. coli and the prevention of biofilm formation by H2O2 through a redox response. It can also effectively disrupt preformed E. coli biofilms by penetrating biofilm barriers effectively. Additionally, computer modeling of the bacterial cell membrane using nanodiscs composed of phospholipids and encircled amphipathic proteins with helical belts has revealed that C7Te can insert into and interact with phospholipids and proteins. This interaction results in the disruption of the bacterial cell membrane leading to bacterial cell death. The utilization of redox-responsive crown ethers to augment the antibacterial capabilities of H2O2-based disinfectants represents a novel approach to supramolecular bacterial inhibition.
Collapse
Affiliation(s)
- Yuchong Hao
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Zhenhui Qi
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Yan Ge
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Tiezheng Pan
- Synergetic Innovation Center of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Youyi West Road 127, Xi'an, Shaanxi 710072, China.
| | - Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
13
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Li B, Yang W, Shu R, Yang H, Yang F, Dai W, Chen W, Chan YK, Bai D, Deng Y. Antibacterial and Angiogenic (2A) Bio-Heterojunctions Facilitate Infectious Ischemic Wound Regeneration via an Endogenous-Exogenous Bistimulatory Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307613. [PMID: 37848208 DOI: 10.1002/adma.202307613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
In infectious ischemic wounds, a lack of blood perfusion significantly worsens microbe-associated infection symptoms and frequently complicates healing. To overcome this daunting issue, antibacterial and angiogenic (2A) bio-heterojunctions (bio-HJs) consisting of CuS/MXene heterojunctions and a vascular endothelial growth factor (VEGF)-mimicking peptide (VMP) are devised and developed to accelerate infectious cutaneous regeneration by boosting angiogenesis via an endogenous-exogenous bistimulatory (EEB) strategy. Assisted by near-infrared irradiation, the bio-HJ platform exhibits versatile synergistic photothermal, photodynamic, and chemodynamic effects for robust antibacterial efficacy. In addition, copper ions liberated from 2A bio-HJs elevate VEGF secretion from fibroblasts, which provokes VEGF receptors (VEGFR) activation through an endogenous pathway, whereas VMP itself promotes an exogenous pathway to facilitate endothelial cell multiplication and tube formation by directly activating the VEGFR signaling pathway. Moreover, employing an in vivo model of infectious ischemic wounds, it is confirmed that the EEB strategy can considerably boost cutaneous regeneration through pathogen elimination, angiogenesis promotion, and collagen deposition. As envisaged, this work leads to the development of a powerful 2A bio-HJ platform that can serve as an effective remedy for bacterial invasion-induced ischemic wounds through the EEB strategy.
Collapse
Affiliation(s)
- Bin Li
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Weizhong Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- West China Hospital of Stomatology, College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
15
|
Xu F, Fan S, Li Y, Ma J, Yang L, Ma S. Removal and recycling of aqueous selenite anions using cobalt-based metal-organic-framework coated on multi-walled carbon nanotubes composite membrane. J Colloid Interface Sci 2024; 653:493-503. [PMID: 37729757 DOI: 10.1016/j.jcis.2023.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The utilization of selenium as a novel functional material is rapidly expanding, and the retrieval of selenium from waste containing selenium is gaining recognition in the industry. This study prepared a novel composite membrane coated with the cobalt-based metal-organic framework coated on multi-walled carbon nanotubes (Co-MOF@MWCNTs). The MWCNTs served as the skeleton to support the active components of Co-MOF, which enabled efficient removal and resource utilization of liquid selenite (SeO32-). The morphology, structure, and composition of the prepared membrane were characterized using field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), etc.. Applying a permeate flux of 67.08 L m-2 h-1, the SeO32- removal efficiency of the composite membrane reached up to 92.2%. The composite membrane containing CoSeO4 can be used as an electrocatalytic oxygen evolution catalyst. Density functional theory calculations and electrochemical analysis showed that the conversion from O* to OOH* was a rate-determining step. Under 1.0 M KOH conditions, the lowest overpotential for Co-MOF@MWCNTs-40 at 10 mA cm-2 was 360 mV. In this study, the process of selenium resource utilization and the mechanism of SeO32- removal by Co-MOF@MWCNTs are revealed. It demonstrates that membrane-based sequestration of SeO32- can provide a viable approach for SeO32- removal and utilization in wastewater.
Collapse
Affiliation(s)
- Fang Xu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuaijun Fan
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ying Li
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Jingxiang Ma
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lijuan Yang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Shuangchen Ma
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; Moe Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
16
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
17
|
Xing C, Li Z, Wang Z, Zhang S, Xie Z, Zhu X, Peng Z. Chemical Scissors Tailored Nano-Tellurium with High-Entropy Morphology for Efficient Foam-Hydrogel-Based Solar Photothermal Evaporators. NANO-MICRO LETTERS 2023; 16:47. [PMID: 38063910 PMCID: PMC10709277 DOI: 10.1007/s40820-023-01242-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/11/2024]
Abstract
The development of tellurium (Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns. However, the nanosized Te (nano-Te) materials reported to date suffer from a series of drawbacks, including limited light absorption and a lack of surface structures. Herein, we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid. Anions, cations, and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te. The resulting nano-Te has high morphological entropy, rich surface functional groups, and broad light absorption. We also constructed foam hydrogels based on poly (vinyl alcohol)/nano-Te, which achieved an evaporation rate and energy efficiency of 4.11 kg m-2 h-1 and 128%, respectively, under 1 sun irradiation. Furthermore, the evaporation rate was maintained in the range 2.5-3.0 kg m-2 h-1 outdoors under 0.5-1.0 sun, providing highly efficient evaporation under low light conditions.
Collapse
Affiliation(s)
- Chenyang Xing
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zihao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ziao Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, People's Republic of China
| | - Shaohui Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, People's Republic of China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, People's Republic of China.
| | - Zhengchun Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Center for Stretchable Electronics and NanoSensors, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
18
|
Zhai Y, Wang N, Ma H, Li L, Feng X, Shi X, Zhou B, Li W. Feathery Tellurium-Selenium Heterostructural Nanoadjuvant for the Synergistic Treatment of Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53827-53834. [PMID: 37944101 DOI: 10.1021/acsami.3c12209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Antibacterial nanoagents with well-controlled structures are greatly desired to address the challenges of bacterial infections. In this study, a featherlike tellurium-selenium heterostructural nanoadjuvant (TeSe HNDs) was created. TeSe HNDs produced 1O2 and had high photothermal conversion efficiency when stimulated with 808 nm near-infrared (NIR) light. To create a synergistic treatment system (TeSe-ICG) with better photothermal and photodynamic capabilities, the photosensitizer indocyanine green (ICG) was then added. With a bactericidal rate of more than 99%, the NIR-mediated TeSe-ICG demonstrated an efficient bactericidal action against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, TeSe-ICG was also effective in treating wound infections and could effectively promote wound healing without obvious toxic side effects. In conclusion, TeSe-ICG is expected to be a good candidate for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yutong Zhai
- Changchun University of Science and Technology, Changchun 130022, China
| | - Ningning Wang
- Changchun University of Science and Technology, Changchun 130022, China
| | - Hongda Ma
- Changchun University of Science and Technology, Changchun 130022, China
| | - Leijiao Li
- Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - Xiangru Feng
- Changchun University of Science and Technology, Changchun 130022, China
| | - Xincui Shi
- Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528400, China
| | - Bo Zhou
- Academy of Military Medical Sciences Institute of Military Veterinary Medicine, Changchun 130122, China
| | - Wenliang Li
- Changchun University of Science and Technology, Changchun 130022, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
19
|
Rao H, Liu C, Wang A, Ma C, Xu Y, Ye T, Su W, Zhou P, Gao WQ, Li L, Ding X. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023; 14:7572. [PMID: 37989747 PMCID: PMC10663509 DOI: 10.1038/s41467-023-43378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.
Collapse
Affiliation(s)
- Hanyu Rao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tianbao Ye
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiong Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Peijun Zhou
- Division of Kidney Transplant, Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Lyu X, Li Y, Jiang P, Zhang J, Liu X, Li X, Yang H, Lu G, Hu X, Peng L, Gong Q, Gao Y. Reveal Ultrafast Electron Relaxation across Sub-bands of Tellurium by Time- and Energy-Resolved Photoemission Microscopy. NANO LETTERS 2023; 23:9547-9554. [PMID: 37816225 DOI: 10.1021/acs.nanolett.3c03102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.
Collapse
Affiliation(s)
- Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Jianing Zhang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Xiulan Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liangyou Peng
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
21
|
Neumann-Tran TMP, López-Iglesias C, Navarro L, Quaas E, Achazi K, Biglione C, Klinger D. Poly( N-acryloylmorpholine) Nanogels as Promising Materials for Biomedical Applications: Low Protein Adhesion and High Colloidal Stability. ACS APPLIED POLYMER MATERIALS 2023; 5:7718-7732. [DOI: 10.1021/acsapm.3c00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Thi Mai Phuong Neumann-Tran
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Clara López-Iglesias
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, E-28935 Madrid, Spain
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| |
Collapse
|
22
|
Xiao L, Chen B, Wang W, Tian T, Qian H, Li X, Yu Y. Multifunctional Au@AgBiS 2 Nanoparticles as High-Efficiency Radiosensitizers to Induce Pyroptosis for Cancer Radioimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302141. [PMID: 37688340 PMCID: PMC10602534 DOI: 10.1002/advs.202302141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Radiotherapy (RT), a widely used clinical treatment modality for cancer, uses high-energy irradiation for reactive oxygen species (ROS) production and DNA damage. However, its therapeutic effect is primarily limited owing to insufficient DNA damage to tumors and harmful effects on normal tissues. Herein, a core-shell structure of metal-semiconductors (Au@AgBiS2 nanoparticles) that can function as pyroptosis inducers to both kill cancer cells directly and trigger a robust anti-tumor immune against 4T1 triple-negative murine breast cancer and metastasis is rationally designed. Metal-semiconductor composites can enhance the generation of considerable ROS and simultaneously DNA damage for RT sensitization. Moreover, Au@AgBiS2 , a pyroptosis inducer, induces caspase-3 protein activation, gasdermin E cleavage, and the release of damage-associated molecular patterns. In vivo studies in BALB/c mice reveal that Au@AgBiS2 nanoparticles combined with RT exhibit remarkable antitumor immune activity, preventing tumor growth, and lung metastasis. Therefore, this core-shell structure is an alternative for designing highly effective radiosensitizers for radioimmunotherapy.
Collapse
Affiliation(s)
- Liang Xiao
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| | - Benjin Chen
- Department of PharmacologySchool of Basic Medical SciencesAnhui Medical UniversityHefei230032P. R. China
| | - Wanni Wang
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Engineering Research Center for Medical Micro‐Nano DevicesAnhui Medical UniversityHefei230011P. R. China
| | - Tian Tian
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230036P. R. China
| | - Haisheng Qian
- School of Biomedical EngineeringAnhui Provincial Institute of Translational MedicineAnhui Engineering Research Center for Medical Micro‐Nano DevicesAnhui Medical UniversityHefei230011P. R. China
| | - Xiaohu Li
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| | - Yongqiang Yu
- Department of RadiologyResearch Center of Clinical Medical ImagingAnhui Province Clinical Image Quality Control CenterThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022P. R. China
| |
Collapse
|
23
|
Zhang ZW, Yang Y, Wu H, Zhang T. Advances in the two-dimensional layer materials for cancer diagnosis and treatment: unique advantages beyond the microsphere. Front Bioeng Biotechnol 2023; 11:1278871. [PMID: 37840663 PMCID: PMC10576562 DOI: 10.3389/fbioe.2023.1278871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, two-dimensional (2D) layer materials have shown great potential in the field of cancer diagnosis and treatment due to their unique structural, electronic, and chemical properties. These non-spherical materials have attracted increasing attention around the world because of its widely used biological characteristics. The application of 2D layer materials like lamellar graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BPs) and so on have been developed for CT/MRI imaging, serum biosensing, drug targeting delivery, photothermal therapy, and photodynamic therapy. These unique applications for tumor are due to the multi-variable synthesis of 2D materials and the structural characteristics of good ductility different from microsphere. Based on the above considerations, the application of 2D materials in cancer is mainly carried out in the following three aspects: 1) In terms of accurate and rapid screening of tumor patients, we will focus on the enrichment of serum markers and sensitive signal transformation of 2D materials; 2) The progress of 2D nanomaterials in tumor MRI and CT imaging was described by comparing the performance of traditional contrast agents; 3) In the most important aspect, we will focus on the progress of 2D materials in the field of precision drug delivery and collaborative therapy, such as photothermal ablation, sonodynamic therapy, chemokinetic therapy, etc. In summary, this review provides a comprehensive overview of the advances in the application of 2D layer materials for tumor diagnosis and treatment, and emphasizes the performance difference between 2D materials and other types of nanoparticles (mainly spherical). With further research and development, these multifunctional layer materials hold great promise in the prospects, and challenges of 2D materials development are discussed.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| | - Yang Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tong Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|
24
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
25
|
Chang Y, Huang J, Shi S, Xu L, Lin H, Chen T. Precise Engineering of a Se/Te Nanochaperone for Reinvigorating Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212178. [PMID: 37204161 DOI: 10.1002/adma.202212178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Facilely synthesized nanoradiosensitizers with well-controlled structure and multifunctionality are greatly desired to address the challenges of cancer radiotherapy. In this work, a universal method is developed for synthesizing chalcogen-based TeSe nano-heterojunctions (NHJs) with rod-, spindle-, or dumbbell-like morphologies by engineering the surfactant and added selenite. Interestingly, dumbbell-shaped TeSe NHJs (TeSe NDs) as chaperone exhibit better radio-sensitizing activities than the other two nanostructural shapes. Meanwhile, TeSe NDs can serve as cytotoxic chemodrugs that degrade to highly toxic metabolites in acidic environment and deplete GSH within tumor to facilitate radiotherapy. More importantly, the combination of TeSe NDs with radiotherapy significantly decreases regulatory T cells and M2-phenotype tumor-associated macrophage infiltrations within tumors to reshape the immunosuppressive microenvironment and induce robust T lymphocytes-mediated antitumor immunity, resulting in great abscopal effects on combating distant tumor progression. This study provides a universal method for preparing NHJ with well-controlled structure and developing nanoradiosensitizers to overcome the clinical challenges of cancer radiotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiarun Huang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ligeng Xu
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tianfeng Chen
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
26
|
He F, Hou W, Lan Y, Gao W, Zhou M, Li J, Liu S, Yang B, Zhang J. High Contrast Detection of Carotid Neothrombus with Strong Near-Infrared Absorption Selenium Nanosphere Enhanced Photoacoustic Imaging. Int J Nanomedicine 2023; 18:4043-4054. [PMID: 37520300 PMCID: PMC10377622 DOI: 10.2147/ijn.s404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Background Carotid artery thrombosis is the leading cause of stroke. Since there are no apparent symptoms in the early stages of carotid atherosclerosis onset, it causes a more significant clinical diagnosis. Photoacoustic (PA) imaging provides high contrast and good depth information, which has been used for the early detection and diagnosis of many diseases. Methods We investigated thrombus formation by using 20% ferric chloride (FeCl3) in the carotid arteries of KM mice for the thrombosis model. The near-infrared selenium/polypyrrole (Se@PPy) nanomaterials are easy to synthesize and have excellent optical absorption in vivo, which can be used as PA contrast agents to obtain thrombosis information. Results In vitro experiments showed that Se@PPy nanocomposites have fulfilling PA ability in the 700 nm to 900 nm wavelength range. In the carotid atherosclerosis model, maximum PA signal enhancement up to 3.44, 4.04, and 5.07 times was observed by injection of Se@PPy nanomaterials, which helped to diagnose the severity of carotid atherosclerosis. Conclusion The superior PA signal of Se@PPy nanomaterials can identify the extent of atherosclerotic carotid lesions, demonstrating the feasibility of PA imaging technology in diagnosing carotid thrombosis lesion formation. This study demonstrates nanocomposites and PA techniques for imaging and diagnosing carotid thrombosis in vivo.
Collapse
Affiliation(s)
- Fengbing He
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Wenzhong Hou
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yintao Lan
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong, People’s Republic of China
| | - Weijian Gao
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Mengyu Zhou
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinghang Li
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Shutong Liu
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Bin Yang
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jian Zhang
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangdong, People’s Republic of China
| |
Collapse
|
27
|
Ye Y, Ren K, Dong Y, Yang L, Zhang D, Yuan Z, Ma N, Song Y, Huang X, Qiao H. Mitochondria-Targeting Pyroptosis Amplifier of Lonidamine-Modified Black Phosphorus Nanosheets for Glioblastoma Treatments. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220137 DOI: 10.1021/acsami.3c01559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyroptosis is accompanied by immunogenic mediators' release and serves as an innovative strategy to reprogram tumor microenvironments. However, damaged mitochondria, the origin of pyroptosis, are frequently eliminated by mitophagy, which will severely impair pyroptosis-elicited immune activation. Herein, black phosphorus nanosheets (BP) are employed as a pyroptosis inducer delivery and mitophagy flux blocking system since the degradation of BP could impair lysosomal function by altering the pH within lysosomes. The pyroptosis inducer of lonidamine (LND) was precoupled with the mitochondrial target moiety of triphenylphosphonium to facilitate the occurrence of pyroptosis. The mitochondria-targeting LND-modified BP (BPTLD) were further encapsulated into the macrophage membrane to endow the BPTLD with blood-brain barrier penetration and tumor-targeting capability. The antitumor activities of membrane-encapsulated BPTLD (M@BPTLD) were investigated using a murine orthotopic glioblastoma model. The results demonstrated that the engineered nanosystem of M@BPTLD could target the mitochondria, and induce as well as reinforce pyroptosis via mitophagy flux blocking, thereby boosting the release of immune-activated factors to promote the maturation of dendritic cells. Furthermore, upon near-infrared (NIR) irradiation, M@BPTLD induced stronger mitochondrial oxidative stress, which further advanced robust immunogenic pyroptosis in glioblastoma cells. Thus, this study utilized the autophagy flux inhibition and phototherapy performance of BP to amplify LND-mediated pyroptosis, which might greatly contribute to the development of pyroptosis nanomodulators.
Collapse
Affiliation(s)
- Youqing Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ren
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu 610500, China
| | - Yuqin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dexin Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyang Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ningyi Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Meng R, Hao S, Sun C, Hou Z, Hou Y, Wang L, Deng P, Deng J, Yang Y, Xia H, Wang B, Qing R, Zhang S. Reverse-QTY code design of active human serum albumin self-assembled amphiphilic nanoparticles for effective anti-tumor drug doxorubicin release in mice. Proc Natl Acad Sci U S A 2023; 120:e2220173120. [PMID: 37186820 PMCID: PMC10214157 DOI: 10.1073/pnas.2220173120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Human serum albumin (HSA) is a highly water-soluble protein with 67% alpha-helix content and three distinct domains (I, II, and III). HSA offers a great promise in drug delivery with enhanced permeability and retention effect. But it is hindered by protein denaturation during drug entrapment or conjugation that result in distinct cellular transport pathways and reduction of biological activities. Here we report using a protein design approach named reverse-QTY (rQTY) code to convert specific hydrophilic alpha-helices to hydrophobic to alpha-helices. The designed HSA undergo self-assembly of well-ordered nanoparticles with highly biological actives. The hydrophilic amino acids, asparagine (N), glutamine (Q), threonine (T), and tyrosine (Y) in the helical B-subdomains of HSA were systematically replaced by hydrophobic leucine (L), valine (V), and phenylalanine (F). HSArQTY nanoparticles exhibited efficient cellular internalization through the cell membrane albumin binding protein GP60, or SPARC (secreted protein, acidic and rich in cysteine)-mediated pathways. The designed HSArQTY variants displayed superior biological activities including: i) encapsulation of drug doxorubicin, ii) receptor-mediated cellular transport, iii) tumor cell targeting, and iv) antitumor efficiency compare to denatured HSA nanoparticles. HSArQTY nanoparticles provided superior tumor targeting and antitumor therapeutic effects compared to the albumin nanoparticles fabricated by antisolvent precipitation method. We believe that the rQTY code is a robust platform for specific hydrophobic modification of functional hydrophilic proteins with clear-defined binding interfaces.
Collapse
Affiliation(s)
- Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Lili Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Peiying Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing400067, China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Tumor Center, Chongqing Medical University, Chongqing400016, China
| | - Haijian Xia
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing400042, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
29
|
Zhang G, Ma C, He Q, Dong H, Cui L, Li L, Li L, Wang Y, Wang X. An efficient Pt@MXene platform for the analysis of small-molecule natural products. iScience 2023; 26:106622. [PMID: 37250310 PMCID: PMC10214401 DOI: 10.1016/j.isci.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Small-molecule (m/z<500) natural products have rich biological activity and significant application value thus need to be effectively detected. Surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) has become a powerful detection tool for small-molecule analysis. However, more efficient substrates need to be developed to improve the efficiency of SALDI MS. Thus, platinum nanoparticle-decorated Ti3C2 MXene (Pt@MXene) was synthesized in this study as an ideal substrate for SALDI MS in positive ion mode and exhibited excellent performance for the high-throughput detection of small molecules. Compared with using MXene, GO, and CHCA matrix, a stronger signal peak intensity and wider molecular coverage was obtained using Pt@MXene in the detection of small-molecule natural products, with a lower background, excellent salt and protein tolerance, good repeatability, and high detection sensitivity. The Pt@MXene substrate was also successfully used to quantify target molecules in medicinal plants. The proposed method has potentially wide application.
Collapse
Affiliation(s)
- Guanhua Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Li Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yan Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
30
|
Xing C, Li Z, Bang J, Wei S, Peng Z. One-dimensional TeSe nano-heterojunction: formation, calculations, carrier dynamics, and application in broad-spectrum photodetectors. NANOSCALE 2023; 15:8800-8813. [PMID: 37102599 DOI: 10.1039/d3nr00593c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seawater contains many electrolytes, is abundant in nature, environmentally friendly, and chemically stable, and exhibits substantial potential for replacement of traditional inorganic electrolytes in photoelectrochemical-type photodetectors (PDs). Herein, one-dimensional semiconductor TeSe nanorods (NRs) with core-shell nanostructures were reported, and their morphology, optical behavior, electronic structure, and photoinduced carrier dynamics were systematically investigated. As photosensitizers, the as-resultant TeSe NRs were assembled into PDs, and the influence of the bias potential, light wavelength and intensity, and the concentration of seawater on the photo-response of TeSe NR-based PDs was evaluated. These PDs exhibited favorable photo-response performance upon illumination with light in the ultraviolet-visible-near-infrared (UV-Vis-NIR) range and even simulated sunlight. Moreover, the TeSe NR-based PDs also exhibited a long duration and cycling stability of its on-off switching and might be useful in marine monitoring.
Collapse
Affiliation(s)
- Chenyang Xing
- Center for Stretchable Electronics and NanoSensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zihao Li
- Center for Stretchable Electronics and NanoSensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jian Bang
- Center for Stretchable Electronics and NanoSensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songrui Wei
- Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhengchun Peng
- Center for Stretchable Electronics and NanoSensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
31
|
Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206624. [PMID: 36732908 DOI: 10.1002/smll.202206624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/31/2022] [Indexed: 05/04/2023]
Abstract
Lung cancer is one of the most common malignancies worldwide and contributes to most cancer-related morbidity and mortality cases. During the past decades, the rapid development of nanotechnology has provided opportunities and challenges for lung cancer diagnosis and therapeutics. As one of the most extensively studied nanostructures, metal nanoparticles obtain higher satisfaction in biomedical applications associated with lung cancer. Metal nanoparticles have enhanced almost all major imaging strategies and proved great potential as sensor for detecting cancer-specific biomarkers. Moreover, metal nanoparticles could also improve therapeutic efficiency via better drug delivery, improved radiotherapy, enhanced gene silencing, and facilitated photo-driven treatment. Herein, the recently advanced metal nanoparticles applied in lung cancer therapy and diagnosis are summarized. Future perspective on the direction of metal-based nanomedicine is also discussed. Stimulating more research interests to promote the development of metal nanoparticles in lung cancer is devoted.
Collapse
Affiliation(s)
- Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Yuan Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
32
|
Huang Q, Zhu W, Gao X, Liu X, Zhang Z, Xing B. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Deliv Rev 2023; 195:114763. [PMID: 36841331 DOI: 10.1016/j.addr.2023.114763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Ion channels are transmembrane proteins ubiquitously expressed in all cells that control various ions (e.g. Na+, K+, Ca2+ and Cl- etc) crossing cellular plasma membrane, which play critical roles in physiological processes including regulating signal transduction, cell proliferation as well as excitatory cell excitation and conduction. Abnormal ion channel function is usually associated with dysfunctions and many diseases, such as neurodegenerative disorders, ophthalmic diseases, pulmonary diseases and even cancers. The precise regulation of ion channels not only helps to decipher physiological and pathological processes, but also is expected to become cutting-edge means for disease treatment. Recently, nanoparticles-mediated ion channel manipulation emerges as a highly promising way to meet the increasing requirements with respect to their simple, efficient, precise, spatiotemporally controllable and non-invasive regulation in biomedicine and other research frontiers. Thanks the advantages of their unique properties, nanoparticles can not only directly block the pore sites or kinetics of ion channels through their tiny size effect, and perturb active voltage-gated ion channel by their charged surface, but they can also act as antennas to conduct or enhance external physical stimuli to achieve spatiotemporal, precise and efficient regulation of various ion channel activities (e.g. light-, mechanical-, and temperature-gated ion channels etc). So far, nanoparticles-mediated ion channel regulation has shown potential prospects in many biomedical fields at the interfaces of neuro- and cardiovascular modulation, physiological function regeneration and tumor therapy et al. Towards such important fields, in this typical review, we specifically outline the latest studies of different types of ion channels and their activities relevant to the diseases. In addition, the different types of stimulation responsive nanoparticles, their interaction modes and targeting strategies towards the plasma membrane ion channels will be systematically summarized. More importantly, the ion channel regulatory methods mediated by functional nanoparticles and their bioapplications associated with physiological modulation and therapeutic development will be discussed. Last but not least, current challenges and future perspectives in this field will be covered as well.
Collapse
Affiliation(s)
- Qiwen Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weisheng Zhu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyin Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Liu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zhijun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Bengang Xing
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
33
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
34
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
35
|
Selenized Polymer-Lipid Hybrid Nanoparticles for Oral Delivery of Tripterine with Ameliorative Oral Anti-Enteritis Activity and Bioavailability. Pharmaceutics 2023; 15:pharmaceutics15030821. [PMID: 36986681 PMCID: PMC10059782 DOI: 10.3390/pharmaceutics15030821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The oral delivery of insoluble and enterotoxic drugs has been largely plagued by gastrointestinal irritation, side effects, and limited bioavailability. Tripterine (Tri) ranks as the hotspot of anti-inflammatory research other than inferior water-solubility and biocompatibility. This study was intended to develop selenized polymer-lipid hybrid nanoparticles loading Tri (Se@Tri-PLNs) for enteritis intervention by improving its cellular uptake and bioavailability. Se@Tri-PLNs were fabricated by a solvent diffusion-in situ reduction technique and characterized by particle size, ζ potential, morphology, and entrapment efficiency (EE). The cytotoxicity, cellular uptake, oral pharmacokinetics, and in vivo anti-inflammatory effect were evaluated. The resultant Se@Tri-PLNs were 123 nm around in particle size, with a PDI of 0.183, ζ potential of −29.70 mV, and EE of 98.95%. Se@Tri-PLNs exhibited retardant drug release and better stability in the digestive fluids compared with the unmodified counterpart (Tri-PLNs). Moreover, Se@Tri-PLNs manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy. The oral bioavailability of Tri-PLNs and Se@Tri-PLNs was up to 280% and 397% relative to Tri suspensions, respectively. Furthermore, Se@Tri-PLNs demonstrated more potent in vivo anti-enteritis activity, which resulted in a marked resolution of ulcerative colitis. Polymer-lipid hybrid nanoparticles (PLNs) enabled drug supersaturation in the gut and the sustained release of Tri to facilitate absorption, while selenium surface engineering reinforced the formulation performance and in vivo anti-inflammatory efficacy. The present work provides a proof-of-concept for the combined therapy of inflammatory bowel disease (IBD) using phytomedicine and Se in an integrated nanosystem. Selenized PLNs loading anti-inflammatory phytomedicine may be valuable for the treatment of intractable inflammatory diseases.
Collapse
|
36
|
Yan W, Rafieerad A, Alagarsamy KN, Saleth LR, Arora RC, Dhingra S. Immunoengineered MXene nanosystem for mitigation of alloantigen presentation and prevention of transplant vasculopathy. NANO TODAY 2023; 48:None. [PMID: 37187503 PMCID: PMC10181944 DOI: 10.1016/j.nantod.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 11/23/2022] [Indexed: 05/17/2023]
Abstract
MXenes are an emerging class of nanomaterials with significant potential for applications in nanomedicine. Amongst MXene technologies, titanium carbide (Ti3C2Tx) nanomaterials are the most mature and have received significant attention to tackle longstanding clinical challenges due to its tailored physical and material properties. Cardiac allograft vasculopathy is an aggressive form of atherosclerosis and a major cause of mortality among patients with heart transplants. Blood vessel endothelial cells (ECs) stimulate alloreactive T-lymphocytes to result in sustained inflammation. Herein, we report the first application of Ti3C2Tx MXene nanosheets for prevention of allograft vasculopathy. MXene nanosheets interacted with human ECs and downregulated the expression of genes involved in alloantigen presentation, and consequently reduced the activation of allogeneic lymphocytes. RNA-Seq analysis of lymphocytes showed that treatment with MXene downregulated genes responsible for transplant-induced T-cell activation, cell-mediated rejection, and development of allograft vasculopathy. In an in vivo rat model of allograft vasculopathy, treatment with MXene reduced lymphocyte infiltration and preserved medial smooth muscle cell integrity within transplanted aortic allografts. These findings highlight the potential of Ti3C2Tx MXene in treatment of allograft vasculopathy and inflammatory diseases.
Collapse
Affiliation(s)
- Weiang Yan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Rakesh C. Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
- Correspondence to: Institute of Cardiovascular Sciences St. Boniface Hospital Research Centre Department of Physiology and Pathophysiology Rady Faculty of Health Sciences, University of Manitoba, R-3028-2, 351 Tache Avenue, Winnipeg R2H2A6, Canada.
| |
Collapse
|
37
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
38
|
Wan L, Cao Y, Cheng C, Tang R, Wu N, Zhou Y, Xiong X, He H, Lin X, Jiang Q, Wang X, Guo X, Wang D, Ran H, Ren J, Zhou Y, Hu Z, Li P. Biomimetic, pH-Responsive Nanoplatforms for Cancer Multimodal Imaging and Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1784-1797. [PMID: 36580421 DOI: 10.1021/acsami.2c16667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT), by converting light to thermal energy, has become a novel and noninvasive technique for tumor thermal ablation in clinical practice. However, as a result of phagocytosis of reticuloendothelial cells, current photothermal agents (PTAs) derived from exogenous materials suffer from incompetent tumor targeting and brief internal circulation time. The resulting poor accumulation of PTAs in the target area severely reduces the efficacy of PTT. In addition, the potential toxicity of PTAs, excessive laser exposure, and possibilities of tumor recurrence and metastasis following PTT are still intractable problems that severely influence patients' quality of life. Herein, a biomimetic pH-responsive nanoprobe was prepared via cancer cell membrane coating polydopamine (PDA)-CaCO3 nanoparticles (CPCaNPs) for photoacoustic (PA)/ultrasonic (US)/thermal imaging-guided PTT. When CPCaNPs targeted and infiltrated into the tumor's acidic microenvironment, the decomposed CO2 bubbles from homologous targeting CPCaNPs enhanced ultrasonic (US) signals obviously. At the same time, the PDA of CPCaNPs not only performed efficient PTT of primary tumors but also generated photoacoustic (PA) signals. In addition, an immune checkpoint pathway blockade was combined, which inhibited tumor recurrence and metastasis significantly and improved the immunosuppressive microenvironment after PTT to a large extent. Thus, these proposed biomimetic pH-responsive CPCaNPs provide a promising strategy for precise PTT immunotherapy under the intelligent guidance of PA/US/thermal imaging and show great potential for clinical translation.
Collapse
Affiliation(s)
- Li Wan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Health Management (Physical Examination) Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuting Cao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chen Cheng
- Department of Ultrasound, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Nianhong Wu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ying Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xialin Xiong
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Hongye He
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaohong Lin
- Department of Ultrasound, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Qinqin Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoting Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xun Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yang Zhou
- Department of Ultrasound, The Third People's Hospital of Chengdu City, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Pan Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
39
|
Luo Y, Niu L, Wang Y, Wen P, Gong Y, Li C, Xu S. Experimental and theoretical evaluation of crystal facet exposure on the charge transfer and SERS activity of ZnO films. NANOSCALE 2022; 14:16220-16232. [PMID: 36281819 DOI: 10.1039/d2nr04476e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Semiconductors exhibit great potential as a surface enhanced Raman scattering (SERS) substrate due to their low cost, good stability and biocompatibility. However, the extensive application of semiconductors has been restricted by their intrinsically low SERS sensitivity. It is urgently required to design uniform metal oxide substrates with enhanced charge transfer and SERS activity. Herein, three facet-defined ({101̄0}, {0001} and {101̄1}) ZnO films were synthesized via an electrodeposition procedure with the assistance of KCl or ethylenediamine. According to the results, the ZnO films with {0001} and {101̄1} exposed facets exhibit appreciable SERS enhancement factors (EFs) of 1.6 × 104 and 2.8 × 104 for 4-nitrobenzenethiol (4-NBT), as well as a relatively low limit of detection (LOD) down to 1 × 10-6 M and 5 × 10-7 M, respectively. Simultaneously, the electrodeposited ZnO films deliver good repeatability and SERS stability, with relative standard deviation (RSD) less than 6% and 85.2% of their original activity retained after 40 days. Theoretical calculations verified that the {0001} and {101̄1} facets can transfer more electrons from ZnO to the molecules on account of their low facet-related electronic work functions, thus generating the noticeable improvement of SERS activity. The current study provides theoretical and technical support for the crystal facet engineering and property improvement of semiconductors.
Collapse
Affiliation(s)
- Yuwei Luo
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Lengyuan Niu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Yifan Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Peipei Wen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Yinyan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Can Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China.
| |
Collapse
|
40
|
Tsukamoto T, Fujita Y, Shimogami M, Kaneda K, Seto T, Mizukami K, Takei M, Isobe Y, Yasui H, Sato K. Inside-the-body light delivery system using endovascular therapy-based light illumination technology. EBioMedicine 2022; 85:104289. [PMID: 36208989 PMCID: PMC9669774 DOI: 10.1016/j.ebiom.2022.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Light-based therapies are promising for treating diseases including cancer, hereditary conditions, and protein-related disorders. However, systems, methods, and devices that deliver light deep inside the body are limited. This study aimed to develop an endovascular therapy-based light illumination technology (ET-BLIT), capable of providing deep light irradiation within the body. Methods The ET-BLIT system consists of a catheter with a single lumen as a guidewire and diffuser, with a transparent section at the distal end for thermocouple head attachment. The optical light diffuser alters the emission direction laterally, according to the optical fibre's nose-shape angle. If necessary, after delivering the catheter to the target position in the vessel, the diffuser is inserted into the catheter and placed in the transparent section in the direction of the target lesion. Findings ET-BLIT was tested in an animal model. The 690-nm near-infrared (NIR) light penetrated the walls of blood vessels to reach the liver and kidneys without causing temperature increase, vessel damage, or blood component alterations. NIR light transmittance from the diffuser to the detector within the organ or vessel was approximately 30% and 65% for the renal and hepatic arteries, respectively. Interpretation ET-BLIT can be potentially used in clinical photo-based medicine, as a far-out technology. ET-BLIT uses a familiar method that can access the whole body, as the basic procedure is comparable to that of endovascular therapy in terms of sequence and technique. Therefore, the use of the ET-BLIT system is promising for many light-based therapies that are currently in the research phase. Funding Supported by Programme for Developing Next-generation Researchers (Japan Science and Technology Agency); JSPS KAKENHI (18K15923, 21K07217); JST-CREST (JPMJCR19H2); JST-FOREST-Souhatsu (JPMJFR2017); The Uehara Memorial Foundation; Yasuda Memorial Medical Foundation; Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; Takahashi Industrial and Economic Research Foundation; AICHI Health Promotion Foundation; and Princess Takamatsu Cancer Research Fund.
Collapse
|
41
|
Galectin-3 binding protein stimulated IL-6 expression is impeded by antibody intervention in SARS-CoV-2 susceptible cell lines. Sci Rep 2022; 12:17047. [PMID: 36220879 PMCID: PMC9553085 DOI: 10.1038/s41598-022-20852-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022] Open
Abstract
COVID-19 is the global pandemic that affected our population in the past 2 years. Considerable research has been done to better understand the pathophysiology of this disease and to identify new therapeutic targets, especially for severe cases. Galectin-3 (Gal-3) is a receptor present at the surface of different cell types, namely epithelial and inflammatory cells, which has been described as a severity marker in COVID-19. The activation of Gal-3 through its binding protein (Gal-3BP) is directly linked to the production of pro-inflammatory cytokines that contribute for the cytokine storm (CS) observed in severe COVID-19 patients. Here, we show that D2, a recombinant fragment of the lectin-binding region of Gal-3BP was able to stimulate the expression of IL-6 in colon and lung epithelial cell lines in β-galactoside dependent manner. We further show that D2-induced IL-6 augmentation was reduced by the anti-Gal-3BP monoclonal antibody 1959. Our data confirm and extend prior findings of Gal-3BP mediated IL-6 induction, enlightening the potential of its antibody-mediated s blockage for the prevention and treatment of CS and severe disease in COVID-19 patients.
Collapse
|
42
|
Recent progress in two-dimensional nanomaterials for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
44
|
Zhang S, Zhang J, Fan X, Liu H, Zhu M, Yang M, Zhang X, Zhang H, Yu F. Ionizing Radiation-Induced Ferroptosis Based on Nanomaterials. Int J Nanomedicine 2022; 17:3497-3507. [PMID: 35966149 PMCID: PMC9364940 DOI: 10.2147/ijn.s372947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death (RCD), that is associated with peroxidative damage to cellular membranes. A promising therapeutic method is to target ferroptosis. Nanomaterial-induced ferroptosis attracts enormous attention. Nevertheless, there are still certain shortcomings in ferroptosis, such as inadequate triggered immunogenic cell death to suit clinical demands. Various investigations have indicated that ionizing radiation (IR) can further induce ferroptosis. Consequently, it is a potential strategy for cancer therapy that combines nanomaterials and IR to induce ferroptosis. Initially, we discuss various ferroptosis inducers based on nanomaterials in this review. Furthermore, mechanisms of IR-induced ferroptosis are briefly introduced. Ultimately, we assess the feasibility of combining nanomaterials with IR to induce ferroptosis, paving the way for future research.
Collapse
Affiliation(s)
- Shenghong Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hanhui Liu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Clinical College, Anhui Medical University, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Fei Yu, Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China, Tel +86-021-66302721, Fax +86-021-66300588, Email
| |
Collapse
|
45
|
Wang Z, Cheng H, Sheng Y, Chen Z, Zhu X, Ren J, Zhang X, Lv L, Zhang H, Zhou J, Ding Y. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: Multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release. Biomaterials 2022; 287:121629. [PMID: 35724541 DOI: 10.1016/j.biomaterials.2022.121629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Biofunctional surface-modification surpassed critical limitation of graphene oxide (GO) in biocompatibility and drug delivery efficiency, contributing to versatile biomedical applications. Here, a protein corona-bridged GO nanoplatform with high drug loading, longstanding hyperthermia, and controllable drug release, was engineered for amplified tumor therapeutic benefits. Structurally, GO surface was installed with phenylboronic acid (PBA) layer, on which iRGD conjugated apolipoprotein A-I (iRGD-apoA-I) was coordinated via boron electron-deficiency, to form the sandwich-like GO nanosheet (iAPG). The GO camouflaging by iRGD-apoA-I corona provided multimodal high doxorubicin (DOX) loading by π-π stacking and coordination, and generated a higher photothermal transformation efficiency simultaneously. In vitro studies demonstrated that iAPG significantly improved drug penetration and internalization, then achieved tumor-targeted DOX release through near-infrared (NIR) controlled endo/lysosome disruption. Moreover, iAPG mediated site-specific drug shuttling to produce a 3.53-fold enhancement of tumor drug-accumulation compared to the free DOX in vivo, and induced deep tumor penetration dramatically. Primary tumor ablation and spontaneous metastasis inhibition were further demonstrated with negligible side effects under optimal NIR. Taken together, our work provided multifunctional protein corona strategy to inorganic nanomaterials toward advantageous biomedical applications.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hao Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yu Sheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zongkai Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiaohong Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianye Ren
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Xiangze Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingyu Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
46
|
Wang R, He Z, Wang JL, Liu JY, Liu JW, Yu SH. Manipulating Nanowire Structures for an Enhanced Broad-Band Flexible Photothermoelectric Photodetector. NANO LETTERS 2022; 22:5929-5935. [PMID: 35833705 DOI: 10.1021/acs.nanolett.2c01957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photothermoelectric effect, directly converting light energy into electrical energy, shows promising prospects in self-powered broad-band optical detection, which can extend to various applications, such as sensing, optoelectronic communications, and wide-temperature-range measurements. However, the low photosensitivity, narrow-band response, and rapid performance degeneration under continuous illumination restrict its broad application. Herein, we propose a simple bottom-up strategy to manipulate nanowires (NWs) into a well-defined multilayer Te-Ag2Te-Ag NW film, resulting in a high-performance photothermoelectric photodetector with a broad-band responsivity (4.1 V/W), large detectivity (944 MHz1/2 W-1), and fast response speed (0.4-0.7 s from 365 to 1200 nm). In addition, the ultrathin structure endows this device with slow and weak transverse heat conduction, enabling a stable voltage without an obvious degeneration over 1500 s. The highly anisotropic arrangement of NWs gives this device a prominent polarization sensitivity. Prospectively, this hierarchically designed nanowire film provides a promising pathway toward engineering photodetectors with high performance.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhen He
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jin-Long Wang
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jia-Yang Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jian-Wei Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
47
|
Deng YQ, Wang ZX, Liu X, Wang YY, Chen Q, Li ZL, Zheng BS, Ye Q, Gong JS, Zhu GQ, Cao TS, Situ WY, Qin CF, Xie H, Zhang WY. Ångstrom-scale silver particles potently combat SARS-CoV-2 infection by suppressing the ACE2 expression and inflammatory responses. J Mater Chem B 2022; 10:5454-5464. [PMID: 35786741 DOI: 10.1039/d2tb00336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has become a severe global public health event, and the development of protective and therapeutic strategies is urgently needed. Downregulation of angiotensin converting enzyme 2 (ACE2; one of the important SARS-CoV-2 entry receptors) and aberrant inflammatory responses (cytokine storm) are the main targets to inhibit and control COVID-19 invasion. Silver nanomaterials have well-known pharmaceutical properties, including antiviral, antibacterial, and anticancer properties. Here, based on a self-established metal evaporation-condensation-size graded collection system, smaller silver particles reaching the Ångstrom scale (AgÅPs) were fabricated and coated with fructose to obtain a stabilized AgÅP solution (F-AgÅPs). F-AgÅPs potently inactivated SARS-CoV-2 and prevented viral infection. Considering the application of anti-SARS-CoV-2, a sterilized F-AgÅP solution was produced via spray formulation. In our model, the F-AgÅP spray downregulated ACE2 expression and attenuated proinflammatory factors. Moreover, F-AgÅPs were found to be rapidly eliminated to avoid respiratory and systemic toxicity in this study as well as our previous studies. This work presents a safe and potent anti-SARS-CoV-2 agent using an F-AgÅP spray.
Collapse
Affiliation(s)
- Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Xin Liu
- Institute of Virology and AIDS Research, Key laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Zhao-Long Li
- Institute of Virology and AIDS Research, Key laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Bai-Song Zheng
- Institute of Virology and AIDS Research, Key laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Tian-Shu Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Wei-Yi Situ
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. .,Angmedicine Research Center of Central South University, Changsha, Hunan 410008, China.,Xiangya Hospital of Central South University-Amcan Pharmaceutical Biotechnology Co. Ltd. Collaborating Research Center, Changsha, Hunan 410008, China
| | - Wen-Yan Zhang
- Institute of Virology and AIDS Research, Key laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
48
|
Pan W, Liu C, Li Y, Yang Y, Li W, Feng C, Li L. Ultrathin tellurium nanosheets for simultaneous cancer thermo-chemotherapy. Bioact Mater 2022; 13:96-104. [PMID: 35224294 PMCID: PMC8843971 DOI: 10.1016/j.bioactmat.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Wen Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| | - Yang Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China
| | - Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
- Corresponding author. Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Corresponding author.
| |
Collapse
|
49
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|