1
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Shi S, Ge Y, Yan Q, Wan S, Li M, Li M. Activating UCHL1 through the CRISPR activation system promotes cartilage differentiation mediated by HIF-1α/SOX9. J Cell Mol Med 2024; 28:e70051. [PMID: 39223923 PMCID: PMC11369205 DOI: 10.1111/jcmm.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Developing strategies to enhance cartilage differentiation in mesenchymal stem cells and preserve the extracellular matrix is crucial for successful cartilage tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in maintaining the extracellular matrix and chondrocyte phenotype, thus serving as a key regulator in chondral tissue engineering strategies. Recent studies have shown that Ubiquitin C-terminal hydrolase L1 (UCHL1) is involved in the deubiquitylation of HIF-1α. However, the regulatory role of UCHL1 in chondrogenic differentiation has not been investigated. In the present study, we initially validated the promotive effect of UCHL1 expression on chondrogenesis in adipose-derived stem cells (ADSCs). Subsequently, a hybrid baculovirus system was designed and employed to utilize three CRISPR activation (CRISPRa) systems, employing dead Cas9 (dCas9) from three distinct bacterial sources to target UCHL1. Then UCHL1 and HIF-1α inhibitor and siRNA targeting SRY-box transcription factor 9 (SOX9) were used to block UCHL1, HIF-1α and SOX9, respectively. Cartilage differentiation and chondrogenesis were measured by qRT-PCR, immunofluorescence and histological staining. We observed that the CRISPRa system derived from Staphylococcus aureus exhibited superior efficiency in activating UCHL1 compared to the commonly used the CRISPRa system derived from Streptococcus pyogenes. Furthermore, the duration of activation was extended by utilizing the Cre/loxP-based hybrid baculovirus. Moreover, our findings show that UCHL1 enhances SOX9 expression by regulating the stability and localization of HIF-1α, which promotes cartilage production in ADSCs. These findings suggest that activating UCHL1 using the CRISPRa system holds significant potential for applications in cartilage regeneration.
Collapse
Affiliation(s)
- Shanwei Shi
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Yang Ge
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Qiqian Yan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Shuangquan Wan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Mingfei Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Maoquan Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| |
Collapse
|
3
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024:S2451-9456(24)00309-X. [PMID: 39137782 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Clark T, Waller MA, Loo L, Moreno CL, Denes CE, Neely GG. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol 2024; 42:1017-1034. [PMID: 38493051 DOI: 10.1016/j.tibtech.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.
Collapse
Affiliation(s)
- Teleri Clark
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew A Waller
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
5
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
6
|
Shamsnajafabadi H, Kaukonen M, Bellingrath JS, MacLaren RE, Cehajic-Kapetanovic J. In Silico CRISPR-Cas-Mediated Base Editing Strategies for Early-Onset, Severe Cone-Rod Retinal Degeneration in Three Crumbs homolog 1 Patients, including the Novel Variant c.2833G>A. Genes (Basel) 2024; 15:625. [PMID: 38790254 PMCID: PMC11121323 DOI: 10.3390/genes15050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK; (H.S.)
| | - Maria Kaukonen
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK; (H.S.)
| | - Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK; (H.S.)
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK; (H.S.)
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK; (H.S.)
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Moon SY, Zhang D, Chen SC, Lamey TM, Thompson JA, McLaren TL, Chen FK, McLenachan S. Rapid Variant Pathogenicity Analysis by CRISPR Activation of CRB1 Gene Expression in Patient-Derived Fibroblasts. CRISPR J 2024; 7:100-110. [PMID: 38579141 DOI: 10.1089/crispr.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.
Collapse
Affiliation(s)
- Sang Yoon Moon
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Dan Zhang
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| |
Collapse
|
8
|
Lopes R, Prasad MK. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front Bioeng Biotechnol 2024; 11:1339189. [PMID: 38390600 PMCID: PMC10883050 DOI: 10.3389/fbioe.2023.1339189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024] Open
Abstract
Over the last decade, CRISPR has revolutionized drug development due to its potential to cure genetic diseases that currently do not have any treatment. CRISPR was adapted from bacteria for gene editing in human cells in 2012 and, remarkably, only 11 years later has seen it's very first approval as a medicine for the treatment of sickle cell disease and transfusion-dependent beta-thalassemia. However, the application of CRISPR systems is associated with unintended off-target and on-target alterations (including small indels, and structural variations such as translocations, inversions and large deletions), which are a source of risk for patients and a vital concern for the development of safe therapies. In recent years, a wide range of methods has been developed to detect unwanted effects of CRISPR-Cas nuclease activity. In this review, we summarize the different methods for off-target assessment, discuss their strengths and limitations, and highlight strategies to improve the safety of CRISPR systems. Finally, we discuss their relevance and application for the pre-clinical risk assessment of CRISPR therapeutics within the current regulatory context.
Collapse
Affiliation(s)
- Rui Lopes
- *Correspondence: Rui Lopes, ; Megana K. Prasad,
| | | |
Collapse
|
9
|
Nigorikawa K, Fukushima Y, Shimada C, Matsumoto D, Nomura W. CRISPRa Analysis of Phosphoinositide Phosphatases Shows That TMEM55A Is a Positive Regulator of Autophagy. Biol Pharm Bull 2024; 47:1148-1153. [PMID: 38880622 DOI: 10.1248/bpb.b23-00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.
Collapse
Affiliation(s)
- Kiyomi Nigorikawa
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yu Fukushima
- School of Pharmaceutical Sciences, Hiroshima University
| | | | - Daisuke Matsumoto
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Wataru Nomura
- School of Pharmaceutical Sciences, Hiroshima University
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
10
|
Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, Mittas DM, Karguth N, Otify DY, Böhm S, Weber VJ, Bartoschek MD, Splith V, Brümmer M, Ferreira R, Boon N, Wögenstein GM, Grimm C, Wijnholds J, Mehlfeld V, Michalakis S, Fenske S, Biel M, Becirovic E. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun 2023; 14:6578. [PMID: 37852949 PMCID: PMC10584818 DOI: 10.1038/s41467-023-42386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.
Collapse
Affiliation(s)
- Lisa Maria Riedmayr
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | | | - David Manuel Mittas
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Nina Karguth
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Dina Yehia Otify
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | | | - Valentin Johannes Weber
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | | | | | - Manuela Brümmer
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Raphael Ferreira
- Genetics Department, Harvard Medical School, Boston, MA, 02115, USA
| | - Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
| | - Gabriele Maria Wögenstein
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA, Leiden, Netherlands
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA, Amsterdam, Netherlands
| | - Verena Mehlfeld
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Stefanie Fenske
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, 81377, Germany
| | - Martin Biel
- Department of Pharmacy - Center for Drug Research, LMU Munich, Munich, 81377, Germany
| | - Elvir Becirovic
- Laboratory for Retinal Gene Therapy, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Schlieren, 8952, Switzerland.
| |
Collapse
|
11
|
Mesaki K, Juvet S, Yeung J, Guan Z, Wilson GW, Hu J, Davidson AR, Kleinstiver BP, Cypel M, Liu M, Keshavjee S. Immunomodulation of the donor lung with CRISPR-mediated activation of IL-10 expression. J Heart Lung Transplant 2023; 42:1363-1377. [PMID: 37315746 PMCID: PMC10538378 DOI: 10.1016/j.healun.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Inflammatory injury in the donor lung remains a persistent challenge in lung transplantation that limits donor organ usage and post-transplant outcomes. Inducing immunomodulatory capacity in donor organs could address this unsolved clinical problem. We sought to apply clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) technologies to the donor lung to fine-tune immunomodulatory gene expression, exploring for the first time the therapeutic use of CRISPR-mediated transcriptional activation in the whole donor lung. METHODS We explored the feasibility of CRISPR-mediated transcriptional upregulation of interleukin 10 (IL-10), a key immunomodulatory cytokine, in vitro and in vivo. We first evaluated the potency, titratability, and multiplexibility of the gene activation in rat and human cell lines. Next, in vivo CRISPR-mediated IL-10 activation was characterized in rat lungs. Finally, the IL-10-activated donor lungs were transplanted into recipient rats to assess the feasibility in a transplant setting. RESULTS The targeted transcriptional activation induced robust and titrable IL-10 upregulation in vitro. The combination of guide RNAs also facilitated multiplex gene modulation, that is, simultaneous activation of IL-10 and IL1 receptor antagonist. In vivo profiling demonstrated that adenoviral delivery of Cas9-based activators to the lung was feasible with the use of immunosuppression, which is routinely applied to organ transplant recipients. The transcriptionally modulated donor lungs retained IL-10 upregulation in isogeneic and allogeneic recipients. CONCLUSIONS Our findings highlight the potential of CRISPR epigenome editing to improve lung transplant outcomes by creating a more favorable immunomodulatory environment in the donor organ, a paradigm that may be extendable to other organ transplants.
Collapse
Affiliation(s)
- Kumi Mesaki
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Yeung
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zehong Guan
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Gavin W Wilson
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Translation Medicine Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan R Davidson
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo Cypel
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- From the Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, Ye F, Huang X. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300195. [PMID: 37356052 PMCID: PMC10477906 DOI: 10.1002/advs.202300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Indexed: 06/27/2023]
Abstract
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Lihuang Su
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Junjie Chi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Keqing Shi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Fangfu Ye
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| |
Collapse
|
13
|
Saeed S, Khan SU, Khan WU, Abdel-Maksoud MA, Mubarak AS, Mohammed MA, Kiani FA, Wahab A, Shah MW, Saleem MH. Genome Editing Technology: A New Frontier for the Treatment and Prevention of Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101692. [PMID: 36898595 DOI: 10.1016/j.cpcardiol.2023.101692] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Over the past two decades, genome-editing technique has proven to be a robust editing method that revolutionizes the field of biomedicine. At the genetic level, it can be efficiently utilized to generate various disease-resistance models to elucidate the mechanism of human diseases. It also develops an outstanding tool and enables the generation of genetically modified organisms for the treatment and prevention of various diseases. The versatile and novel CRISPR/Cas9 system mitigates the challenges of various GETs such as ZFNs, and TALENs. For this reason, it has become a ground-breaking technology potentially employed to manipulate the desired gene of interest. Interestingly, this system has been broadly utilized due to its tremendous applications for treating and preventing tumors and various rare disorders; however, its applications for treating CVDs remain in infancy. More recently, two newly developed GETs, such as base editing and prime editing, have further broadened the accuracy range to treat CVDs under consideration. Furthermore, recently emerged CRISPR tools have been potentially applied in vivo and in vitro to treat CVDs. To the best of our knowledge, we strongly enlightened the applications of the CRISPR/Cas9 system that opened a new window in the field of cardiovascular research and, in detail, discussed the challenges and limitations of CVDs.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, P.R, China
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Wasim Ullah Khan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman S Mubarak
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Aufy Mohammed
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Faisal Ayub Kiani
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber, Pakhtunkhwa, Pakistan
| | | | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| |
Collapse
|
14
|
Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023; 24:ijms24054778. [PMID: 36902207 PMCID: PMC10003136 DOI: 10.3390/ijms24054778] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The advancement in epigenetics research over the past several decades has led to the potential application of epigenome-editing technologies for the treatment of various diseases. In particular, epigenome editing is potentially useful in the treatment of genetic and other related diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the target region, and thereby the causative gene, with minimal or no modification of the genomic DNA. Various efforts are underway to successfully apply epigenome editing in vivo, such as improving target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In this review, we introduce the latest findings, summarize the current limitations and future challenges in the practical application of epigenome editing for disease therapy, and introduce important factors to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.
Collapse
|
15
|
Ghani MW, Iqbal A, Ghani H, Bibi S, Wang Z, Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J Mater Chem B 2023. [PMID: 36779580 DOI: 10.1039/d2tb02610d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
CRISPR/Cas systems are novel gene editing tools with tremendous capacity and accuracy for gene editing and hold great potential for therapeutic genetic manipulation. However, the lack of safe and efficient delivery methods for CRISPR/Cas and its guide RNA hinders their wide adoption for therapeutic applications. To this end, there is an increasing demand for safe, efficient, precise, and non-pathogenic delivery approaches, both in vitro and in vivo. With the convergence of nanotechnology and biomedicine, functional nanocomposites have demonstrated unparalleled sophistication to overcome the limits of CRISPR/Cas delivery. The tunability of the physicochemical properties of nanocomposites makes it very easy to conjugate them with different functional substances. The combinatorial application of diverse functional materials in the form of nanocomposites has shown excellent properties for CRISPR/Cas delivery at the target site with therapeutic potential. The recent highlights of selective organ targeting and phase I clinical trials for gene manipulation by CRISPR/Cas after delivery through LNPs are at the brink of making it to routine clinical practice. Here we summarize the recent advances in delivering CRISPR/Cas systems through nanocomposites for targeted delivery and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Ambreen Iqbal
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Hammad Ghani
- Basic Health Unit Laleka, Primary and Secondary Healthcare Department, Bahawalngar, 62300, Punjab, Pakistan
| | - Sidra Bibi
- Department of Biology, The Islamia University of Bahawalpur, Bahawalnagar Campus 62300, Pakistan
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| |
Collapse
|
16
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Yanyan Yang
- grid.410645.20000 0001 0455 0905Department of Immunology, School of Basic Medicine, Qingdao University, 266021 Qingdao, People’s Republic of China
| | - Hongzhao Qi
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Weigang Cui
- grid.452710.5Department of Cardiology, People’s Hospital of Rizhao, No. 126 Taian Road, 276827 Rizhao, People’s Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000 Linyi, People’s Republic of China
| | - Xiuxiu Fu
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Xiangqin He
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Meixin Liu
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Pei-feng Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China. .,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
17
|
Chang HC, Lee YJ, Javed S, Haque M, Chang YT, Lin YC, Oram C, Huang WH. rAAV-CRISPRa therapy corrects Rai1 haploinsufficiency and rescues selective disease features in Smith-Magenis syndrome mice. J Biol Chem 2022; 299:102728. [PMID: 36410433 PMCID: PMC9762195 DOI: 10.1016/j.jbc.2022.102728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.
Collapse
Affiliation(s)
- Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cameron Oram
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada,For correspondence: Wei-Hsiang Huang
| |
Collapse
|
18
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
19
|
Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther 2022; 22:1193-1208. [PMID: 36062410 DOI: 10.1080/14712598.2022.2121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ocular gene therapy represents fertile ground for rapid innovation, with ever-expanding therapeutic strategies, molecular targets, and indications. AREAS COVERED : Potential indications for ocular gene therapy have classically focused on inherited retinal disease (IRD), but more recently include acquired retinal diseases, such as neovascular age-related macular degeneration, geographic atrophy and diabetic retinopathy. Ocular gene therapy strategies have proliferated recently, and include gene augmentation, gene inactivation, gene editing, RNA modulation, and gene-independent gene augmentation. Viral vector therapeutic constructs include adeno-associated virus and lentivirus and continue to evolve through directed evolution and rationale design. Ocular gene therapy administration techniques have expanded beyond pars plana vitrectomy with subretinal injection to intravitreal injection and suprachoroidal injection. EXPERT OPINION : The success of treatment for IRD, paired with the promise of clinical research in acquired retinal diseases and in administration techniques, has raised the possibility of in-office gene therapy for common retinal disorders within the next five to ten years.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | | | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
20
|
Lian L, Zhai Y, Wan X, Chen L, Liu Z, Liu R, Li S, Zhou J, Chen Y, Hou L, Li H. Sensitivity of the Dorsal-Central Retinal Pigment Epithelium to Sodium Iodate-Induced Damage Is Associated With Overlying M-Cone Photoreceptors in Mice. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 36018572 PMCID: PMC9428360 DOI: 10.1167/iovs.63.9.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal pigment epithelium (RPE) degeneration is a leading cause of blindness in retinal degenerative diseases, but the mechanism of RPE regional degeneration remains largely unknown. This study aims to investigate the sensitivity of RPE to sodium iodate (SI) injury in the dorsal and ventral visual fields in mice and analyze whether overlaying cone photoreceptors regulate the sensitivity of RPE to SI-induced damage. Methods SI was used to induce RPE degeneration in mice. Hematoxylin-eosin staining, immunostaining, and TUNEL assay were used to evaluate retinal degeneration along the dorsal-ventral axis. Flat-mounted and sectional retinal immunostaining were used to analyze the distribution of cones along the dorsoventral axis in C57BL/6, albino, and 129 mice. Electroretinography was used to examine the retinal function. Results Dorsal-central RPE was more sensitive to SI-mediated injury along the dorsal-ventral axis in C57BL/6 mice. Compared with the ventral RPE, the dorsal-central RPE was dominantly covered by M cone photoreceptors in these mice. Interestingly, M cone photoreceptor degeneration was followed by dorsal RPE degeneration under a low dose of SI. Furthermore, the sensitivity of dorsal RPE to a low dose of SI was reduced in both albino and 129 mouse strains with dominant mixed cones instead of M cones in the dorsal visual field. Conclusions These findings suggest that dorsal-central RPE is more sensitive to SI injury and that SI-induced RPE degeneration could be controlled by modifying the dominant overlying cone population in the mouse dorsal retina, thereby highlighting a potential role of M cones in RPE regional degeneration.
Collapse
Affiliation(s)
- Lili Lian
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifan Zhai
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuejiao Wan
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Linxin Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruona Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shijia Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiajia Zhou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Kanafi MM, Tavallaei M. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene 2022; 830:146518. [PMID: 35447246 DOI: 10.1016/j.gene.2022.146518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Prokaryotes possess an adaptive immune system using various CRISPR associated (Cas) genes to make an archive of records from invading phages and eliminate them upon re-exposure when specialized Cas proteins cut foreign DNA into small pieces. On the basis of the different types of Cas proteins, CRISPR systems seen in some prokaryotic genomes, are different to each other. It has been proved that CRISPR has a great potential for genome engineering. Studies have also demonstrated that in comparison to the preceding genome engineering tools CRISPR/Cas systems can be harnessed as a flexible tool with easy multiplexing and scaling ability. Recent studies suggest that CRISPR/Cas systems can also be used for non-genome engineering roles. Isolation and identification of new Cas proteins or modification of existing ones are effectively increasing the number of CRISPR applications and helps its development. D10A and H840A mutations at RuvC and HNH endonuclease domains of wild type Streptococcus pyogenes Cas9 (SpCas9) respectively creates a nuclease, dead Cas9 (dCas9) molecule, that does not cut target DNA but still retains its capability for binding to target DNA based on the gRNA targeting sequence. In this article we review the potentials of this enzyme, dCas9, toward development of the applications of CRISPR/dCas9 technology in fields such as; visualization of genomic loci, disease diagnosis and transcriptional repression and activation.
Collapse
Affiliation(s)
| | - Mahmood Tavallaei
- Human Genetic Research Centre, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
23
|
Luo Z, Dai W, Wang C, Ye Q, Zhou Q, Wan QL. Gene activation in Caenorhabditis elegans using the Campylobacter jejuni CRISPR-Cas9 feeding system. G3 (BETHESDA, MD.) 2022; 12:6563187. [PMID: 35377421 PMCID: PMC9157054 DOI: 10.1093/g3journal/jkac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Clustered regularly interspaced palindromic repeats-based activation system, a powerful genetic manipulation technology, can modulate endogenous gene transcription in various organisms through fusing nuclease-deficient Cas9 to transcriptional regulatory domains. At present, this clustered regularly interspaced palindromic repeats-based activation system has been applied to activate gene expression by microinjection manner in Caenorhabditis elegans. However, this complicated and time-consuming injection manner is not suitable for efficient and high-throughput gene regulation with clustered regularly interspaced palindromic repeats-Cas9 system. Here, we engineered a Campylobacter jejun clustered regularly interspaced palindromic repeats-Cas9-based gene activation system through bacteria feeding technique to delivering gene-specific sgRNA in C. elegans. It enables to activate various endogenous genes efficiently, as well as induce the corresponding phenotypes with a more efficient and labor-saving manner. Collectively, our results demonstrated that our novel dCjCas9-based activation feeding system holds great promise and potential in C. elegans.
Collapse
Affiliation(s)
- Zhenhuan Luo
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Wenyu Dai
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Chongyang Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qunshan Ye
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qinghua Zhou
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qin-Li Wan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Zhou M, Cao Y, Sui M, Shu X, Wan F, Zhang B. Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cell Mol Life Sci 2022; 79:315. [PMID: 35610381 PMCID: PMC11073076 DOI: 10.1007/s00018-022-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
Overexpression of exogenous lineage-specific transcription factors could directly induce terminally differentiated somatic cells into target cell types. However, the low conversion efficiency and the concern about introducing exogenous genes limit the clinical application. With the rapid progress in genome editing, the application of CRISPR/dCas9 has been expanding rapidly, including converting somatic cells into other types of cells in vivo and in vitro. Using the CRISPR/dCas9 system, direct neuronal reprogramming could be achieved by activating endogenous genes. Here, we will discuss the latest progress, new insights, and future challenges of the application of the dCas9 system in direct neuronal reprogramming.
Collapse
Affiliation(s)
- Meiling Zhou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yu Cao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
26
|
Riedmayr LM, Hinrichsmeyer KS, Karguth N, Böhm S, Splith V, Michalakis S, Becirovic E. dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nat Protoc 2022; 17:781-818. [PMID: 35132255 DOI: 10.1038/s41596-021-00666-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Many disease-causing genes possess functionally equivalent counterparts, which are often expressed in distinct cell types. An attractive gene therapy approach for inherited disorders caused by mutations in such genes is to transcriptionally activate the appropriate counterpart(s) to compensate for the missing gene function. This approach offers key advantages over conventional gene therapies because it is mutation- and gene size-independent. Here, we describe a protocol for the design, execution and evaluation of such gene therapies using dCas9-VPR. We offer guidelines on how to identify functionally equivalent genes, design and clone single guide RNAs and evaluate transcriptional activation in vitro. Moreover, focusing on inherited retinal diseases, we provide a detailed protocol on how to apply this strategy in mice using dual recombinant adeno-associated virus vectors and how to evaluate its functionality and off-target effects in the target tissue. This strategy is in principle applicable to all organisms that possess functionally equivalent genes suitable for transcriptional activation and addresses pivotal unmet needs in gene therapy with high translational potential. The protocol can be completed in 15-20 weeks.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klara S Hinrichsmeyer
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nina Karguth
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sybille Böhm
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Victoria Splith
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elvir Becirovic
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
27
|
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022; 79:130. [PMID: 35152318 PMCID: PMC8840918 DOI: 10.1007/s00018-022-04175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
AbstractSince the revolutionary discovery of the CRISPR-Cas technology for programmable genome editing, its range of applications has been extended by multiple biotechnological tools that go far beyond its original function as “genetic scissors”. One of these further developments of the CRISPR-Cas system allows genes to be activated in a targeted and efficient manner. These gene-activating CRISPR-Cas modules (CRISPRa) are based on a programmable recruitment of transcription factors to specific loci and offer several key advantages that make them particularly attractive for therapeutic applications. These advantages include inter alia low off-target effects, independence of the target gene size as well as the potential to develop gene- and mutation-independent therapeutic strategies. Herein, I will give an overview on the currently available CRISPRa modules and discuss recent developments, future potentials and limitations of this approach with a focus on therapeutic applications and in vivo delivery.
Collapse
Affiliation(s)
- Elvir Becirovic
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
28
|
Schoger E, Lelek S, Panáková D, Zelarayán LC. Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Front Cardiovasc Med 2022; 8:783072. [PMID: 35097003 PMCID: PMC8795974 DOI: 10.3389/fcvm.2021.783072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Daniela Panáková
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
- *Correspondence: Laura Cecilia Zelarayán
| |
Collapse
|
29
|
Truong VA, Lin YH, Nguyen NTK, Hsu MN, Pham NN, Chang YH, Chang CW, Shen CC, Lee HS, Lai PL, Parfyonova YV, Menshikov M, Wu JC, Chang YH, Hu YC. Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats. Mol Ther 2022; 30:92-104. [PMID: 34450254 PMCID: PMC8753367 DOI: 10.1016/j.ymthe.2021.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 01/07/2023] Open
Abstract
Calvarial bone healing is challenging, especially for individuals with osteoporosis because stem cells from osteoporotic patients are highly prone to adipogenic differentiation. Based on previous findings that chondrogenic induction of adipose-derived stem cells (ASCs) can augment calvarial bone healing, we hypothesized that activating chondroinductive Sox Trio genes (Sox5, Sox6, Sox9) and repressing adipoinductive genes (C/ebp-α, Ppar-γ) in osteoporotic ASCs can reprogram cell differentiation and improve calvarial bone healing after implantation. However, simultaneous gene activation and repression in ASCs is difficult. To tackle this problem, we built a CRISPR-BiD system for bi-directional gene regulation. Specifically, we built a CRISPR-AceTran system that exploited both histone acetylation and transcription activation for synergistic Sox Trio activation. We also developed a CRISPR interference (CRISPRi) system that exploited DNA methylation for repression of adipoinductive genes. We combined CRISPR-AceTran and CRISPRi to form the CRISPR-BiD system, which harnessed three mechanisms (transcription activation, histone acetylation, and DNA methylation). After delivery into osteoporotic rat ASCs, CRISPR-BiD significantly enhanced chondrogenesis and in vitro cartilage formation. Implantation of the engineered osteoporotic ASCs into critical-sized calvarial bone defects significantly improved bone healing in osteoporotic rats. These results implicated the potential of the CRISPR-BiD system for bi-directional regulation of cell fate and regenerative medicine.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hui Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Sheng Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yelena V. Parfyonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russia,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Menshikov
- Institute of Experimental Cardiology, National Cardiology Research Center, Moscow, Russia
| | - Jaw-Ching Wu
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan,Corresponding author: Yu-Chen Hu, Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan,Corresponding author: Yu-Han Chang, Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
30
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
31
|
Luthra R, Kaur S, Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci 2021; 284:119908. [PMID: 34453943 DOI: 10.1016/j.lfs.2021.119908] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Genetic disorders and congenital abnormalities are present in 2-5% of births all over the world and can cause up to 50% of all early childhood deaths. The establishment of sophisticated and controlled techniques for customizing DNA manipulation is significant for the therapeutic role in such disorders and further research on them. One such technique is CRISPR that is significant towards optimizing genome editing and therapies, metabolic fluxes as well as artificial genetic systems. CRISPR-Cas9 is a molecular appliance that is applied in the areas of genetic and protein engineering. The CRISPR-CAS system is an integral element of prokaryotic adaptive immunity that allows prokaryotic cells to identify and kill any foreign DNA. The Gene editing property of CRISPR finds various applications like diagnostics and therapeutics in cancer, neurodegenerative disorders, genetic diseases, blindness, etc. This review discusses applications of CRISPR as a therapeutic in various disorders including several genetic diseases (including sickle cell anemia, blindness, thalassemia, cystic fibrosis, hereditary tyrosinemia type I, duchenne muscular dystrophy, mitochondrial disorders), Cancer, Huntington's disease and viral infections (like HIV, COVID, etc.) along with the prospects concerning them. CRISPR-based therapy is also being researched and defined for COVID-19. The related mechanism of CRISPR has been discussed alongside highlighting challenges involved in therapeutic applications of CRISPR.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Simran Kaur
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
32
|
Liu S, Striebel J, Pasquini G, Ng AHM, Khoshakhlagh P, Church GM, Busskamp V. Neuronal Cell-type Engineering by Transcriptional Activation. Front Genome Ed 2021; 3:715697. [PMID: 34713262 PMCID: PMC8525383 DOI: 10.3389/fgeed.2021.715697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Gene activation with the CRISPR-Cas system has great implications in studying gene function, controlling cellular behavior, and modulating disease progression. In this review, we survey recent studies on targeted gene activation and multiplexed screening for inducing neuronal differentiation using CRISPR-Cas transcriptional activation (CRISPRa) and open reading frame (ORF) expression. Critical technical parameters of CRISPRa and ORF-based strategies for neuronal programming are presented and discussed. In addition, recent progress on in vivo applications of CRISPRa to the nervous system are highlighted. Overall, CRISPRa represents a valuable addition to the experimental toolbox for neuronal cell-type programming.
Collapse
Affiliation(s)
- Songlei Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Johannes Striebel
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - George M. Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- GC Therapeutics, Inc, Cambridge, MA, United States
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Nguyen NTK, Chang YH, Truong VA, Hsu MN, Pham NN, Chang CW, Wu YH, Chang YH, Li H, Hu YC. CRISPR activation of long non-coding RNA DANCR promotes bone regeneration. Biomaterials 2021; 275:120965. [PMID: 34147719 DOI: 10.1016/j.biomaterials.2021.120965] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 01/20/2023]
Abstract
Healing of large calvarial bone defects in adults adopts intramembranous pathway and is difficult. Implantation of adipose-derived stem cells (ASC) that differentiate towards chondrogenic lineage can switch the bone repair pathway and improve calvarial bone healing. Long non-coding RNA DANCR was recently uncovered to promote chondrogenesis, but its roles in rat ASC (rASC) chondrogenesis and bone healing stimulation have yet to be explored. Here we first verified that DANCR expression promoted rASC chondrogenesis, thus we harnessed CRISPR activation (CRISPRa) technology to upregulate endogenous DANCR, stimulate rASC chondrogenesis and improve calvarial bone healing in rats. We generated 4 different dCas9-VPR orthologues by fusing a tripartite transcription activator domain VPR to catalytically dead Cas9 (dCas9) derived from 4 different bacteria, and compared the degree of activation using the 4 different dCas9-VPR. We unveiled surprisingly that the most commonly used dCas9-VPR derived from Streptococcus pyogenes barely activated DANCR. Nonetheless dCas9-VPR from Staphylococcus aureus (SadCas9-VPR) triggered efficient activation of DANCR in rASC. Delivery of SadCas9-VPR and the associated guide RNA into rASC substantially enhanced chondrogenic differentiation of rASC and augmented cartilage formation in vitro. Implantation of the engineered rASC remarkably potentiated the calvarial bone healing in rats. Furthermore, we identified that DANCR improved the rASC chondrogenesis through inhibition of miR-203a and miR-214. These results collectively proved that DANCR activation by SadCas9-VPR-based CRISPRa provides a novel therapeutic approach to improving calvarial bone healing.
Collapse
Affiliation(s)
- Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Hsiu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
34
|
Syafruddin SE, Ling S, Low TY, Mohtar MA. More Than Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases. Biomolecules 2021; 11:523. [PMID: 33807297 PMCID: PMC8066111 DOI: 10.3390/biom11040523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cells encounter a myriad of endogenous and exogenous stresses that could perturb cellular physiological processes. Therefore, cells are equipped with several adaptive and stress-response machinery to overcome and survive these insults. One such machinery is the heat shock response (HSR) program that is governed by the heat shock factors (HSFs) family in response towards elevated temperature, free radicals, oxidants, and heavy metals. HSF4 is a member of this HSFs family that could exist in two predominant isoforms, either the transcriptional repressor HSFa or transcriptional activator HSF4b. HSF4 is constitutively active due to the lack of oligomerization negative regulator domain. HSF4 has been demonstrated to play roles in several physiological processes and not only limited to regulating the classical heat shock- or stress-responsive transcriptional programs. In this review, we will revisit and delineate the recent updates on HSF4 molecular properties. We also comprehensively discuss the roles of HSF4 in health and diseases, particularly in lens cell development, cataract formation, and cancer pathogenesis. Finally, we will posit the potential direction of HSF4 future research that could enhance our knowledge on HSF4 molecular networks as well as physiological and pathophysiological functions.
Collapse
|
35
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
36
|
Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Cancer Biology Program, Stanford University, Stanford, CA, USA.,Mammoth Biosciences, South San Francisco, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Volkert MR, Crowley DJ. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front Neurosci 2020; 14:611904. [PMID: 33384581 PMCID: PMC7770112 DOI: 10.3389/fnins.2020.611904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease, diabetic retinopathy, hyperoxia induced retinopathy, and neuronal damage resulting from ischemia are among the notable neurodegenerative diseases in which oxidative stress occurs shortly before the onset of neurodegeneration. A shared feature of these diseases is the depletion of OXR1 (oxidation resistance 1) gene products shortly before the onset of neurodegeneration. In animal models of these diseases, restoration of OXR1 has been shown to reduce or eliminate the deleterious effects of oxidative stress induced cell death, delay the onset of symptoms, and reduce overall severity. Moreover, increasing OXR1 expression in cells further increases oxidative stress resistance and delays onset of disease while showing no detectable side effects. Thus, restoring or increasing OXR1 function shows promise as a therapeutic for multiple neurodegenerative diseases. This review examines the role of OXR1 in oxidative stress resistance and its impact on neurodegenerative diseases. We describe the potential of OXR1 as a therapeutic in light of our current understanding of its function at the cellular and molecular level and propose a possible cascade of molecular events linked to OXR1’s regulatory functions.
Collapse
Affiliation(s)
- Michael R Volkert
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - David J Crowley
- Department of Biological and Physical Sciences, Assumption University, Worcester, MA, United States
| |
Collapse
|
38
|
Quarterly picks from the editors. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.abe7354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The
Science Translational Medicine
editors highlight interesting translational ties across select articles published recently in the
Science
family of journals.
Collapse
|