1
|
Hwang J, Zhang Y, Kim B, Jeong J, Yi J, Kim DR, Kim YL, Urbas A, Ariyawansa G, Xu B, Ku Z, Lee CH. Wafer-Scale Replication of Plasmonic Nanostructures via Microbubbles for Nanophotonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404870. [PMID: 39225406 PMCID: PMC11516140 DOI: 10.1002/advs.202404870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Quasi-3D plasmonic nanostructures are in high demand for their ability to manipulate and enhance light-matter interactions at subwavelength scales, making them promising building blocks for diverse nanophotonic devices. Despite their potential, the integration of these nanostructures with optical sensors and imaging systems on a large scale poses challenges. Here, a robust technique for the rapid, scalable, and seamless replication of quasi-3D plasmonic nanostructures is presented straight from their production wafers using a microbubble process. This approach not only simplifies the integration of quasi-3D plasmonic nanostructures into a wide range of standard and custom optical imaging devices and sensors but also significantly enhances their imaging and sensing performance beyond the limits of conventional methods. This study encompasses experimental, computational, and theoretical investigations, and it fully elucidates the operational mechanism. Additionally, it explores a versatile set of options for outfitting nanophotonic devices with custom-designed plasmonic nanostructures, thereby fulfilling specific operational criteria.
Collapse
Affiliation(s)
- Jehwan Hwang
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Optical Lens Materials Research CenterKorea Photonics Technology Institute (KOPTI)Gwangju61007Republic of Korea
| | - Yue Zhang
- Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Bongjoong Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Department of Mechanical and System Design EngineeringHongik UniversitySeoul04066Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jonghun Yi
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Dong Rip Kim
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Young L. Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Augustine Urbas
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Gamini Ariyawansa
- Sensors DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Zahyun Ku
- Apex Microdevices4871 Misrach CTWest ChesterOH45069‐7755USA
| | - Chi Hwan Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
2
|
Cisilino AP, Di Monno CD, Tomba JP. Polymer chain transport investigated using surface enhanced Raman spectroscopy: monitoring of diffusion kinetics on meso-structured plasmonic substrates. SOFT MATTER 2024; 20:7535-7545. [PMID: 39279506 DOI: 10.1039/d4sm00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We utilize the results of surface-enhanced Raman spectroscopy (SERS)-based interdiffusion experiments on meso-structured substrates to independently validate direct observations of plasmonic enhancements on these elements. The plasmonic enhancement function (PEF) is crucial for accurately determining interdiffusion coefficients using this newly proposed SERS-based methodology. The substrates feature a microscale inverted pyramid geometry, coated with nanoscale sputtered gold. Interdiffusion experiments involve the sequential deposition of polymer bilayers, with deuterated polystyrene (dPS) at the bottom and polystyrene (PS) on top, followed by annealing while periodically acquiring Raman spectra. The temporal evolution of the PS Raman signal reflects not only the interdiffusion process but also plasmonic effects, as the Raman scattering primarily arises from the substrate's plasmonic hotspots. High-resolution finite element (FE) diffusion simulations, combined with experimental SERS data, are used to infer the PEF of the substrate. The derived PEF is consistent with two hotspots located at the apex and vertices of the pyramidal cavity, extending along the edges and spreading into the molecular layer in direct contact with the substrate. This finding is tested against experiments conducted at various diffusion rates, showing excellent agreement. It corroborates recent observations by Steuwe et al. regarding the localization of hotspots on this specific substrate but contradicts other studies that attribute hotspots solely to the micron-scale geometry. This analysis establishes a solid foundation for reliably determining diffusion coefficients using this SERS-based methodology.
Collapse
Affiliation(s)
- Adrián P Cisilino
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| | - Carla D Di Monno
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| | - J Pablo Tomba
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Jo JS, Lee J, Choi C, Jang JW. Tip-based Lithography with a Sacrificial Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309484. [PMID: 38287738 DOI: 10.1002/smll.202309484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Indexed: 01/31/2024]
Abstract
The fabrication of a highly controlled gold (Au) nanohole (NH) array via tip-based lithography is improved by incorporating a sacrificial layer-a tip-crash buffer layer. This inclusion mitigates scratches during the nano-indentation process by employing a 300 nm thick poly(methyl methacrylate) layer as a sacrificial layer on top of the Au film. Such a precaution ensures minimal scratches on the Au film, facilitating the creation of sub-50 nm Au NHs with a 15 nm gap between the Au NHs. The precision of this method exceeds that of fabricating Au NHs without a sacrificial layer. Demonstrating its versatility, this Au NH array is utilized in two distinct applications: as a dry etching mask to form a molybdenum disulfide hole array and as a catalyst in metal-assisted chemical etching, resulting in conical-shaped silicon nanostructures. Additionally, a significant electric field is generated when Au nanoparticles (NPs) are placed within the Au NHs. This effect arises from coupling electromagnetic waves, concentrated by the Au NHs and amplified by the Au NPs. A notable result of this configuration is the enhancement factor of surface-enhanced Raman scattering, which is an order of magnitude greater than that observed with just Au NHs and Au NPs alone.
Collapse
Affiliation(s)
- Jeong-Sik Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jinho Lee
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Chiwon Choi
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
4
|
Su D, Wu W, Sun P, Yuan Y, Chen Z, Zhu Y, Bi K, Zhou H, Zhang T. Thermal-Assisted Multiscale Patterning of Nonplanar Colloidal Nanostructures for Multi-Modal Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305469. [PMID: 37867230 PMCID: PMC10767423 DOI: 10.1002/advs.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/24/2023]
Abstract
Nanotransfer printing of colloidal nanoparticles is a promising technique for the fabrication of functional materials and devices. However, patterning nonplanar nanostructures pose a challenge due to weak adhesion from the extremely small nanostructure-substrate contact area. Here, the study proposes a thermal-assisted nonplanar nanostructure transfer printing (NP-NTP) strategy for multiscale patterning of polystyrene (PS) nanospheres. The printing efficiency is significantly improved from ≈3.1% at low temperatures to ≈97.2% under the glass transition temperature of PS. Additionally, the arrangement of PS nanospheres transitioned from disorder to long-range order. The mechanism of printing efficiency enhancement is the drastic drop of Young's modulus of nanospheres, giving rise to an increased contact area, self-adhesive effect, and inter-particle necking. To demonstrate the versatility of the NP-NTP strategy, it is combined with the intaglio transfer printing technique, and multiple patterns are created at both micro and macro scales at a 4-inch scale with a resolution of ≈2757 pixels per inch (PPI). Furthermore, a multi-modal anti-counterfeiting concept based on structural patterns at hierarchical length scales is proposed, providing a new paradigm of imparting multiscale nanostructure patterning into macroscale functional devices.
Collapse
Affiliation(s)
- Dan Su
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| | - Wei‐Long Wu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Pan‐Qin Sun
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yu‐Chen Yuan
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Ze‐Xian Chen
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yun‐Feng Zhu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Kai‐Yu Bi
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
- College of Software EngineeringSoutheast UniversityNanjingJiangsu210096China
| | - Huan‐Li Zhou
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| |
Collapse
|
5
|
Ahn J, Jang H, Jeong Y, Choi S, Ko J, Hwang SH, Jeong J, Jung YS, Park I. Illuminating Recent Progress in Nanotransfer Printing: Core Principles, Emerging Applications, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303704. [PMID: 38032705 PMCID: PMC10767444 DOI: 10.1002/advs.202303704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/20/2023] [Indexed: 12/01/2023]
Abstract
As the demand for diverse nanostructures in physical/chemical devices continues to rise, the development of nanotransfer printing (nTP) technology is receiving significant attention due to its exceptional throughput and ease of use. Over the past decade, researchers have attempted to enhance the diversity of materials and substrates used in transfer processes as well as to improve the resolution, reliability, and scalability of nTP. Recent research on nTP has made continuous progress, particularly using the control of the interfacial adhesion force between the donor mold, target material, and receiver substrate, and numerous practical nTP methods with niche applications have been demonstrated. This review article offers a comprehensive analysis of the chronological advancements in nTP technology and categorizes recent strategies targeted for high-yield and versatile printing based on controlling the relative adhesion force depending on interfacial layers. In detail, the advantages and challenges of various nTP approaches are discussed based on their working mechanisms, and several promising solutions to improve morphological/material diversity are presented. Furthermore, this review provides a summary of potential applications of nanostructured devices, along with perspectives on the outlook and remaining challenges, which are expected to facilitate the continued progress of nTP technology and to inspire future innovations.
Collapse
Affiliation(s)
- Junseong Ahn
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Yongrok Jeong
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
- Radioisotope Research DivisionKorea Atomic Energy Research Institute (KAERI)Daejeon34057Republic of Korea
| | - Seongsu Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jiwoo Ko
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Soon Hyoung Hwang
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Jun‐Ho Jeong
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery and Materials (KIMM)Daejeon34103Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Inkyu Park
- Department of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
6
|
Park H, Choi HY, Chae H, Noe Oo MM, Kang DJ. Electrohydrodynamic Nanopatterning: A Novel Solvent-Assisted Technique for Unconventional Substrates. NANO LETTERS 2023; 23:11949-11957. [PMID: 38079430 DOI: 10.1021/acs.nanolett.3c04177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Electrohydrodynamic (EHD)-driven patterning is a pioneering lithographic technique capable of replicating and modifying micro/nanostructures efficiently. However, this process is currently restricted to conventional substrates, as it necessitates a uniform and robust electric field over a large area. Consequently, the use of nontraditional substrates, such as those that are flexible, nonflat, or have high insulation, has been notably limited. In our study, we extend the applicability of EHD-driven patterning by introducing a solvent-assisted capillary peel-and-transfer method that allows the successful removal of diverse EHD-induced structures from their original substrates. Compared with the traditional route, our process boasts a success rate close to 100%. The detached structures can then be efficiently transferred to nonconventional substrates, overcoming the limitations of the traditional EHD process. Our method exhibits significant versatility, as evidenced by successful transfer of structures with engineered wettability and patterned structures composed of metals and metal oxides onto nonconventional substrates.
Collapse
Affiliation(s)
- Hyunje Park
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Institute of Basic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ha Young Choi
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Heejoon Chae
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - May Myat Noe Oo
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
7
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
8
|
Park TW, Kang YL, Kang EB, Jung H, Lee S, Hwang G, Lee JW, Choi S, Nahm S, Kwon S, kim KH, Park WI. Direct Printing of Ultrathin Block Copolymer Film with Nano-in-Micro Pattern Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303412. [PMID: 37607117 PMCID: PMC10582423 DOI: 10.1002/advs.202303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Indexed: 08/24/2023]
Abstract
Nanotransfer printing (nTP) is one of the most promising nanopatterning methods given that it can be used to produce nano-to-micro patterns effectively with functionalities for electronic device applications. However, the nTP process is hindered by several critical obstacles, such as sub-20 nm mold technology, reliable large-area replication, and uniform transfer-printing of functional materials. Here, for the first time, a dual nanopatterning process is demonstrated that creates periodic sub-20 nm structures on the eight-inch wafer by the transfer-printing of patterned ultra-thin (<50 nm) block copolymer (BCP) film onto desired substrates. This study shows how to transfer self-assembled BCP patterns from the Si mold onto rigid and/or flexible substrates through a nanopatterning method of thermally assisted nTP (T-nTP) and directed self-assembly (DSA) of Si-containing BCPs. In particular, the successful microscale patternization of well-ordered sub-20 nm SiOx patterns is systematically presented by controlling the self-assembly conditions of BCP and printing temperature. In addition, various complex pattern geometries of nano-in-micro structures are displayed over a large patterning area by T-nTP, such as angular line, wave line, ring, dot-in-hole, and dot-in-honeycomb structures. This advanced BCP-replicated nanopatterning technology is expected to be widely applicable to nanofabrication of nano-to-micro electronic devices with complex circuits.
Collapse
Affiliation(s)
- Tae Wan Park
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Young Lim Kang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Eun Bin Kang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Hyunsung Jung
- Nano Convergence Materials CenterKorea Institute of Ceramic Engineering & Technology (KICET)Jinju52851Republic of Korea
| | - Seoung‐Ki Lee
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Geon‐Tae Hwang
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| | - Jung Woo Lee
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Si‐Young Choi
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Sahn Nahm
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Se‐Hun Kwon
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
| | - Kwang Ho kim
- School of Materials Science and EngineeringPusan National University (PNU)Busan46241Republic of Korea
- Global Frontier R&D Center for Hybrid Interface Materials (HIM)Pusan National UniversityBusan46241Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and EngineeringPukyong National University (PKNU)45 Yongso‐ro, Nam‐guBusan48513Republic of Korea
| |
Collapse
|
9
|
Lee GR, Kim J, Hong D, Kim YJ, Jang H, Han HJ, Hwang CK, Kim D, Kim JY, Jung YS. Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts. Nat Commun 2023; 14:5402. [PMID: 37669945 PMCID: PMC10480199 DOI: 10.1038/s41467-023-41102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Suppressing the oxidation of active-Ir(III) in IrOx catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrOx catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrOx catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrOx catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm-2. Moreover, Ir-specific power (74.8 kW g-1) indicates its remarkable potential for realizing gigawatt-scale H2 production for the first time.
Collapse
Affiliation(s)
- Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Doosun Hong
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ye Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeuk Jin Han
- Department of Environment and Energy Engineering, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Chang-Kyu Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Donghun Kim
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Park TW, Kang YL, Kim YN, Park WI. High-Resolution Nanotransfer Printing of Porous Crossbar Array Using Patterned Metal Molds by Extreme-Pressure Imprint Lithography. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2335. [PMID: 37630919 PMCID: PMC10458917 DOI: 10.3390/nano13162335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
High-resolution nanotransfer printing (nTP) technologies have attracted a tremendous amount of attention due to their excellent patternability, high productivity, and cost-effectiveness. However, there is still a need to develop low-cost mold manufacturing methods, because most nTP techniques generally require the use of patterned molds fabricated by high-cost lithography technology. Here, we introduce a novel nTP strategy that uses imprinted metal molds to serve as an alternative to a Si stamp in the transfer printing process. We present a method by which to fabricate rigid surface-patterned metallic molds (Zn, Al, and Ni) based on the process of direct extreme-pressure imprint lithography (EPIL). We also demonstrate the nanoscale pattern formation of functional materials, in this case Au, TiO2, and GST, onto diverse surfaces of SiO2/Si, polished metal, and slippery glass by the versatile nTP method using the imprinted metallic molds with nanopatterns. Furthermore, we show the patterning results of nanoporous crossbar arrays on colorless polyimide (CPI) by a repeated nTP process. We expect that this combined nanopatterning method of EPIL and nTP processes will be extendable to the fabrication of various nanodevices with complex circuits based on micro/nanostructures.
Collapse
Affiliation(s)
| | | | | | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (Y.N.K.)
| |
Collapse
|
11
|
Park TW, Kang YL, Kang EB, Kim S, Kim YN, Park WI. Formation of Multiscale Pattern Structures by Combined Patterning of Nanotransfer Printing and Laser Micromachining. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2327. [PMID: 37630912 PMCID: PMC10459525 DOI: 10.3390/nano13162327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Various lithography techniques have been widely used for the fabrication of next-generation device applications. Micro/nanoscale pattern structures formed by lithographic methods significantly improve the performance capabilities of the devices. Here, we introduce a novel method that combines the patterning of nanotransfer printing (nTP) and laser micromachining to fabricate multiscale pattern structures on a wide range of scales. Prior to the formation of various nano-in-micro-in-millimeter (NMM) patterns, the nTP process is employed to obtain periodic nanoscale patterns on the target substrates. Then, an optimum laser-based patterning that effectively engraves various nanopatterned surfaces, in this case, spin-cast soft polymer film, rigid polymer film, a stainless still plate, and a Si substrate, is established. We demonstrate the formation of well-defined square and dot-shaped multiscale NMM-patterned structures by the combined patterning method of nTP and laser processes. Furthermore, we present the generation of unusual text-shaped NMM pattern structures on colorless polyimide (CPI) film, showing optically excellent rainbow luminescence based on the configuration of multiscale patterns from nanoscale to milliscale. We expect that this combined patterning strategy will be extendable to other nano-to-micro fabrication processes for application to various nano/microdevices with complex multiscale pattern geometries.
Collapse
Affiliation(s)
- Tae Wan Park
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (E.B.K.)
- Department of Materials Science and Engineering, Korea University, Seoul 48513, Republic of Korea
| | - Young Lim Kang
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (E.B.K.)
| | - Eun Bin Kang
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (E.B.K.)
| | - Seungmin Kim
- RanoM R&D Center, RanoM Co., Ltd., Busan 48548, Republic of Korea;
| | - Yu Na Kim
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (E.B.K.)
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Republic of Korea; (T.W.P.); (Y.L.K.); (E.B.K.)
- RanoM R&D Center, RanoM Co., Ltd., Busan 48548, Republic of Korea;
| |
Collapse
|
12
|
Gan Z, Cai J, Sun Z, Chen L, Sun C, Yu J, Liang Z, Min S, Han F, Liu Y, Cheng X, Yu S, Cui D, Li WD. High-fidelity and clean nanotransfer lithography using structure-embedded and electrostatic-adhesive carriers. MICROSYSTEMS & NANOENGINEERING 2023; 9:8. [PMID: 36636368 PMCID: PMC9829746 DOI: 10.1038/s41378-022-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/17/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Metallic nanostructures are becoming increasingly important for both fundamental research and practical devices. Many emerging applications employing metallic nanostructures often involve unconventional substrates that are flexible or nonplanar, making direct lithographic fabrication very difficult. An alternative approach is to transfer prefabricated structures from a conventional substrate; however, it is still challenging to maintain high fidelity and a high yield in the transfer process. In this paper, we propose a high-fidelity, clean nanotransfer lithography method that addresses the above challenges by employing a polyvinyl acetate (PVA) film as the transferring carrier and promoting electrostatic adhesion through triboelectric charging. The PVA film embeds the transferred metallic nanostructures and maintains their spacing with a remarkably low variation of <1%. When separating the PVA film from the donor substrate, electrostatic charges are generated due to triboelectric charging and facilitate adhesion to the receiver substrate, resulting in a high large-area transfer yield of up to 99.93%. We successfully transferred the metallic structures of a variety of materials (Au, Cu, Pd, etc.) with different geometries with a <50-nm spacing, high aspect ratio (>2), and complex 3D structures. Moreover, the thin and flexible carrier film enables transfer on highly curved surfaces, such as a single-mode optical fiber with a curvature radius of 62.5 μm. With this strategy, we demonstrate the transfer of metallic nanostructures for a compact spectrometer with Cu nanogratings transferred on a convex lens and for surface-enhanced Raman spectroscopy (SERS) characterization on graphene with reliable responsiveness.
Collapse
Affiliation(s)
- Zhuofei Gan
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Jingxuan Cai
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhao Sun
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Liyang Chen
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Chuying Sun
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Junyi Yu
- The Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zeyu Liang
- The Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyi Min
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fei Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yu Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xing Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuhui Yu
- The Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dehu Cui
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Wen-Di Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Chiodini S, Kerfoot J, Venturi G, Mignuzzi S, Alexeev EM, Teixeira Rosa B, Tongay S, Taniguchi T, Watanabe K, Ferrari AC, Ambrosio A. Moiré Modulation of Van Der Waals Potential in Twisted Hexagonal Boron Nitride. ACS NANO 2022; 16:7589-7604. [PMID: 35486712 PMCID: PMC9134503 DOI: 10.1021/acsnano.1c11107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
When a twist angle is applied between two layered materials (LMs), the registry of the layers and the associated change in their functional properties are spatially modulated, and a moiré superlattice arises. Several works explored the optical, electric, and electromechanical moiré-dependent properties of such twisted LMs but, to the best of our knowledge, no direct visualization and quantification of van der Waals (vdW) interlayer interactions has been presented, so far. Here, we use tapping mode atomic force microscopy phase-imaging to probe the spatial modulation of the vdW potential in twisted hexagonal boron nitride. We find a moiré superlattice in the phase channel only when noncontact (long-range) forces are probed, revealing the modulation of the vdW potential at the sample surface, following AB and BA stacking domains. The creation of scalable electrostatic domains, modulating the vdW potential at the interface with the environment by means of layer twisting, could be used for local adhesion engineering and surface functionalization by affecting the deposition of molecules or nanoparticles.
Collapse
Affiliation(s)
- Stefano Chiodini
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| | - James Kerfoot
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Giacomo Venturi
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
- Physics
Department, Politecnico Milano, P.zza Leonardo Da Vinci 32, Milan 20133, Italy
| | - Sandro Mignuzzi
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Evgeny M. Alexeev
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Bárbara Teixeira Rosa
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Sefaattin Tongay
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | - Antonio Ambrosio
- Center
for Nano Science and Technology, Fondazione
Istituto Italiano di Tecnologia, Via G. Pascoli 70, Milan 20133, Italy
| |
Collapse
|
14
|
Zhao ZJ, Shin SH, Lee SY, Son B, Liao Y, Hwang S, Jeon S, Kang H, Kim M, Jeong JH. Direct Chemisorption-Assisted Nanotransfer Printing with Wafer-Scale Uniformity and Controllability. ACS NANO 2022; 16:378-385. [PMID: 34978803 DOI: 10.1021/acsnano.1c06781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610032, China
| | - Sang-Ho Shin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sang Yeon Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Bongkwon Son
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Yikai Liao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Soonhyoung Hwang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Sohee Jeon
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Hyeokjoong Kang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Jun-Ho Jeong
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| |
Collapse
|
15
|
Song L, Xu BB, Cheng Q, Wang X, Luo X, Chen X, Chen T, Huang Y. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal "lift-on" thin film technology. SCIENCE ADVANCES 2021; 7:eabk2852. [PMID: 34936430 DOI: 10.1126/sciadv.abk285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thin film fabrication is of great importance in modern engineering. Here, we propose a universal and conformal thin film technique enabled by the wetting empowered interfacial self-assembly. By tailoring the contact angle of nanoparticle (NP), a NP monolayer can be assembled instantly (within 5 seconds) with an excellent harvesting efficiency (up to 97.5 weight %). This self-assembly strategy presents a universal applicability on various materials, e.g., nonmetal, metal, and core-shell structures, and can achieve a monolayer with same in-plane area as a 95 cm2 wafer in a single process, indicating great potential for scale-up manufacturing. Through a template transfer, we coat the surface of different substrates (plastic, paper, etc.) with the assembled film in a conformal and nondestructive “lift-on” manner and subsequently demonstrate fluorescent micropatterns. This self-assembly strategy has great implications in advancing thin film technology in a user-friendly and cost-effective fashion for applications in anti-counterfeiting, actuators, and wearable/flexible electronics.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyuan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoning Luo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue Chen
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Song L, Xu BB, Cheng Q, Wang X, Luo X, Chen X, Chen T, Huang Y. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal "lift-on" thin film technology. SCIENCE ADVANCES 2021; 7:eabk2852. [PMID: 34936430 PMCID: PMC8694583 DOI: 10.1126/sciadv.abk2852] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/10/2021] [Indexed: 05/21/2023]
Abstract
Thin film fabrication is of great importance in modern engineering. Here, we propose a universal and conformal thin film technique enabled by the wetting empowered interfacial self-assembly. By tailoring the contact angle of nanoparticle (NP), a NP monolayer can be assembled instantly (within 5 seconds) with an excellent harvesting efficiency (up to 97.5 weight %). This self-assembly strategy presents a universal applicability on various materials, e.g., nonmetal, metal, and core-shell structures, and can achieve a monolayer with same in-plane area as a 95 cm2 wafer in a single process, indicating great potential for scale-up manufacturing. Through a template transfer, we coat the surface of different substrates (plastic, paper, etc.) with the assembled film in a conformal and nondestructive “lift-on” manner and subsequently demonstrate fluorescent micropatterns. This self-assembly strategy has great implications in advancing thin film technology in a user-friendly and cost-effective fashion for applications in anti-counterfeiting, actuators, and wearable/flexible electronics.
Collapse
Affiliation(s)
- Liping Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- National Synchrotron Radiation Laboratory, CAS Key Laboratory of Soft Matter Chemistry, Anhui Provincial Engineering, Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei 230026, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Qian Cheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyuan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoning Luo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue Chen
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- Corresponding author.
| |
Collapse
|
17
|
Jeon S, Park R, Jeong J, Heo G, Lee J, Shin MC, Kwon YW, Yang JC, Park WI, Kim KS, Park J, Hong SW. Rotating Cylinder-Assisted Nanoimprint Lithography for Enhanced Chemisorbable Filtration Complemented by Molecularly Imprinted Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105733. [PMID: 34854553 DOI: 10.1002/smll.202105733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Rotating cylindrical stamp-based nanoimprint technique has many advantages, including the continuous fabrication of intriguing micro/nanostructures and rapid pattern transfer on a large scale. Despite these advantages, the previous nanoimprint lithography has rarely been used for producing sophisticated nanoscale patterns on a non-planar substrate that has many extended applications. Here, the simple integration of nanoimprinting process with a help of a transparent stamp wrapped on the cylindrical roll and UV optical source in the core to enable high-throughput pattern transfer, particularly on a fabric substrate is demonstrated. Moreover, as a functional resin material, this innovative strategy involves a synergistic approach on the synthesis of molecularly imprinted polymer, which are spatially organized free-standing perforated nanostructures such as nano/microscale lines, posts, and holes patterns on various woven or nonwoven blank substrates. The proposed materials can serve as a self-encoded filtration medium for selective separation of formaldehyde molecules. It is envisioned that the combinatorial fabrication process and attractive material paves the way for designing next-generation separation systems in use to capture industrial or household toxic substances.
Collapse
Affiliation(s)
- Sangheon Jeon
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Rowoon Park
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeonghwa Jeong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihye Lee
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Chan Shin
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin Chul Yang
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinyoung Park
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
18
|
Park TW, Park WI. Switching-Modulated Phase Change Memory Realized by Si-Containing Block Copolymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105078. [PMID: 34796645 DOI: 10.1002/smll.202105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The phase change memory (PCM) is one of the key enabling memory technologies for next-generation non-volatile memory device applications due to its high writing speed, excellent endurance, long retention time, and good scalability. However, the high power consumption of PCM devices caused by the high switching current from a high resistive state to a low resistive state is a critical obstacle to be resolved before widespread commercialization can be realized. Here, a useful approach to reduce the writing current of PCM, which depends strongly on the contact area between the heater electrode and active layer, by employing self-assembly process of Si-containing block copolymers (BCPs) is presented. Self-assembled insulative BCP pattern geometries can locally block the current path of the contact between a high resistive film (TiN) and a phase-change material (Ge2 Sb2 Te5 ), resulting in a significant reduction of the writing current. Compared to a conventional PCM cell, the BCP-modified PCM shows excellent switching power reduction up to 1/20 given its use of self-assembled hybrid SiFex Oy /SiOx dot-in-hole nanostructures. This BCP-based bottom-up process can be extended to various applications of other non-volatile memory devices, such as resistive switching memory and magnetic storage devices.
Collapse
Affiliation(s)
- Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju, 52851, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyoung National University (PKNU), 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| |
Collapse
|
19
|
Park TW, Kang YL, Byun M, Hong SW, Ahn YS, Lee J, Park WI. Controlled self-assembly of block copolymers in printed sub-20 nm cross-bar structures. NANOSCALE ADVANCES 2021; 3:5083-5089. [PMID: 36132336 PMCID: PMC9418718 DOI: 10.1039/d1na00357g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/25/2021] [Indexed: 06/15/2023]
Abstract
Directed self-assembly (DSA) of block copolymers (BCPs) has garnered much attention due to its excellent pattern resolution, simple process, and good compatibility with many other lithography methods for useful nanodevice applications. Here, we present a BCP-based multiple nanopatterning process to achieve three-dimensional (3D) pattern formation of metal/oxide hybrid nanostructures. We employed a self-assembled sub-20 nm SiO x line pattern as a master mold for nanotransfer printing (nTP) to generate a cross-bar array. By using the transfer-printed cross-bar structures as BCP-guiding templates, we can obtain well-ordered BCP microdomains in the distinct spaces of the nanotemplates through a confined BCP self-assembly process. We also demonstrate the morphological evolution of a cylinder-forming BCP by controlling the BCP film thickness, showing a clear morphological transition from cylinders to spheres in the designated nanospaces. Furthermore, we demonstrate how to control the number of BCP spheres within the cross-bar 3D pattern by adjusting the printing angle of the multiple nTP process to provide a suitable area for spontaneous BCP accommodation. This multiple-patterning-based approach is applicable to useful 3D nanofabrication of various devices with complex hybrid nanostructures.
Collapse
Affiliation(s)
- Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET) 101 Soho-ro Jinju 52851 Republic of Korea
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| | - Young Lim Kang
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Myunghwan Byun
- Department of Advanced Materials Engineering, Keimyung University 1095 Dalgubeol-daero Daegu 42601 Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University Busan 46241 Republic of Korea
| | - Yong-Sik Ahn
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Junghoon Lee
- Department of Metallurgical Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| |
Collapse
|
20
|
Park TW, Jung H, Park J, Ahn YS, Hong SW, Lee J, Lee JH, Park WI. Topographically designed hybrid nanostructures via nanotransfer printing and block copolymer self-assembly. NANOSCALE 2021; 13:11161-11168. [PMID: 34136893 DOI: 10.1039/d1nr02358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanotransfer printing (nTP) has attracted much attention due to its high pattern resolution, simple process, and low processing cost for useful nanofabrication. Here, we introduce a thermally assisted nTP (T-nTP) process for the effective fabrication of various periodic three-dimensional (3D) nanosheets, such as concavo-convex lines, spine lines, square domes, and complex multi-line patterns. The T-nTP method allows continuous nanoscale 3D patterns with functionality to be transferred onto both rigid and flexible substrates by heat without any collapse of uniform convex nanostructures with nanochannels. We also show the pattern formation of multi-layered hybrid structures consisting of two or more materials by T-nTP. Furthermore, the formation of silicon oxide nanodots (0D) within a printed metallic nanowave structure (3D) can be achieved by the combined method of T-nTP and the self-assembly of poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) block copolymers. Moreover, we demonstrate how to obtain well-defined oxide-metal hybrid nanostructures (0D-in-3D) through the spontaneous accommodation of PDMS spheres in the confined spaces of an Au-wave nanotemplate. This approach is applicable during the nanofabrication of various high-resolution devices with complex geometrical nanopatterns.
Collapse
Affiliation(s)
- Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET), 101 Soho-ro, Jinju 52851, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim JM, Jo A, Lee KA, Han HJ, Kim YJ, Kim HY, Lee GR, Kim M, Park Y, Kang YS, Jung J, Chae KH, Lee E, Ham HC, Ju H, Jung YS, Kim JY. Conformation-modulated three-dimensional electrocatalysts for high-performance fuel cell electrodes. SCIENCE ADVANCES 2021; 7:7/30/eabe9083. [PMID: 34290086 PMCID: PMC8294758 DOI: 10.1126/sciadv.abe9083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/26/2021] [Indexed: 05/19/2023]
Abstract
Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.
Collapse
Affiliation(s)
- Jong Min Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ahrae Jo
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Ah Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeuk Jin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Ye Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ho Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Minjoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yun Sik Kang
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Juhae Jung
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eoyoon Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyunchul Ju
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
22
|
Park WI, Park TW, Choi YJ, Lee S, Ryu S, Liang X, Jung YS. Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features. ACS NANO 2021; 15:10464-10471. [PMID: 34115490 DOI: 10.1021/acsnano.1c02896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoimprint lithography (NIL) is typically performed by filling up of molds by heated polymers or UV-curable liquid resists, inevitably requiring subsequent pattern-transfer processes. Although direct NIL techniques have been suggested alternatively, they usually require precursors or ink-type resists containing undesired organic components. Here, we demonstrate extreme-pressure imprint lithography (EPIL) that effectively produces well-defined multiscale structures with a wide range from 10 nm to 10 mm on diverse surfaces even including pure or alloy metals without using any precursors, heating, UV exposure, or pattern transfer. In particular, EPIL is accomplished through precise control of room-temperature plastic deformation in nanoscale volumes, which is elucidated by finite element analyses and molecular dynamics simulations. In addition to scalability to macroscopic areas, we confirm the outstanding versatility of EPIL via its successful applications to Ni, Cu, steel, and organics. We expect that the state-of-the-art EPIL process combined with other emerging nanopatterning technologies will be extendable to the future large-area nanofabrication of various devices.
Collapse
Affiliation(s)
- Woon Ik Park
- Department of Materials Science and Engineering, Pukyoung National University (PKNU), 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET), 101 Soho-ro, Jinju 52851, Republic of Korea
| | - Young Joong Choi
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET), 101 Soho-ro, Jinju 52851, Republic of Korea
| | - Sangryun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Xiaogan Liang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Park JE, Won S, Cho W, Kim JG, Jhang S, Lee JG, Wie JJ. Fabrication and applications of stimuli‐responsive micro/nanopillar arrays. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jeong Eun Park
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Woongbi Cho
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jae Gwang Kim
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Saebohm Jhang
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jae Gyeong Lee
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering Inha University Incheon 22212 Republic of Korea
- Program in Environmental and Polymer Engineering Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
24
|
Barad HN, Kwon H, Alarcón-Correa M, Fischer P. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS NANO 2021; 15:5861-5875. [PMID: 33830726 PMCID: PMC8155328 DOI: 10.1021/acsnano.0c09999] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/02/2021] [Indexed: 05/05/2023]
Abstract
Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.
Collapse
Affiliation(s)
- Hannah-Noa Barad
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hyunah Kwon
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Mariana Alarcón-Correa
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Park TW, Kang YL, Lee SH, No GW, Park ES, Park C, Lee J, Park WI. Formation of Li 2CO 3 Nanostructures for Lithium-Ion Battery Anode Application by Nanotransfer Printing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1585. [PMID: 33805043 PMCID: PMC8036371 DOI: 10.3390/ma14071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
Various high-performance anode and cathode materials, such as lithium carbonate, lithium titanate, cobalt oxides, silicon, graphite, germanium, and tin, have been widely investigated in an effort to enhance the energy density storage properties of lithium-ion batteries (LIBs). However, the structural manipulation of anode materials to improve the battery performance remains a challenging issue. In LIBs, optimization of the anode material is a key technology affecting not only the power density but also the lifetime of the device. Here, we introduce a novel method by which to obtain nanostructures for LIB anode application on various surfaces via nanotransfer printing (nTP) process. We used a spark plasma sintering (SPS) process to fabricate a sputter target made of Li2CO3, which is used as an anode material for LIBs. Using the nTP process, various Li2CO3 nanoscale patterns, such as line, wave, and dot patterns on a SiO2/Si substrate, were successfully obtained. Furthermore, we show highly ordered Li2CO3 nanostructures on a variety of substrates, such as Al, Al2O3, flexible PET, and 2-Hydroxylethyl Methacrylate (HEMA) contact lens substrates. It is expected that the approach demonstrated here can provide new pathway to generate many other designable structures of various LIB anode materials.
Collapse
Affiliation(s)
- Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju 52851, Korea;
| | - Young Lim Kang
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Korea; (Y.L.K.); (S.H.L.); (C.P.)
| | - Sang Hyeon Lee
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Korea; (Y.L.K.); (S.H.L.); (C.P.)
| | - Gu Won No
- Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Korea; (G.W.N.); (E.-S.P.)
| | - Eun-Soo Park
- Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Korea; (G.W.N.); (E.-S.P.)
| | - Chan Park
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Korea; (Y.L.K.); (S.H.L.); (C.P.)
| | - Junghoon Lee
- Department of Metallurgical Engineering, Pukyong National University (PKNU), Busan 48513, Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyong National University (PKNU), Busan 48513, Korea; (Y.L.K.); (S.H.L.); (C.P.)
| |
Collapse
|