1
|
Wang W, Zhao Z, Zhang Z, Wu Z, Zhang Y, Wang K, Dai M, Mao C, Wan M. Delivery of small interfering RNA by hydrogen sulfide-releasing nanomotor for the treatment of Parkinson's disease. J Control Release 2025; 377:648-660. [PMID: 39613107 DOI: 10.1016/j.jconrel.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Small interfering RNA (siRNA) that inhibit the formation of α-synuclein (α-syn) aggregates is considered very promising therapeutic agents for the treatment of Parkinson's disease (PD). However, the low stability and the difficulty in crossing the blood-brain barrier (BBB) of free siRNA has severely limited their therapeutic effects. Here, we developed an H2S donor nanomotor that can encapsulate siRNA, which can both protect the activity of siRNA and help siRNA to be effectively targeted to the mitochondria of damaged neuronal cells, in order to promote the effective therapeutic effect of siRNA for PD. Specifically, the cysteine monomer-modified polyethylene glycol (PEG-Cys) and the amphiphilic ionic monomer 2-methacryloyloxyethylphosphorylcholine (MPC) that can effectively penetrate the BBB, were selected to form a polymer protective layer on the surface of siRNA in a free-radical polymerization reaction, to construct the H2S donor nanomotor encapsulating siRNA (PCM@siRNA). Among them, MPC can help PCM@siRNA to break through the BBB by interacting with nicotinic acetylcholine receptor or choline transporter on the surface of cerebrovascular endothelial cells, while PEG-Cys can undergo chemotactic effect by specifically recognizing 3-thiopyruvate thioltransferase and thus achieve effective targeting of damaged mitochondria in neuronal cells. PCM@siRNA that reached neuronal cells can not only be utilized to play the role of silencing the α-syn gene to inhibit the formation of α-syn aggregates by siRNA, but also to degrade the formed α-syn aggregates by using the H2S produced by its chemotaxis process to achieve an effective treatment for PD. This therapeutic modality, which can simultaneously inhibit the formation of α-syn aggregates and promote their degradation, has the therapeutic potential to reverse the pathological state of α-syn, which is important for the treatment of PD.
Collapse
Affiliation(s)
- Wenjing Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhuolin Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yao Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Keheng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Xie X, Nan H, Peng J, Zeng K, Wang HH, Huang Y, Nie Z. Hydrogen Sulfide-Triggered Artificial DNAzyme Switches for Precise Manipulation of Cellular Functions. Angew Chem Int Ed Engl 2024; 63:e202410380. [PMID: 39327234 DOI: 10.1002/anie.202410380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
The development of synthetic molecular tools responsive to biological cues is crucial for advancing targeted cellular regulation. A significant challenge is the regulation of cellular processes in response to gaseous signaling molecules such as hydrogen sulfide (H2S). To address this, we present the design of Gas signaling molecule-Responsive Artificial DNAzyme-based Switches (GRAS) to manipulate cellular functions via H2S-sensitive synthetic DNAzymes. By incorporating stimuli-responsive moieties to the phosphorothioate backbone, DNAzymes are strategically designed with H2S-responsive azide groups at cofactor binding locations within the catalytic core region. These modifications enable their activation through H2S-reducing decaging, thereby initiating substrate cleavage activity. Our approach allows for the flexible customization of various DNAzymes to regulate distinct cellular processes in diverse scenarios. Intracellularly, the enzymatic activity of GRAS promotes H2S-induced cleavage of specific mRNA sequences, enabling targeted gene silencing and inducing apoptosis in cancer cells. Moreover, integrating GRAS with dynamic DNA assembly allows for grafting these functional switches onto cell surface receptors, facilitating H2S-triggered receptor dimerization. This extracellular activation transmits signals intracellularly to regulate cellular behaviors such as migration and proliferation. Collectively, synthetic switches are capable of rewiring cellular functions in response to gaseous cues, offering a promising avenue for advanced targeted cellular engineering.
Collapse
Affiliation(s)
- Xuan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Hexin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Jialong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Kaiqiang Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
3
|
Wei M, Liu Y, Li D, Wang X, Wang X, Li Y, Yan Z, Zhang H. Celastrol alleviates secondary brain injury following intracerebral haemorrhage by inhibiting neuronal ferroptosis and blocking blood-brain barrier disruption. IBRO Neurosci Rep 2024; 17:161-176. [PMID: 39220228 PMCID: PMC11362646 DOI: 10.1016/j.ibneur.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Background Following recent research advancements, an increasing level of evidence had been published to indicate that celastrol exerted a therapeutic effect on a range of nervous system diseases. This study therefore aimed to investigate the potential involvement of celastrol on ferroptosis and the blood-brain barrier disruption in intracerebral haemorrhage. Methods We established a rat intracerebral haemorrhage and adrenal pheochromocytoma cell (PC12) OxyHb models using an ACSL4 overexpression vector. Ferroptosis-related indices were assessed using corresponding assay kits, and immunofluorescence and flow cytometry were used to measure reactive oxygen species (ROS) levels. Additionally, quantitative PCR (qPCR) and western blot analyses were conducted to evaluate the expression of key proteins and elucidate the role of celastrol in intracerebral haemorrhage (ICH). Results Celastrol significantly improved neurological function scores, blood-brain barrier integrity, and brain water content in rats with ICH. Moreover, subsequent analysis of ferroptosis-related markers, such as Fe2+, ROS, MDA, and SOD, suggested that celastrol exerted a protective effect against the oxidative damage induced by ferroptosis in ICH rats and cells. Furthermore, Western blotting indicated that celastrol attenuated ferroptosis by modulating the expression levels of key proteins, including acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and anti-transferrin receptor 1 (TFR1) both in vitro and in vivo. ACSL4 overexpression attenuated the neuroprotective effects of celastrol on ICH in vitro. Molecular docking analysis revealed that celastrol interacted with ACSL4 via the GLU107, GLN109, ASN111, and LYS357 binding sites. Conclusions Celastrol exerted antioxidant properties and aids in neurological recovery after stroke by suppressing ACSL4 expression during ferroptosis. As such, this drug represented a promising pharmaceutical candidate for the treatment of ICH.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yi Liu
- Department of Ultrasound, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dongsheng Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xingdong Wang
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaodong Wang
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhengcun Yan
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- Department of Neurosurgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Kumar R, Vitvitsky V, Sethaudom A, Singhal R, Solanki S, Alibeckoff S, Hiraki HL, Bell HN, Andren A, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. Nat Chem Biol 2024; 20:1294-1304. [PMID: 38509349 PMCID: PMC11584973 DOI: 10.1038/s41589-024-01583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Apichaya Sethaudom
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Alibeckoff
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Akaike T, Morita M, Ogata S, Yoshitake J, Jung M, Sekine H, Motohashi H, Barayeu U, Matsunaga T. New aspects of redox signaling mediated by supersulfides in health and disease. Free Radic Biol Med 2024; 222:539-551. [PMID: 38992395 DOI: 10.1016/j.freeradbiomed.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Oxygen molecules accept electrons from the respiratory chain in the mitochondria and are responsible for energy production in aerobic organisms. The reactive oxygen species formed via these oxygen reduction processes undergo complicated electron transfer reactions with other biological substances, which leads to alterations in their physiological functions and cause diverse biological and pathophysiological consequences (e.g., oxidative stress). Oxygen accounts for only a small proportion of the redox reactions in organisms, especially under aerobic or hypoxic conditions but not under anaerobic and hypoxic conditions. This article discusses a completely new concept of redox biology, which is governed by redox-active supersulfides, i.e., sulfur-catenated molecular species. These species are present in abundance in all organisms but remain largely unexplored in terms of redox biology and life science research. In fact, accumulating evidence shows that supersulfides have extensive redox chemical properties and that they can be readily ionized or radicalized to participate in energy metabolism, redox signaling, and oxidative stress responses in cells and in vivo. Thus, pharmacological intervention and medicinal modulation of supersulfide activities have been shown to benefit the regulation of disease pathogenesis as well as disease control.
Collapse
Affiliation(s)
- Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Max-Planck-Institute for Polymer Research, Mainz, 55128, Germany.
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, 010-8543, Japan.
| |
Collapse
|
7
|
Shangguan J, Wu T, Tian L, Liu Y, Zhu L, Liu R, Zhu J, Shi L, Zhao M, Ren A. Hydrogen sulfide maintains mitochondrial homeostasis and regulates ganoderic acids biosynthesis by SQR under heat stress in Ganoderma lucidum. Redox Biol 2024; 74:103227. [PMID: 38865903 PMCID: PMC11215418 DOI: 10.1016/j.redox.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Tao Wu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Li Tian
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yueqian Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
8
|
Yu S, Cao Z, Cai F, Yao Y, Chang X, Wang X, Zhuang H, Hua ZC. ADT-OH exhibits anti-metastatic activity on triple-negative breast cancer by combinatorial targeting of autophagy and mitochondrial fission. Cell Death Dis 2024; 15:463. [PMID: 38942765 PMCID: PMC11213877 DOI: 10.1038/s41419-024-06829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
High basal autophagy and enhanced mitochondrial fission in triple-negative breast cancer (TNBC) cells support cell migration and promote plasticity of cancer cell metabolism. Here, we suggest a novel combination therapy approach for the treatment of TNBC that targets Drp1-mediated mitochondrial fission and autophagy pathways. Hydrogen sulfide (H2S) mediates a myriad of biological processes, including autophagy and mitochondrial function. In this study, we demonstrated that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most widely utilized sustained-release H2S donors, effectively suppresses metastasis of TNBC cells in the absence of proliferation inhibition in vitro and in vivo. ADT-OH treatment ameliorated autophagy flux by suppressing autophagosome formation and induced mitochondrial elongation through decreasing expression of dynamin-related protein 1 (Drp1) and increasing expression of mitochondrial fusion protein (Mfn2). At the same time, ADT-OH downregulated mitophagy flux and inhibited mitochondrial function, eventually leading to the inhibition of migration and invasion in TNBC cells. In vivo, intraperitoneal administration of ADT-OH revealed a potent anti-metastatic activity in three different animal models, the MDA-MB-231 orthotopic xenograft model, the 4T1-Luci orthotopic model and the 4T1-Luci tail vein metastasis model. However, ADT-OH has an extremely low water solubility, which is a significant barrier to its effectiveness. Thus, we demonstrated that the solubility of ADT-OH in water can be improved significantly by absorption with hydroxypropyl-β-cyclodextrin (CD). Remarkably, the obtained CD-ADT-OH demonstrated superior anti-cancer effect to ADT-OH in vivo. Altogether, this study describes a novel regulator of mammalian mitochondrial fission and autophagy, with potential utility as an experimental therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P. R. China.
| |
Collapse
|
9
|
Kanemaru E, Shimoda K, Marutani E, Morita M, Miranda M, Miyazaki Y, Sinow C, Sharma R, Dong F, Bloch DB, Akaike T, Ichinose F. Exclusion of sulfide:quinone oxidoreductase from mitochondria causes Leigh-like disease in mice by impairing sulfide metabolism. J Clin Invest 2024; 134:e170994. [PMID: 38870029 PMCID: PMC11290971 DOI: 10.1172/jci170994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogen sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Metronidazole administration and a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kakeru Shimoda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maria Miranda
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Sinow
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fangcong Dong
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Li X, Liu W, Jiang G, Lian J, Zhong Y, Zhou J, Li H, Xu X, Liu Y, Cao C, Tao J, Cheng J, Zhang JH, Chen G. Celastrol Ameliorates Neuronal Mitochondrial Dysfunction Induced by Intracerebral Hemorrhage via Targeting cAMP-Activated Exchange Protein-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307556. [PMID: 38482725 PMCID: PMC11109624 DOI: 10.1002/advs.202307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Indexed: 05/23/2024]
Abstract
Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University168 Xianlin AvenueNanjing210023China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Xingshun Xu
- Department of NeurologyThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhou215123China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - John H Zhang
- Department of Physiology and PharmacologySchool of MedicineLoma Linda UniversityLoma LindaCA92350USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| |
Collapse
|
11
|
Li N, Xue W, Wang C, Fan X, Yu J. The double face of licorice-kansui herb pair: Cure or curse, depending on the combining ratio and mediated by hydrogen sulfide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:155692. [PMID: 39631294 DOI: 10.1016/j.phymed.2024.155692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The safety and efficacy of herbal medicines including traditional Chinese medicine (TCM) has been one of the major scientific problems in the medical field. In TCM prescriptions, reasonable herbal combinations bring stronger efficacy and low risk of toxicity. However, the rules and mechanisms for herbal combinations are far from complete understood yet. PURPOSE In this study, we investigated the efficacy-toxicity transformation of the licorice-kansui herbal combination under clinical equivalent doses, and study the inside mechanisms. STUDY DESIGN Licorice-kansui or glycyrrhetinic acid-kansuinine A combinations of different combining ratio were given to malignant pleural effusion mice as well as the IEC-6 and S-180 cells. METHODS The therapeutic and toxic effects were characterized by various indicators; the chemical changes were analyzed by LC-MS method; the role of H2S was also studied through its inhibitors. RESULTS Low-proportion of licorice combined with kansui exerted comparable therapeutic effects to cisplatin, by reducing pleural effusion, promoting respiration, increasing urine volume, protecting lung tissue, and inhibiting tumor cells by inducing oxidative stress and apoptosis. On the other hand, high-proportion of licorice combined with kansui had poor therapeutic effect but induced oxidative stress, inflammation and tissue damages, especially to the small intestine. This efficacy-toxicity transformation was also reproduced by the glycyrrhetinic acid-kansuinine A combination on IEC-6 epithelial cells and S-180 tumor cells. The transformation was not simply caused by the in-solution solubilization effects of licorice during co-decocted with kansui. Furthermore, the therapeutic and toxic effects were both highly related to the hydrogen sulfide level and its anabolic enzymes, cystathionine-gamma-lyase (CSE) or cystathionine beta-synthase (CBS), either in tissues or in-vitro cells. By inhibiting CSE or CBS, all the therapeutic or toxic effects were abolished both in-vivo and in-vitro. Moreover, the intestinal sulfide-reducing bacteria Desulfovibrio and body drug-metabolism were also important variants influencing the efficacy-toxicity transformation of licorice-kansui herbal combination. CONCLUSION This study comprehensively uncovered the rules of licorice-kansui herbal combination, and for the first time confirmed that H2S plays a crucial role in mediating its efficacy-toxicity transformation. Our study not only supports the reasonable clinical usage of these two herbs but also provide ideas and methods for the study of other herb pairs in TCM prescriptions.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Wen Xue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chaoping Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiuhe Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jingao Yu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
12
|
Sprenger HG, Mittenbühler MJ, Sun Y, Van Vranken JG, Schindler S, Jayaraj A, Khetarpal SA, Vargas-Castillo A, Puszynska AM, Spinelli JB, Armani A, Kunchok T, Ryback B, Seo HS, Song K, Sebastian L, O'Young C, Braithwaite C, Dhe-Paganon S, Burger N, Mills EL, Gygi SP, Arthanari H, Chouchani ET, Sabatini DM, Spiegelman BM. Ergothioneine boosts mitochondrial respiration and exercise performance via direct activation of MPST. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588849. [PMID: 38645260 PMCID: PMC11030429 DOI: 10.1101/2024.04.10.588849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.
Collapse
|
13
|
Chen X, Wang H, Wu C, Li X, Huang X, Ren Y, Pu Q, Cao Z, Tang X, Ding BS. Endothelial H 2S-AMPK dysfunction upregulates the angiocrine factor PAI-1 and contributes to lung fibrosis. Redox Biol 2024; 70:103038. [PMID: 38266576 PMCID: PMC10811458 DOI: 10.1016/j.redox.2024.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Dysfunction of the vascular angiocrine system is critically involved in regenerative defects and fibrosis of injured organs. Previous studies have identified various angiocrine factors and found that risk factors such as aging and metabolic disorders can disturb the vascular angiocrine system in fibrotic organs. One existing key gap is what sense the fibrotic risk to modulate the vascular angiocrine system in organ fibrosis. Here, using human and mouse data, we discovered that the metabolic pathway hydrogen sulfide (H2S)-AMP-activated protein kinase (AMPK) is a sensor of fibrotic stress and serves as a key mechanism upregulating the angiocrine factor plasminogen activator inhibitor-1 (PAI-1) in endothelial cells to participate in lung fibrosis. Activation of the metabolic sensor AMPK was inhibited in endothelial cells of fibrotic lungs, and AMPK inactivation was correlated with enriched fibrotic signature and reduced lung functions in humans. The inactivation of endothelial AMPK accelerated lung fibrosis in mice, while the activation of endothelial AMPK with metformin alleviated lung fibrosis. In fibrotic lungs, endothelial AMPK inactivation led to YAP activation and overexpression of the angiocrine factor PAI-1, which was positively correlated with the fibrotic signature in human fibrotic lungs and inhibition of PAI-1 with Tiplaxtinin mitigated lung fibrosis. Further study identified that the deficiency of the antioxidative gas metabolite H2S accounted for the inactivation of AMPK and activation of YAP-PAI-1 signaling in endothelial cells of fibrotic lungs. H2S deficiency was involved in human lung fibrosis and H2S supplement reversed mouse lung fibrosis in an endothelial AMPK-dependent manner. These findings provide new insight into the mechanism underlying the deregulation of the vascular angiocrine system in fibrotic organs.
Collapse
Affiliation(s)
- Xiangqi Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojuan Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yafeng Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery, National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, NHC Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
An Y, Li L, Li L, Sun Y, Li B, Wang P. Peptide-based probe for colorimetric and fluorescent detection of Cu 2+ and S 2- in environmental and biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133192. [PMID: 38070265 DOI: 10.1016/j.jhazmat.2023.133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Pollution caused by Copper and hydrogen sulfide pollution has severe adverse effects on the environment and organisms. Real-time, fast and accurate monitoring of Cu2+ and S2- faces serious challenges. In this study, we designed a novel biosensor and synthesized it by mimicking the structure of the main Cu(II)-binding site on bovine serum albumin. As a peptide-based sensor, FGGH (FITC-Gly-Gly-His-NH2) can perform the sequential detection of Cu2+ and S2- by fluorescence and colorimetry. The high water solubility and selectivity make it suitable for monitoring Cu2+ and S2- in environmental water samples with high sensitivity; its limit of detection (LOD) is as low as 1.42 nM for Cu2+ and 22.2 nM for S2-. The paper-based sensing platform of this probe was found to be a promising tool for the on-site visualization of real-time quantitative analysis of Cu2+ and S2- due to its rapid response and recyclable detection characteristics. Additionally, FGGH was successfully used to image Cu2+ and S2- in living cells and zebrafish models with adequate fluorescence stability and low cytotoxicity, providing the first visual evidence of the effect of the interactions between Cu2+ and S2- on the redox homeostasis of organisms.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Linyu Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
15
|
Li K, Uyanga VA, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Allicin Promotes Glucose Uptake by Activating AMPK through CSE/H 2S-Induced S-Sulfhydration in a Muscle-Fiber Dependent Way in Broiler Chickens. Mol Nutr Food Res 2024; 68:e2300622. [PMID: 38339885 DOI: 10.1002/mnfr.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/12/2024]
Abstract
SCOPE Allicin, a product of enzymatic reaction when garlic is injured, plays an important role in maintaining glucose homeostasis in mammals. However, the effect of allicin on glucose homeostasis in the state of insulin resistance remains to be elucidated. This study investigates the effect of allicin on glucose metabolism using different muscle fibers in a chicken model. METHODS AND RESULTS Day-old male Arbor Acres broilers are randomly divided into three groups and fed a basal diet supplemented with 0, 150, or 300 mg kg-1 allicin for 42 days. Results show that allicin improves the zootechnical performance of broilers at the finishing stage. The glucose loading test (2 g kg-1 body mass) indicates the regulatory role of allicin on glucose homeostasis. In vitro results demonstrate allicin increases glutathione (GSH) level and the expression of cystathionine γ lyase (CSE), leading to endogenous hydrogen sulfide (H2S) production in M. pectoralis major (PM) muscle-derived myotubes. Allicin stimulates adenosine monophosphate-activated protein kinase (AMPK) S-sulfhydration and AMPK phosphorylation to promote glucose uptake, which is suppressed in the presence of d,l-propargylglycine (PAG, a CSE inhibitor). CONCLUSION This study demonstrates that allicin induces AMPK S-sulfhydration and AMPK phosphorylation to promote glucose uptake via the CSE/H2S system in a muscle fiber-dependent manner.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Victoria A Uyanga
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271000, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
16
|
Cai F, Li D, Xie Y, Wang X, Ma H, Xu H, Cheng J, Zhuang H, Hua ZC. Sulfide:quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells. Redox Biol 2024; 69:102973. [PMID: 38052107 PMCID: PMC10746537 DOI: 10.1016/j.redox.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Ferroptosis is iron-dependent and regulates necrosis caused by lipid peroxidation and mitochondrial damage. Recent evidence has revealed an emerging role for ferroptosis in the pathophysiology of acute kidney injury (AKI). Sulfide:quinone oxidoreductase (SQOR) is a mitochondrial inner membrane protein highly expressed in the renal cortex. However, the effects of SQOR on ferroptosis and AKI have not been elucidated. In this study, we evaluated the effects of SQOR in several AKI models. We observed a rapid decrease in SQOR expression after cisplatin stimulation in both in vivo and in vitro models. SQOR-deletion mice exhibit exacerbated kidney impairment and ferroptosis in renal tubular epithelial cells following cisplatin injury. Additionally, our results showed that the overexpression of SQOR or ADT-OH (the slow-releasing H2S donor) preserved renal function in the three AKI mouse models. These effects were evidenced by lower levels of serum creatinine (SCr), blood urea nitrogen (BUN), renal neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Importantly, SQOR knockout significantly aggravates cisplatin-induced ferroptosis by promoting mitochondrial dysfunction in renal tubular epithelial cells (RTECs). Moreover, online database analysis combined with our study revealed that SYVN1, an upregulated E3 ubiquitin ligase, may mediate the ubiquitin-mediated degradation of SQOR in AKI. Consequently, our results suggest that SYVN1-mediated ubiquitination degradation of SQOR may induce mitochondrial dysfunction in RTECs, exacerbating ferroptosis and thereby promoting the occurrence and development of AKI. Hence, targeting the SYVN1-SQOR axis could be a potential therapeutic strategy for AKI treatment.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China; School of Biopharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Dangran Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yawen Xie
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hailin Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, PR China.
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China; School of Biopharmacy, China Pharmaceutical University, Nanjing, PR China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, PR China; Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
17
|
Kuang X, Chen S, Ye Q. The Role of Histone Deacetylases in NLRP3 Inflammasomesmediated Epilepsy. Curr Mol Med 2024; 24:980-1003. [PMID: 37519210 DOI: 10.2174/1566524023666230731095431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Epilepsy is one of the most common brain disorders that not only causes death worldwide, but also affects the daily lives of patients. Previous studies have revealed that inflammation plays an important role in the pathophysiology of epilepsy. Activation of inflammasomes can promote neuroinflammation by boosting the maturation of caspase-1 and the secretion of various inflammatory effectors, including chemokines, interleukins, and tumor necrosis factors. With the in-depth research on the mechanism of inflammasomes in the development of epilepsy, it has been discovered that NLRP3 inflammasomes may induce epilepsy by mediating neuronal inflammatory injury, neuronal loss and blood-brain barrier dysfunction. Therefore, blocking the activation of the NLRP3 inflammasomes may be a new epilepsy treatment strategy. However, the drugs that specifically block NLRP3 inflammasomes assembly has not been approved for clinical use. In this review, the mechanism of how HDACs, an inflammatory regulator, regulates the activation of NLRP3 inflammasome is summarized. It helps to explore the mechanism of the HDAC inhibitors inhibiting brain inflammatory damage so as to provide a potential therapeutic strategy for controlling the development of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College,Haikou, Hainan, 570311, China
| | - Shuang Chen
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 430022, Hubei, China
| | - Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
18
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
19
|
Fu S, Yang B, Gao Y, Qiu Y, Sun N, Li Z, Feng S, Xu Y, Zhang J, Luo Z, Han X, Miao J. A critical role for host-derived cystathionine-β-synthase in Staphylococcus aureus-induced udder infection. Free Radic Biol Med 2024; 210:13-24. [PMID: 37951283 DOI: 10.1016/j.freeradbiomed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Wu L, Liu Y, Zeng W, Ishigaki Y, Zhou S, Wang X, Sun Y, Zhang Y, Jiang X, Suzuki T, Ye D. Smart Lipid Nanoparticle that Remodels Tumor Microenvironment for Activatable H 2S Gas and Photodynamic Immunotherapy. J Am Chem Soc 2023; 145:27838-27849. [PMID: 38059465 DOI: 10.1021/jacs.3c11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Hydrogen sulfide (H2S) has shown promise for gas therapy. However, it is still controversial whether H2S can remodel the tumor microenvironment (TME) and induce robust antitumor immunity. Here, a tumor-targeting and TME-responsive "smart" lipid nanoparticle (1-JK-PS-FA) is presented, which is capable of delivering and releasing H2S specifically in tumor tissues for on-demand H2S gas and photodynamic immunotherapy. 1-JK-PS-FA enables a burst release of H2S in the acidic TME, which promptly reduces the embedded organic electrochromic materials and consequently switches on near-infrared fluorescence and photodynamic activity. Furthermore, we found that high levels of H2S can reprogram the TME by reducing tumor interstitial fluid pressure, promoting angiogenesis, increasing vascular permeability, ameliorating hypoxia, and reducing immunosuppressive conditions. This leads to increased tumor uptake of 1-JK-PS-FA, thereby enhancing PDT efficacy and eliciting strong immunogenic cell death during 808 nm laser irradiation. Therefore, 1-JK-PS-FA permits synergistic H2S gas and photodynamic immunotherapy, effectively eradicating orthotopic breast tumors and preventing tumor metastasis and recurrence. This work showcases the capacity of H2S to reprogram the TME to enhance H2S gas and immunotherapy.
Collapse
Affiliation(s)
- Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yili Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo 060-0810, Japan
| | - Sensen Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingxing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiqun Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, Sapporo 060-0810, Japan
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Atef Y, Kinoshita K, Ichihara Y, Ushida K, Hirata Y, Kurauchi Y, Seki T, Katsuki H. Therapeutic effect of allicin in a mouse model of intracerebral hemorrhage. J Pharmacol Sci 2023; 153:208-214. [PMID: 37973218 DOI: 10.1016/j.jphs.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Natural compounds with sulfur moiety produce various biological actions that may be beneficial for the therapies of several devastative disorders of the central nervous system. Here we investigated potential therapeutic effect of allicin, an organosulfur compound derived from garlic, in a mouse model of intracerebral hemorrhage (ICH) based on intrastriatal collagenase injection. Daily intraperitoneal administration of allicin (50 mg/kg) from 3 h after induction of ICH afforded neuroprotective effects, as evidenced by the increase of surviving neurons in the hematoma, reduction of axonal transport impairment, and prevention of axon tract injury. In addition, allicin inhibited accumulation of activated microglia/macrophages around the hematoma and infiltration of neutrophils within the hematoma. Allicin also suppressed ICH-induced mRNA upregulation of pro-inflammatory factors such as interleukin 6 and C-X-C motif ligand 2 in the brain, suggesting its anti-inflammatory effect. Moreover, ICH-induced increase of malondialdehyde as well as decrease of total glutathione in the brain was attenuated by allicin. Finally, allicin-treated mice showed better recovery of sensorimotor functions after ICH than vehicle-treated mice. These results indicate that allicin produces a therapeutic effect on ICH pathology via alleviation of neuronal damage, inflammatory responses and oxidative stress in the brain.
Collapse
Affiliation(s)
- Yara Atef
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
22
|
Frusciante MR, Signori MF, Parmeggiani B, Grings M, Pramio J, Cecatto C, de Andrade Silveira J, Aubin MR, Santos LA, Paz AH, Wajner M, Leipnitz G. Disruption of Bioenergetics in the Intestine of Wistar Rats Caused by Hydrogen Sulfide and Thiosulfate: A Potential Mechanism of Chronic Hemorrhagic Diarrhea in Ethylmalonic Encephalopathy. Cell Biochem Biophys 2023; 81:683-695. [PMID: 37589888 DOI: 10.1007/s12013-023-01161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Ethylmalonic encephalopathy (EE) is a severe inherited metabolic disorder that causes tissue accumulation of hydrogen sulfide (sulfide) and thiosulfate in patients. Although symptoms are predominantly neurological, chronic hemorrhagic diarrhea associated with intestinal mucosa abnormalities is also commonly observed. Considering that the pathophysiology of intestinal alterations in EE is virtually unknown and that sulfide and thiosulfate are highly reactive molecules, the effects of these metabolites were investigated on bioenergetic production and transfer in the intestine of rats. We observed that sulfide reduced NADH- and FADH2-linked mitochondrial respiration in the intestine, which was avoided by reduced glutathione (GSH) but not by melatonin. Thiosulfate did not change respiration. Moreover, both metabolites markedly reduced the activity of total, cytosolic and mitochondrial isoforms of creatine kinase (CK) in rat intestine. Noteworthy, the addition of GSH but not melatonin, apocynin, and Trolox (hydrosoluble vitamin E) prevented the change in the activities of total CK and its isoforms caused by sulfide and thiosulfate, suggesting a direct protein modification on CK structure by these metabolites. Sulfide further increased thiol content in the intestine, suggesting a modulation in the redox state of these groups. Finally, sulfide and thiosulfate decreased the viability of Caco-2 intestinal cells. Our data suggest that bioenergetic impairment caused by sulfide and thiosulfate is a mechanism involved in the gastrointestinal abnormalities found in EE.
Collapse
Affiliation(s)
- Marina Rocha Frusciante
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Marian Flores Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Julia Pramio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Josyane de Andrade Silveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana Rauback Aubin
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Larissa Aguiar Santos
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, HCPA, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, RS, 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 500 Sarmento Leite Street, Porto Alegre, RS, 90035-190, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos Street-Attached, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
23
|
Ogata S, Matsunaga T, Jung M, Barayeu U, Morita M, Akaike T. Persulfide Biosynthesis Conserved Evolutionarily in All Organisms. Antioxid Redox Signal 2023; 39:983-999. [PMID: 37565274 PMCID: PMC10655014 DOI: 10.1089/ars.2023.0405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Significance: Persulfides/polysulfides are sulfur-catenated molecular species (i.e., R-Sn-R', n > 2; R-Sn-H, n > 1, with R = cysteine, glutathione, and proteins), such as cysteine persulfide (CysSSH). These species are abundantly formed as endogenous metabolites in mammalian and human cells and tissues. However, the persulfide synthesis mechanism has yet to be thoroughly discussed. Recent Advances: We used β-(4-hydroxyphenyl)ethyl iodoacetamide and mass spectrometry to develop sulfur metabolomics, a highly precise, quantitative analytical method for sulfur metabolites. Critical Issues: With this method, we detected appreciable amounts of different persulfide species in biological specimens from various organisms, from the domains Bacteria, Archaea, and Eukarya. By using our rigorously quantitative approach, we identified cysteinyl-tRNA synthetase (CARS) as a novel persulfide synthase, and we found that the CysSSH synthase activity of CARS is highly conserved from the domains Bacteria to Eukarya. Because persulfide synthesis is found not only with CARS but also with other sulfotransferase enzymes in many organisms, persulfides/polysulfides are expected to contribute as fundamental elements to substantially diverse biological phenomena. In fact, persulfide generation in higher organisms-that is, plants and animals-demonstrated various physiological functions that are mediated by redox signaling, such as regulation of energy metabolism, infection, inflammation, and cell death, including ferroptosis. Future Directions: Investigating CARS-dependent persulfide production may clarify various pathways of redox signaling in physiological and pathophysiological conditions and may thereby promote the development of preventive and therapeutic measures for oxidative stress as well as different inflammatory, metabolic, and neurodegenerative diseases. Antioxid. Redox Signal. 39, 983-999.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Li K, Wang M, Wang R, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Hydrogen Sulfide Regulates Glucose Uptake in Skeletal Muscles via S-Sulfhydration of AMPK in Muscle Fiber Type-Dependent Way. J Nutr 2023; 153:2878-2892. [PMID: 37611831 DOI: 10.1016/j.tjnut.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The effect of hydrogen sulfide (H2S) on glucose homeostasis remains to be elucidated, especially in the state of insulin resistance. OBJECTIVES In the present study, we aimed to investigate H2S-regulated glucose uptake in the M. pectoralis major (PM) muscle (which mainly consists of fast-twitch glycolytic fibers) and M. biceps femoris (BF) muscle (which mainly consists of slow-twitch oxidative fibers) of the chicken, a potential model of insulin resistance. METHODS Chicks were subjected to intraperitoneal injection of sodium hydrosulfide (NaHS, 50 μmol/kg body mass/day) twice a day to explore glucose homeostasis. In vitro, myoblasts from PM and BF muscles were used to detect glucose uptake and utilization. Effects of AMP-activated protein kinase (AMPK) phosphorylation, AMPK S-sulfhydration, and mitogen-activated protein kinase (MAPK) pathway induction by NaHS were detected. RESULTS NaHS enhanced glucose uptake and utilization in chicks (P < 0.05). In myoblasts from PM muscle, NaHS (100 μM) increased glucose uptake by activating AMPK S-sulfhydration, AMPK phosphorylation, and the AMPK/p38 MAPK pathway (P < 0.05). However, NaHS decreased glucose uptake in myoblasts from BF muscle by suppressing the p38 MAPK pathway (P < 0.05). Moreover, NaHS increased S-sulfhydration and, in turn, the phosphorylation of AMPK (P < 0.05). CONCLUSIONS This study reveals the role of H2S in enhancing glucose uptake and utilization in chicks. The results suggest that NaHS is involved in glucose uptake in skeletal muscle in a fiber type-dependent way. The AMPK/p38 pathway and protein S-sulfhydration promote glucose uptake in fast-twitch glycolytic muscle fibers, which provides a muscle fiber-specific potential therapeutic target to ameliorate glucose metabolism.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Minghui Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Ruxia Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
25
|
Mou YJ, Ma YT, Yuan X, Wang M, Liu Y, Pei CS, Liu CF, Hou XO, Hu LF. Cystathionine β-Synthase Suppresses NLRP3 Inflammasome Activation via Redox Regulation in Microglia. Antioxid Redox Signal 2023. [PMID: 37464816 DOI: 10.1089/ars.2022.0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Aims: Cystathionine β-synthase (CBS) is essential for homocysteine (Hcy) transsulfuration, yielding cysteine as a common precursor of hydrogen sulfide (H2S), glutathione (GSH), and other sulfur molecules, which produce neuroprotective effects in neurological conditions. We previously reported a disruption of microglial CBS/H2S signaling in a Parkinson's disease (PD) mouse model. Yet, it remains unclear whether CBS affects nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activity and other pathologies in PD. Results: Microglial CBS expression decreased after lipopolysaccharide (LPS) stimulation. Elevated GSSG (the oxidized GSH) content and decreased H2S generation were found in the brains of microglial cbs conditional-knockout (cbscKO) mice, whereas serum and brain Hcy levels remained unaltered. Moreover, microglial cbscKO mice were susceptible to NLRP3 inflammasome activation and dopaminergic neuron losses caused by LPS injection into the substantia nigra, whereas cbs overexpression or activation produced opposite effects. In vitro studies showed that cbs overexpression or activation suppressed microglial NLRP3 inflammasome activation and interleukin (IL)-1β secretion by reducing mitochondrial reactive oxygen species (mitoROS) level. Conversely, ablation of cbs enhanced NLRP3 expression and mitoROS generation and augmented microglial NLRP3 inflammasome activity in response to adenosine triphosphate challenge, which was blocked by the mitoROS scavenger. Innovation and Conclusion: The study demonstrated an elevated GSSG level and reduced H2S generation, which correlated with a susceptible status of microglia in the brain of cbscKO mice. Our findings reveal a critical role of CBS in restraining the microglial NLRP3 inflammasome by controlling redox homeostasis and highlight that activation or upregulation of CBS may become a potential strategy for PD treatment.
Collapse
Affiliation(s)
- Yu-Jie Mou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ya-Ting Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xin Yuan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Miao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chong-Shuang Pei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
27
|
Cheng J, Wang W, Xia Y, Li Y, Jia J, Xiao G. Regulators of phagocytosis as pharmacologic targets for stroke treatment. Front Pharmacol 2023; 14:1122527. [PMID: 37601043 PMCID: PMC10433754 DOI: 10.3389/fphar.2023.1122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Stroke, including ischemic and hemorrhagic stroke, causes massive cell death in the brain, which is followed by secondary inflammatory injury initiated by disease-associated molecular patterns released from dead cells. Phagocytosis, a cellular process of engulfment and digestion of dead cells, promotes the resolution of inflammation and repair following stroke. However, professional or non-professional phagocytes also phagocytose stressed but viable cells in the brain or excessively phagocytose myelin sheaths or prune synapses, consequently exacerbating brain injury and impairing repair following stroke. Phagocytosis includes the smell, eating and digestion phases. Notably, efficient phagocytosis critically depends on phagocyte capacity to take up dead cells continually due to the limited number of phagocytes vs. dead cells after injury. Moreover, phenotypic polarization of phagocytes occurring after phagocytosis is also essential to the proresolving and prorepair properties of phagocytosis. Much has been learned about the molecular signals and regulatory mechanisms governing the sense and recognition of dead cells by phagocytes during the smell and eating phase following stroke. However, some key areas remain extremely understudied, including the mechanisms involved in digestion regulation, continual phagocytosis and phagocytosis-induced phenotypic switching following stroke. Here, we summarize new discoveries related to the molecular mechanisms and multifaceted effects of phagocytosis on brain injury and repair following stroke and highlight the knowledge gaps in poststroke phagocytosis. We suggest that advancing the understanding of poststroke phagocytosis will help identify more biological targets for stroke treatment.
Collapse
Affiliation(s)
- Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guodong Xiao
- Suzhou Clinical Research Center of Neurological Disease, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Xiao Y, Zhang Y, Wang C, Ge Y, Gao J, Huang T. The use of multiple datasets to identify autophagy-related molecular mechanisms in intracerebral hemorrhage. Front Genet 2023; 14:1032639. [PMID: 37077541 PMCID: PMC10106621 DOI: 10.3389/fgene.2023.1032639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high mortality and disability rates, but autophagy’s mechanism in ICH is still unclear. We identified key autophagy genes in ICH by bioinformatics methods and explored their mechanisms.Methods: We downloaded ICH patient chip data from the Gene Expression Omnibus (GEO) database. Based on the GENE database, differentially expressed genes (DEGs) for autophagy were identified. We identified key genes through protein–protein interaction (PPI) network analysis and analyzed their associated pathways in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases were used to analyze the key gene transcription factor (TF) regulatory network and ceRNA network. Finally, relevant target pathways were obtained by gene set enrichment analysis (GSEA).Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3, NLRP3 and NOD2 were identified as key genes with clinical predictive value by PPI and receiver operating characteristic (ROC) curve analysis. The candidate gene expression level was significantly correlated with the immune infiltration level, and most of the key genes were positively correlated with the immune cell infiltration level. The key genes are mainly related to cytokine and receptor interactions, immune responses and other pathways. The ceRNA network predicted 8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs).Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3, NLRP3 and NOD2 as key genes that contribute to the development of ICH.
Collapse
Affiliation(s)
- Yinggang Xiao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Yali Ge
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| | - Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
- Department of Anesthesiology, Yangzhou University Affiliated Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Yangzhou, Jiangsu, China
- *Correspondence: Ju Gao, ; Tianfeng Huang,
| |
Collapse
|
29
|
Kumar R, Vitvitsky V, Seth P, Hiraki HL, Bell H, Andren A, Singhal R, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532677. [PMID: 36993187 PMCID: PMC10055101 DOI: 10.1101/2023.03.14.532677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.
Collapse
|
30
|
Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem Res 2023; 48:1981-1996. [PMID: 36764968 PMCID: PMC10182124 DOI: 10.1007/s11064-023-03887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Central nervous system (CNS)-related conditions are currently the leading cause of disability worldwide, posing a significant burden to health systems, individuals and their families. Although the molecular mechanisms implicated in these disorders may be varied, neurological conditions have been increasingly associated with inflammation and/or impaired oxidative response leading to further neural cell damages. Therefore, therapeutic approaches targeting these defective molecular mechanisms have been vastly explored. Hydrogen sulphide (H2S) has emerged as a modulator of both inflammation and oxidative stress with a neuroprotective role, therefore, has gained interest in the treatment of neurological disorders. H2S, produced by endogenous sources, is maintained at low levels in the CNS. However, defects in the biosynthetic and catabolic routes for H2S metabolism have been identified in CNS-related disorders. Approaches to restore H2S availability using H2S-donating compounds have been recently explored in many models of neurological conditions. Nonetheless, we still need to elucidate the potential for these compounds not only to ameliorate defective biological routes, but also to better comprehend the implications on H2S delivery, dosage regimes and feasibility to successfully target CNS tissues. Here, we highlight the molecular mechanisms of H2S-dependent restoration of neurological functions in different models of CNS disease whilst summarising current administration approaches for these H2S-based compounds. We also address existing barriers in H2S donor delivery by showcasing current advances in mediating these constrains through novel biomaterial-based carriers for H2S donors.
Collapse
|
31
|
Nagashima F, Miyazaki Y, Kanemaru E, Ezaka M, Hara H, Sugiura K, Boerboom SL, Ostrom KF, Jiang W, Bloch DB, Ichinose F, Marutani E. Sulfide:quinone oxidoreductase ameliorates neurodegeneration in a murine model of Parkinson's disease. Redox Biol 2022; 59:102562. [PMID: 36470130 PMCID: PMC9722489 DOI: 10.1016/j.redox.2022.102562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Fumiaki Nagashima
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Eiki Kanemaru
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mariko Ezaka
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Hiroaki Hara
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Kei Sugiura
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Sophie L. Boerboom
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Katrina F. Ostrom
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Wanlin Jiang
- Harvard Medical School, Boston, MA, USA,Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Atef Y, Kinoshita K, Ichihara Y, Ushida K, Kurauchi Y, Seki T, Katsuki H. Distinct Pharmacological Profiles of Monosulfide and Trisulfide in an Experimental Model of Intracerebral Hemorrhage in Mice. Biol Pharm Bull 2022; 45:1699-1705. [DOI: 10.1248/bpb.b22-00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yara Atef
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
33
|
Kožich V, Schwahn BC, Sokolová J, Křížková M, Ditroi T, Krijt J, Khalil Y, Křížek T, Vaculíková-Fantlová T, Stibůrková B, Mills P, Clayton P, Barvíková K, Blessing H, Sykut-Cegielska J, Dionisi-Vici C, Gasperini S, García-Cazorla Á, Haack TB, Honzík T, Ješina P, Kuster A, Laugwitz L, Martinelli D, Porta F, Santer R, Schwarz G, Nagy P. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H 2S homeostasis. Redox Biol 2022; 58:102517. [PMID: 36306676 PMCID: PMC9615310 DOI: 10.1016/j.redox.2022.102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis. Cystathionine γ-lyase can compensate for decreased H2S synthesis in cystathionine β-synthase deficiency. Sulfide:quinone oxidoreductase deficiency is compatible with normal H2S plasma levels under non-stressed conditions. Persulfide dioxygenase deficiency (ethylmalonic encephalopathy) causes the largest accumulation of H2S among disorders of sulfur metabolism. Excess sulfite forms S-sulfocysteine and S-sulfohomocysteine, and interferes with vitamin B6 metabolism. S-sulfocysteine correlates directly with sulfite and is a stable biomarker of sulfite accumulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Corresponding author. Department of Pediatrics and Inherited Metabolic Disorders, Charles University, Medicine and General University Hospital in Prague, Ke Karlovu 2, 128 08, Praha 2, Czech Republic.
| | - Bernd C Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Youssef Khalil
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Vaculíková-Fantlová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Blanka Stibůrková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Institute of Rheumatology, Prague, Czech Republic
| | - Philippa Mills
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Holger Blessing
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Serena Gasperini
- Metabolic Rare Diseases Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Ángeles García-Cazorla
- Inborn Errors of Metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Alice Kuster
- Center for Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic diseases, AOU Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany,Corresponding author. Institute of Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 4750674, Koeln, Germany.
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary,Department of Anatomy and Histology, ELKH-ÁTE Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary,Chemistry Institute, University of Debrecen, Debrecen, Hungary,Corresponding author. Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary.
| |
Collapse
|
34
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
35
|
Florido J, Martinez‐Ruiz L, Rodriguez‐Santana C, López‐Rodríguez A, Hidalgo‐Gutiérrez A, Cottet‐Rousselle C, Lamarche F, Schlattner U, Guerra‐Librero A, Aranda‐Martínez P, Acuña‐Castroviejo D, López LC, Escames G. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. J Pineal Res 2022; 73:e12824. [PMID: 35986493 PMCID: PMC9541246 DOI: 10.1111/jpi.12824] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
The oncostatic effects of melatonin correlate with increased reactive oxygen species (ROS) levels, but how melatonin induces this ROS generation is unknown. In the present study, we aimed to elucidate the two seemingly opposing actions of melatonin regarding its relationship with free radicals. We analyzed the effects of melatonin on head and neck squamous cell carcinoma cell lines (Cal-27 and SCC-9), which were treated with 0.5 or 1 mM melatonin. We further examined the potential effects of melatonin to induce ROS and apoptosis in Cal-27 xenograft mice. Here we report that melatonin mediates apoptosis in head and neck cancer by driving mitochondrial reverse electron transport (RET) to induce ROS production. Melatonin-induced changes in tumoral metabolism led to increased mitochondrial activity, which, in turn, induced ROS-dependent mitochondrial uncoupling. Interestingly, mitochondrial complex inhibitors, including rotenone, abolished the ROS elevation indicating that melatonin increased ROS generation via RET. Melatonin also increased membrane potential and CoQ10 H2 /CoQ10 ratio to elevate mitochondrial ROS production, which are essential conditions for RET. We found that genetic manipulation of cancer cells with alternative oxidase, which transfers electrons from QH2 to oxygen, inhibited melatonin-induced ROS generation, and apoptosis. RET restored the melatonin-induced oncostatic effect, highlighting the importance of RET as the site of ROS production. These results illustrate that RET and ROS production are crucial factors in melatonin's effects in cancer cells and establish the dual effect of melatonin in protecting normal cells and inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Laura Martinez‐Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - César Rodriguez‐Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Alba López‐Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Agustín Hidalgo‐Gutiérrez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Cécile Cottet‐Rousselle
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Frédéric Lamarche
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Uwe Schlattner
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA)University of Grenoble AlpesGrenobleFrance
| | - Ana Guerra‐Librero
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Paula Aranda‐Martínez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
| | - Darío Acuña‐Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Luis C. López
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology ParkUniversity of GranadaGranadaSpain
- Department of Physiology, Faculty of MedicineUniversity of GranadaGranadaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), GranadaSan Cecilio University HospitalGranadaSpain
| |
Collapse
|
36
|
Yan X, He M, Huang H, Wang Q, Hu Y, Wang X, Jin M, Wang Y, Xia Y, Li Y, Chen G, Cheng J, Jia J. Endogenous H 2S targets mitochondria to promote continual phagocytosis of erythrocytes by microglia after intracerebral hemorrhage. Redox Biol 2022; 56:102442. [PMID: 35998432 PMCID: PMC9420393 DOI: 10.1016/j.redox.2022.102442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Hematoma clearance, which is achieved largely by phagocytosis of erythrocytes in the hemorrhagic brain, limits injury and facilitates recovery following intracerebral hemorrhage (ICH). Efficient phagocytosis critically depends on the capacity of a single phagocyte to phagocytize dead cells continually. However, the mechanism underlying continual phagocytosis following ICH remains unclear. We aimed to investigate the mechanism in this study. By using ICH models, we found that the gasotransmitter hydrogen sulfide (H2S) is an endogenous modulator of continual phagocytosis following ICH. The expression of the H2S synthase cystathionine β-synthase (CBS) and CBS-derived H2S were elevated in brain-resident phagocytic microglia following ICH, which consequently promoted continual phagocytosis of erythrocytes by microglia. Microglia-specific deletion of CBS delayed spontaneous hematoma clearance via an H2S-mediated mechanism following ICH. Mechanistically, oxidation of CBS-derived endogenous H2S by sulfide-quinone oxidoreductase initiated reverse electron transfer at mitochondrial complex I, leading to superoxide production. Complex I-derived superoxide, in turn, activated uncoupling protein 2 (UCP2) to promote microglial phagocytosis of erythrocytes. Functionally, complex I and UCP2 were required for spontaneous hematoma clearance following ICH. Moreover, hyperhomocysteinemia, an established risk factor for stroke, impaired ICH-enhanced CBS expression and delayed hematoma resolution, while supplementing exogenous H2S accelerated hematoma clearance in mice with hyperhomocysteinemia. The results suggest that the microglial CBS-H2S-complex I axis is critical to continual phagocytosis following ICH and can be targeted to treat ICH. CBS-derived H2S is elevated in brain-resident phagocytic microglia following ICH. CBS-derived H2S promotes continual erythrophagocytosis and hematoma clearance. CBS-derived H2S promotes microglial phagocytosis via complex I-derived ROS. Hyperhomocysteinemia inhibits CBS expression to delay hematoma resolution. The CBS-H2S-complex I axis can be targeted to treat ICH.
Collapse
Affiliation(s)
- Xiaoling Yan
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Meijun He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hui Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qi Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yu Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Meng Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi Wang
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yiqing Xia
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Jian Cheng
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chem Biol Interact 2022; 365:110028. [DOI: 10.1016/j.cbi.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 12/06/2022]
|
38
|
Zhou X, Liu J, Zheng Y, Zhang Z, Wu Y, Yang W, Liu J, Huang Y, Yi Y, Zhao Z, Xiao H, Mo X, Wang J. SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production. Cell Rep 2022; 39:110750. [PMID: 35508129 DOI: 10.1016/j.celrep.2022.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/02/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor β (PDGFRβ) impairs bone repair. We further show that PDGFRβ-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRβ/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yange Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenke Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanmei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hengyi Xiao
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
39
|
Activation of UCP2 by anethole trithione suppresses neuroinflammation after intracerebral hemorrhage. Acta Pharmacol Sin 2022; 43:811-828. [PMID: 34183754 PMCID: PMC8976076 DOI: 10.1038/s41401-021-00698-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease, in which neuroinflammation substantially contributes to brain injury. Uncoupling protein 2 (UCP2) is a member of the mitochondrial anion carrier family, which uncouples oxidative phosphorylation from ATP synthesis by facilitating proton leak across the mitochondrial inner membrane. UCP2 has been reported to modulate inflammation. In this study we investigated whether and how UCP2 modulated neuroinflammation through microglia/macrophages following ICH in vitro and in vivo. We used an in vitro neuroinflammation model in murine BV2 microglia to mimic microglial activation following ICH. ICH in vivo model was established in mice through collagenase infusion into the left striatum. ICH mice were treated with anetholetrithione (ADT, 50 mg· kg-1 ·d-1, ip) or the classical protonophoric uncoupler FCCP (injected into hemorrhagic striatum). We showed that the expression and mitochondrial location of microglial UCP2 were not changed in both in vitro and in vivo ICH models. Knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ICH models, suggesting that endogenous UCP2 inhibited neuroinflammation and therefore played a protective role following ICH. ADT enhanced mitochondrial ROS production thus inducing mitochondrial uncoupling and activating UCP2 in microglia. ADT robustly suppressed neuroinflammation, attenuated brain edema and improved neurological deficits following ICH, and these effects were countered by striatal knockdown of UCP2. ADT enhanced AMP-activated protein kinase (AMPK) activation in the hemorrhagic brain, which was abrogated by striatal knockdown of UCP2. Moreover, striatal knockdown of AMPK abolished the suppression of neuroinflammation by ADT following ICH. On the other hand, FCCP-induced mitochondrial uncoupling was independent of UCP2 in microglia; and striatal knockdown of UCP2 did not abrogate the suppression of neuroinflammation by FCCP in ICH mice. In conclusion, the uncoupling activity is essential for suppression of neuroinflammation by UCP2. We prove for the first time the concept that activators of endogenous UCP2 such as anetholetrithione are a new class of uncouplers with translational significance.
Collapse
|
40
|
Liu L, Zeng F, Li Y, Li W, Yu H, Zeng Q, Chen Q, Qin H. Undifferentiated destruction of mitochondria by photoacoustic shockwave to overcome chemoresistance and radiation resistance in cancer therapy. NANOSCALE 2022; 14:4073-4081. [PMID: 35244120 DOI: 10.1039/d1nr07449k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to either radiation or chemotherapy remains a complex and stubborn obstacle in cancer therapy and is responsible for a significant portion of the treatment failure. While the underlying mechanisms of the resistance are often associated with multiple factors, direct destruction of mitochondria is likely to ensure the ultimate death of the cell. Herein, a strategy of precise mitochondrial destruction using a photoacoustic (PA) shockwave was proposed to overcome chemoresistance and radiation resistance in cancer therapy. A nanoparticle featuring mitochondria-targeting and high near-infrared absorbance is constructed. The nanoparticle was found to indiscriminately localize in the mitochondria of both parental and its corresponding resistant tumor cells due to the mitochondrial transmembrane potential. By absorbing a controllable amount of energy from a pulsed laser, the nanoparticle could generate a mechanical PA shockwave that physically damages the mitochondria leading to the opening of apoptotic pathways and thus yielding a precision antitumor effect. The cell-killing efficiency was validated in vitro and in vivo. The results demonstrate that a PA shockwave can result in undifferentiated killing of the resistant tumor cells via destruction of mitochondria. Given the critical importance of resistant tumor cells, although at its preliminary stage, the proposed modality may open a new window in cancer therapy.
Collapse
Affiliation(s)
- Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qingxing Zeng
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
41
|
Yang N, Gong F, Cheng L. Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chem Sci 2022; 13:1883-1898. [PMID: 35308837 PMCID: PMC8848774 DOI: 10.1039/d1sc04413c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Gas therapy has attracted wide attention for the treatment of various diseases. However, a controlled gas release is highly important for biomedical applications. Upconversion nanoparticles (UCNPs) can precisely convert the long wavelength of light to ultraviolet/visible (UV/Vis) light in gas therapy for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. In this review, we mainly summarized the recent progress of UCNP-based nanocomposites in gas therapy. The gases NO, O2, H2, H2S, SO2, and CO play an essential role in the physiological and pathological processes. The UCNP-based gas therapy holds great promise in cancer therapy, bacterial therapy, anti-inflammation, neuromodulation, and so on. Furthermore, the limitations and prospects of UCNP-based nanocomposites for gas therapy are also discussed.
Collapse
Affiliation(s)
- Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Suzhou 215123 China
| |
Collapse
|
42
|
Salazar C, Barros M, Elorza AA, Ruiz LM. Dynamic Distribution of HIG2A between the Mitochondria and the Nucleus in Response to Hypoxia and Oxidative Stress. Int J Mol Sci 2021; 23:ijms23010389. [PMID: 35008815 PMCID: PMC8745331 DOI: 10.3390/ijms23010389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.
Collapse
Affiliation(s)
- Celia Salazar
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Miriam Barros
- Confocal Microscopy Laboratory, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile;
- Institute of Biomedical Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Lina María Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Correspondence:
| |
Collapse
|
43
|
Scrivner O, Ismaeel A, Kumar MR, Sorokolet K, Koutakis P, Farmer PJ. Expanding the Reactive Sulfur Metabolome: Intracellular and Efflux Measurements of Small Oxoacids of Sulfur (SOS) and H 2S in Human Primary Vascular Cell Culture. Molecules 2021; 26:7160. [PMID: 34885743 PMCID: PMC8659008 DOI: 10.3390/molecules26237160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule which is important for cardiovascular health, but its mechanism of action remains poorly understood. Here, we report measurements of H2S as well as its oxidized metabolites, termed small oxoacids of sulfur (SOS = HSOH and HOSOH), in four human primary vascular cell lines: smooth muscle and endothelial cells derived from both human arterial and coronary tissues. We use a methodology that targets small molecular weight sulfur species; mass spectrometric analysis allows for species quantification to report cellular concentrations based on an H2S calibration curve. The production of H2S and SOS is orders of magnitude higher in smooth muscle (nanomolar) as compared to endothelial cell lines (picomolar). In all the primary lines measured, the distributions of these three species were HOSOH >H2S > HSOH, with much higher SOS than seen previously in non-vascular cell lines. H2S and SOS were effluxed from smooth muscle cells in higher concentrations than endothelial cells. Aortic smooth muscle cells were used to examine changes under hypoxic growth conditions. Hypoxia caused notable increases in HSOH and ROS, which we attribute to enhanced sulfide quinone oxidase activity that results in reverse electron transport.
Collapse
Affiliation(s)
- Ottis Scrivner
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (P.K.)
| | - Murugaeson R. Kumar
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Kristina Sorokolet
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (P.K.)
| | - Patrick J. Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (O.S.); (M.R.K.); (K.S.)
| |
Collapse
|
44
|
A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H 2S oxidation. J Biol Chem 2021; 298:101435. [PMID: 34808207 PMCID: PMC8683732 DOI: 10.1016/j.jbc.2021.101435] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one-third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.
Collapse
|
45
|
Olson KR. A Case for Hydrogen Sulfide Metabolism as an Oxygen Sensing Mechanism. Antioxidants (Basel) 2021; 10:antiox10111650. [PMID: 34829521 PMCID: PMC8615108 DOI: 10.3390/antiox10111650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to detect oxygen availability is a ubiquitous attribute of aerobic organisms. However, the mechanism(s) that transduce oxygen concentration or availability into appropriate physiological responses is less clear and often controversial. This review will make the case for oxygen-dependent metabolism of hydrogen sulfide (H2S) and polysulfides, collectively referred to as reactive sulfur species (RSS) as a physiologically relevant O2 sensing mechanism. This hypothesis is based on observations that H2S and RSS metabolism is inversely correlated with O2 tension, exogenous H2S elicits physiological responses identical to those produced by hypoxia, factors that affect H2S production or catabolism also affect tissue responses to hypoxia, and that RSS efficiently regulate downstream effectors of the hypoxic response in a manner consistent with a decrease in O2. H2S-mediated O2 sensing is then compared to the more generally accepted reactive oxygen species (ROS) mediated O2 sensing mechanism and a number of reasons are offered to resolve some of the confusion between the two.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| |
Collapse
|
46
|
Hydrogen Sulfide Attenuates Angiotensin II-Induced Cardiac Fibroblast Proliferation and Transverse Aortic Constriction-Induced Myocardial Fibrosis through Oxidative Stress Inhibition via Sirtuin 3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9925771. [PMID: 34603602 PMCID: PMC8486544 DOI: 10.1155/2021/9925771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/30/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
Sirtuin 3 (SIRT3) is critical in mitochondrial function and oxidative stress. Our present study investigates whether hydrogen sulfide (H2S) attenuated myocardial fibrosis and explores the possible role of SIRT3 on the protective effects. Neonatal rat cardiac fibroblasts were pretreated with NaHS followed by angiotensin II (Ang II) stimulation. SIRT3 was knocked down with siRNA technology. SIRT3 promoter activity and expression, as well as mitochondrial function, were measured. Male wild-type (WT) and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS followed by transverse aortic constriction (TAC). Myocardium sections were stained with Sirius red. Hydroxyproline content, collagen I and collagen III, α-smooth muscle actin (α-SMA), and dynamin-related protein 1 (DRP1) expression were measured both in vitro and in vivo. We found that NaHS enhanced SIRT3 promoter activity and increased SIRT3 mRNA expression. NaHS inhibited cell proliferation and hydroxyproline secretion, decreased collagen I, collagen III, α-SMA, and DRP1 expression, alleviated oxidative stress, and improved mitochondrial respiration function and membrane potential in Ang II-stimulated cardiac fibroblasts, which were unavailable after SIRT3 was silenced. In vivo, NaHS reduced hydroxyproline content, ameliorated perivascular and interstitial collagen deposition, and inhibited collagen I, collagen III, and DRP1 expression in the myocardium of WT mice but not SIRT3 KO mice with TAC. Altogether, NaHS attenuated myocardial fibrosis through oxidative stress inhibition via a SIRT3-dependent manner.
Collapse
|
47
|
Hou XO, Tu HY, Qian HC, Li Q, Yang YP, Xu GQ, Wang F, Liu CF, Wang YL, Hu LF. AMPK S-sulfuration contributes to H 2S donors-induced AMPK phosphorylation and autophagy activation in dopaminergic cells. Neurochem Int 2021; 150:105187. [PMID: 34534609 DOI: 10.1016/j.neuint.2021.105187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 01/11/2023]
Abstract
Hydrogen sulfide (H2S) serves as a neuromodulator and regulator of neuroinflammation. It is reported to be therapeutic for Parkinson's disease (PD) animal and cellular models. However, whether it affects α-synuclein accumulation in dopaminergic cells, the key pathological feature in PD, is poorly understood. In this study we reported that exogenous H2S donors NaHS and GYY4137 (GYY) enhanced the autophagy activity, as indicated by the increases of autophagy marker LC3-II expression and LC3 dots formation even during lysosome inhibition in dopaminergic cell lines and HEK293 cells. The enhancement of H2S donors on autophagic flux was mediated by adenosine 5'-monophosphate-activated protein kinase (AMPK)-dependent mammalian target of rapamycin (mTOR) inhibition, as H2S donors activated AMPK but reduced the mTOR activity and H2S donors-induced LC3-II increase was diminished by mTOR activator. Moreover, point mutation of Cys302 into alanine (C302A) in AMPKα2 subunit abolished the AMPK activation and mTOR inhibition, as well as autophagic flux increase elicited by NaHS. Interestingly, NaHS triggered AMPK S-sulfuration, which was not observed in AMPK C302A-transfected cells. Further, NaHS was able to attenuate α-synuclein accumulation in a cellular model induced by dopamine oxidized metabolite 3, 4-dihydroxyphenylacetaldehyde (DOPAL), and this effect was interfered by autophagy inhibitor wortmannin and also eliminated in AMPK Cys302A-transfected cells. In sum, the findings identified a role of Cys302 S-sulfuration in AMPK activation induced by exogenous H2S and demonstrated that H2S donors could enhance the autophagic flux via AMPK-mTOR signaling and thus reduce α-synuclein accumulation in vitro.
Collapse
Affiliation(s)
- Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Yue Tu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hai-Chun Qian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ya-Ping Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Guo-Qiang Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China.
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
48
|
Kumar R, Banerjee R. Regulation of the redox metabolome and thiol proteome by hydrogen sulfide. Crit Rev Biochem Mol Biol 2021; 56:221-235. [PMID: 33722121 DOI: 10.1080/10409238.2021.1893641] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overproduction of reactive oxygen species and compromised antioxidant defenses perturb intracellular redox homeostasis and is associated with a myriad of human diseases as well as with the natural process of aging. Hydrogen sulfide (H2S), which is biosynthesized by organisms ranging from bacteria to man, influences a broad range of physiological functions. A highly touted molecular mechanism by which H2S exerts its cellular effects is via post-translational modification of the thiol redox proteome, converting cysteine thiols to persulfides, in a process referred to as protein persulfidation. The physiological relevance of this modification in the context of specific signal transmission pathways remains to be rigorously established, while a general protective role for protein persulfidation against hyper-oxidation of the cysteine proteome is better supported. A second mechanism by which H2S modulates redox homeostasis is via remodeling the redox metabolome, targeting the electron transfer chain and perturbing the major redox nodes i.e. CoQ/CoQH2, NAD+/NADH and FAD/FADH2. The metabolic changes that result from H2S-induced redox changes fan out from the mitochondrion to other compartments. In this review, we discuss recent developments in elucidating the roles of H2S and its oxidation products on redox homeostasis and its role in protecting the thiol proteome.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Deng P, Xiao F, Wang Z, Jin G. A Novel BODIPY Quaternary Ammonium Salt-Based Fluorescent Probe: Synthesis, Physical Properties, and Live-Cell Imaging. Front Chem 2021; 9:650006. [PMID: 33777904 PMCID: PMC7994363 DOI: 10.3389/fchem.2021.650006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
The development of biological fluorescent probes is of great significance to the field of cancer bio-imaging. However, most current probes within the bulky hydrophobic group have limited application in aqueous medium and restricted imaging under physiological conditions. Herein, we proposed two efficient molecules to study their physical properties and imaging work, and the absorption and fluorescence intensity were collected with varying ions attending in aqueous medium. We enhance the water solubility through the quaternization reaction and form a balance between hydrophilic and hydrophobicity with dipyrrome-theneboron difluoride (BODIPY) fluorophore. We introduced pyridine and dimethylaminopyridine (DMAP) by quaternization and connected the BODIPY fluorophore by ethylenediamine. The final synthesized probes have achieved ideal affinity with HeLa cells (human cervical carcinoma cell line) in live-cell imaging which could be observed by Confocal Microscope. The probes also have a good affinity with subcutaneous tumor cells in mice in in vivo imaging, which may make them candidates as oncology imaging probes.
Collapse
Affiliation(s)
- Peng Deng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Fuyan Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|