1
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
2
|
He Q, Ling ZC, Li DH, Yang KP, Yang HB, Yan ZK, Han ZM, Zhao YX, Yin CH, Guan QF, Yu SH. Sargassum Nanocellulose-Based Fully Ingestible Supercapacitor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416307. [PMID: 39838771 DOI: 10.1002/adma.202416307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Small high-performance energy modules have significant practical value in the biomedical field, such as painless diagnosis, alleviation of gastrointestinal discomfort, and electrical stimulation therapy. However, due to performance limitations and safety concerns, it is a formidable challenge to design a small, emerging ingestible power supply. Here, a fully ingestible supercapacitor (FISC) constructed of sargassum cellulose nanofiber is presented. FISCs exhibit an electrode areal capacitance of 2.29 F cm-2 and a high energy density of 307 µWh cm-2. Furthermore, over 90% of the antibacterial activity against Escherichia coli is achieved during the self-discharge process. Therefore, following insertion into an enteric capsule, this device can enable a disposable power supply and electrostimulation for bacteriostasis in the intestine after being swallowed by a human, which offers new possibilities for scientific and simple therapy.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhang-Chi Ling
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - De-Han Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kun-Peng Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huai-Bin Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng-Kun Yan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Meng Han
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Xiang Zhao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Chong-Han Yin
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Fang Guan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Institute of Innovative Materials, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Zhang W, Ren S, Zhang Y, An C, Liu Y, Zhu X, Man Z, Liang X, Yang C, Lu W, Wu G. Bamboo-Inspired Hierarchically Hollow Aerogel MXene Fibers with Ultrafast Ionic Channels and Multiple Electromagnetic Wave Attenuation Routes Toward High-Performance Supercapacitors and Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412272. [PMID: 39806824 DOI: 10.1002/smll.202412272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Indexed: 01/16/2025]
Abstract
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-Ti3C2TX fiber) is proposed. Owing to continuous porous microstructure and optimized hollow cavity, this fiber possesses large accessible area to ions and abundant structural defects, leading to a fast charge transfer kinetics and high faradic activity. Consequently, the HA-Ti3C2TX fiber exhibits exceptional gravimetric capacitance of 355 F g-1. Besides, the solid-state asymmetric fiber-shaped supercapacitors (FSCs) display a high capacitance of 276 F g-1 and energy density of 9.58 Wh kg-1. Additionally, the HA-Ti3C2TX fiber delivers outstanding electromagnetic wave (EMW) absorption performance with a minimum reflection loss of -52.39 dB and the effective absorption bandwidth up to 4.6 GHz, which is attributed to multiple reflection paths, strong dielectric loss from this hollow and porous structure. This novel design of hollow fiber provides a new reference for the construction of advanced fibers for energy storage and EMW absorption materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shouyu Ren
- Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Yongzhe Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Chengzhi An
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Yunchuan Liu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Xiaolin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Xiaohui Liang
- Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
4
|
Dai S, Zhang X, Liu X, Tian X, Cui B, Pang I, Luo H, Liu D, He X, Chen X, Zhang J, Wang Z, Huang J, Zhang S. Vertical-Structure Overcomes the Strain Limit of Stretchable Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413951. [PMID: 39582297 DOI: 10.1002/adma.202413951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Intrinsically stretchable organic electrochemical transistors (IS-OECTs), utilizing organic mixed ionic-electronic conductors (OMIECs) as their channel materials, have drawn great attention recently because of their potential to enable seamless integration between bioelectronic devices and living systems. However, the fabrication of IS-OECTs presents challenges due to the limited availability of OMIEC materials that possess the desired combination of mechanical and electrical properties. In this work, 1) we report the first successful fabrication of a vertical intrinsically stretchable OECT (VIS-OECT), achieved by using elastoadhesive electrodes; 2) we experimentally proved that vertical architecture can push the strain limit of an IS-OECT from 20% to 50%; and 3) the above finding introduces an unconventional design concept: the strain limit of an IS-OECT can surpass the intrinsic stretchability of the constituent OMIECs by employing vertical structure.
Collapse
Affiliation(s)
- Shilei Dai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xinran Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Binbin Cui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ivo Pang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Haixuan Luo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Dingyao Liu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuecheng He
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xiaonan Chen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Junyao Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
5
|
Wang X, Niu J, Hadi MK, Guo D, Zhang Y, Yu M, Zhou Q, Ran F. Dual-Site Biomacromolecule Doped Poly(3, 4-Ethylenedioxythiophene) for Bosting Both Anticoagulant and Electrochemical Performances. Adv Healthc Mater 2025; 14:e2401134. [PMID: 38772529 DOI: 10.1002/adhm.202401134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Indexed: 05/23/2024]
Abstract
Poly(3, 4-ethylenedioxythiophene) (PEDOT) as a new generation of intelligent conductive polymers, is attracting much attention in the field of tissue engineering. However, its water dispersibility, conductivity, and biocompatibility are incompatible, which limit its further development. In this work, biocompatible electrode material of PEDOT doped with sodium sulfonated alginate (SS) which contains two functional groups of sulfonic acid and carboxylic acid per repeat unit of the macromolecule. The as dual-site doping strategy simultaneously boosts anticoagulant and electrochemical performances, for example, good hydrophilicity (water contact angle of 59.40°), well dispersibility (dispersion solution unstratified in 30 days), high conductivity (4.45 S m-1), and enhanced anticoagulant property (extended activated partial thrombin time value of 59.0 s), forming an adjustable PEDOT: biomacromolecule interface; this fills the technical gap of implantable bioelectronics in terms of coagulation and thrombosis risk. At the same time, the assembled all-in-one supercapacitor with anticoagulant properties is prepared by PEDOT: sodium sulfonated alginate as electrode material and sodium alginate hydrogel as electrolyte layer. The dual-site doping strategy provides a new opinion for the design and optimization of functional conductive polymers and its applications in implantable energy storage fields.
Collapse
Affiliation(s)
- Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Jianzhou Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Mohammed Kamal Hadi
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Dongli Guo
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Yuxia Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Qi Zhou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| |
Collapse
|
6
|
Tong Z, Gong G, Huang H, Cai G, Fang L, Yu H, Li C, Zheng Y, Bian D. In vitro corrosion and biocompatibility of additively manufactured biodegradable molybdenum. Acta Biomater 2025; 191:66-79. [PMID: 39572309 DOI: 10.1016/j.actbio.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Recently, molybdenum (Mo) has been recognized a promising biodegradable metal, however, it is difficult to be processed through traditional deformation or machining due to its high strength & hardness. Additive manufacturing is a good way to get rid of this dilemma. Here, Mo components were directly fabricated with fine Mo powder through selective laser melting (SLM). Microstructure, in-vitro corrosion behaviors and biocompatibility of the as-obtained Mo were thoroughly investigated. Compared to Mo fabricated through rotary swaging (RS), ineluctable hot cracks were found in SLMed bulk Mo, and those defects accelerated the initial ion release rate (1.31 μg·mL-1·d-1 during the first week, one order of magnitude higher than that of RSed Mo). The unique SLMed microstructure resulted in different surface chemical components, constituent phases and corrosion layer structures, thus leading to a different corrosion mode and corrosion evolution along with time. SLMed Mo exhibited good hemocompatibility, and mouse/rat-derived mesenchymal stem cells have certain tolerance to soluble Mo in the sample extracts. However, the deteriorative surface condition on SLMed Mo impaired its biocompatibility to directly attached cells. Cells could adhere onto SLMed Mo, however their proliferation and spreading were impaired along with further corrosion. Additive manufacturing is a powerful tool to fabricate Mo based structural parts, however, the issue of microstructural defects should be well resolved. Close attention should be paid to the hot-cracks and accompanied fast & non-uniform corrosion. STATEMENT OF SIGNIFICANCE: Additive manufacturing is a good way to fabricate implants based on refractory and un-processable biodegradable metals. Here, Mo components were directly fabricated with Mo powder through selective laser melting (SLM). Microstructure, in-vitro corrosion behaviors and biocompatibility of the as-obtained Mo were thoroughly investigated. Compared to Mo fabricated through traditional rotary swaging (RS), the unique SLMed microstructure resulted in different corrosion mode and corrosion evolution along with time. Localized corrosion appeared at the micro-cracks in SLMed samples, thus leading to a 10-fold ion release at week 1. Cells could adhere onto SLMed Mo, however their proliferation and spreading were impaired along with further corrosion. Close attention should be paid to the hot-cracks and accompanied fast & non-uniform corrosion.
Collapse
Affiliation(s)
- Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Gencheng Gong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
| | - Guixing Cai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liudang Fang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450003, China
| | - Hui Yu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Chuanqiang Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yufeng Zheng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
8
|
Wang X, Yu M, Kamal Hadi M, Niu J, Zhang Y, Zhou Q, Ran F. An anticoagulant supercapacitor for implantable applications. Nat Commun 2024; 15:10497. [PMID: 39627183 PMCID: PMC11615336 DOI: 10.1038/s41467-024-54862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
With the rapid advancement of implantable electronic medical devices, implantable supercapacitors have emerged as popular energy storage devices. However, supercapacitors inevitably come into direct contact with blood when implanted, potentially causing adverse clinical reactions such as coagulation and thrombosis, impairing the performance of implanted energy storage devices, and posing a serious threat to human health. Therefore, this work aims to design an anticoagulant supercapacitor by heparin doped poly(3, 4-ethylenedioxythiophene) (PEDOT) for possible applications in implantable bioelectronics. Heparin (Hep), the as-known anticoagulant macromolecule acts as the counterion for PEDOT doping to enhance its conductivity, and the bioelectrode material PEDOT: Hep with anticoagulant activity is synthesized via chemical oxidation polymerization. Concurrently, the anticoagulant supercapacitor is constructed through in-situ polymerization, where PEDOT: Hep and bacterial cellulose as electrode material and electrolyte layer, respectively. Owing to the incorporation of heparin, the supercapacitor exhibits high hemocompatibility with hemolysis rate <5 %, good anticoagulant performance with coagulation time of 63.4 s, reasonable cycle stability with capacitance retention rate of 76.24 % after 20, 000 cycles, and supplies power for implanted heart rate sensors in female mice. This work provides a platform for implantable electronics to achieve anticoagulant activity in vivo.
Collapse
Affiliation(s)
- Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Mohammed Kamal Hadi
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Jianzhou Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Yuxia Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Qi Zhou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
9
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
10
|
Cui X, Wu L, Zhang C, Li Z. Implantable Self-Powered Systems for Electrical Stimulation Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412044. [PMID: 39587936 DOI: 10.1002/advs.202412044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
With the integration of bioelectronics and materials science, implantable self-powered systems for electrical stimulation medical devices have emerged as an innovative therapeutic approach, garnering significant attention in medical research. These devices achieve self-powering through integrated energy conversion modules, such as triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), significantly enhancing the portability and long-term efficacy of therapeutic equipment. This review delves into the design strategies and clinical applications of implantable self-powered systems, encompassing the design and optimization of energy harvesting modules, the selection and fabrication of adaptable electrode materials, innovations in systematic design strategies, and the extensive utilization of implantable self-powered systems in biological therapies, including the treatment of neurological disorders, tissue regeneration engineering, drug delivery, and tumor therapy. Through a comprehensive analysis of the latest research progress, technical challenges, and future directions in these areas, this paper aims to provide valuable insights and inspiration for further research and clinical applications of implantable self-powered systems.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Li Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Quan Y, Wang E, Ouyang H, Xu L, Jiang L, Teng L, Li J, Luo L, Wu X, Zeng Z, Li Z, Zheng Q. Biodegradable and Implantable Triboelectric Nanogenerator Improved by β-Lactoglobulin Fibrils-Assisted Flexible PVA Porous Film. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409914. [PMID: 39526831 DOI: 10.1002/advs.202409914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Triboelectric nanogenerators (TENGs) are highly promising as implantable, degradable energy sources and self-powered sensors. However, the degradable triboelectric materials are often limited in terms of contact electrification and mechanical properties. Here, a bio-macromolecule-assisted toughening strategy for PVA aerogel-based triboelectric materials is proposed. By introducing β-lactoglobulin fibrils (BF) into the PVA aerogel network, the material's mechanical properties while preserving its swelling resistance is significantly enhanced. Compared to pure PVA porous film, the BF-PVA porous film exhibits an eightfold increase in fracture strength (from 1.92 to 15.48 J) and a fourfold increase in flexibility (from 10.956 to 39.36 MPa). Additionally, the electrical output of BF-PVA in triboelectric performance tests increased nearly fivefold (from 45 to 203 V). Leveraging these enhanced properties, a biodegradable TENG (bi-TENG) for implantable muscle activity sensing is developed, achieving real-time monitoring of neuromuscular processes. This innovation holds significant potential for advancing implantable medical devices and promoting new applications in bio-integrated electronics.
Collapse
Affiliation(s)
- Yichang Quan
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Han Ouyang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingling Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lu Jiang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Lin Luo
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xujie Wu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
12
|
Yamada S, Honda T. Material design of biodegradable primary batteries: boosting operating voltage by substituting the hydrogen evolution reaction at the cathode. NANOSCALE 2024; 16:20027-20036. [PMID: 39392400 DOI: 10.1039/d4nr03321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transient primary batteries (TPBs) degrade after use without leaving harmful toxic substances, providing power sources for developing low-invasive and environmentally benign sensing platforms. Magnesium and zinc, both abundant on Earth, possess low anodic potentials and good biodegradability, making them useful as anode materials. However, molybdenum, a biodegradable metal, causes the hydrogen evolution reaction (HER) at the cathode, reducing the operating voltage of cells because of its low cathodic potential. In this review, we examine recent material designs to increase the operating voltage by introducing alternative electrochemical reactions at the cathode, including the oxygen reduction reaction, metal-ion intercalation into transition metal oxides, and halogen ionization, all of which have higher cathodic potentials than the HER. After discussing the characteristics, constituents, and demonstration of TPBs, we conclude by exploring their potential as power sources for implants, wearables, and environmental sensing applications.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Takashi Honda
- Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
13
|
Gao Z, Zhou Y, Zhang J, Foroughi J, Peng S, Baughman RH, Wang ZL, Wang CH. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404492. [PMID: 38935237 DOI: 10.1002/adma.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Wearable and implantable active medical devices (WIMDs) are transformative solutions for improving healthcare, offering continuous health monitoring, early disease detection, targeted treatments, personalized medicine, and connected health capabilities. Commercialized WIMDs use primary or rechargeable batteries to power their sensing, actuation, stimulation, and communication functions, and periodic battery replacements of implanted active medical devices pose major risks of surgical infections or inconvenience to users. Addressing the energy source challenge is critical for meeting the growing demand of the WIMD market that is reaching valuations in the tens of billions of dollars. This review critically assesses the recent advances in energy harvesting and storage technologies that can potentially eliminate the need for battery replacements. With a key focus on advanced materials that can enable energy harvesters to meet the energy needs of WIMDs, this review examines the crucial roles of advanced materials in improving the efficiencies of energy harvesters, wireless charging, and energy storage devices. This review concludes by highlighting the key challenges and opportunities in advanced materials necessary to achieve the vision of self-powered wearable and implantable active medical devices, eliminating the risks associated with surgical battery replacement and the inconvenience of frequent manual recharging.
Collapse
Affiliation(s)
- Ziyan Gao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Javad Foroughi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
14
|
Bian D, Tong Z, Gong G, Huang H, Fang L, Yang H, Gu W, Yu H, Zheng Y. Additive Manufacturing of Biodegradable Molybdenum - From Powder to Vascular Stent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401614. [PMID: 38837830 DOI: 10.1002/adma.202401614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Magnesium, iron, and zinc-based biodegradable metals are widely recognized as promising candidate materials for the next generation of bioresorbable stent (BVS). However, none of those metal BVSs are perfect at this stage. Here, a brand-new BVS based on a novel biodegradable metal (Molybdenum, Mo) through additive manufacturing is developed. Nearly full-dense and crack-free thin-wall Mo is directly manufactured through selective laser melting (SLM) with fine Mo powder. Systemic analyses considering the forming quality, wall-thickness, microstructure, mechanical properties, and in vitro degradation behaviors are performed. Then, Mo-based thin-strut (≤ 100 µm) stents are successfully obtained through an optimized single-track laser melting route. The SLMed thin-wall Mo owns comparable strength to its Mg and Zn based counterparts (as-drawn), while, it exhibits remarkable biocompatibility in vitro. Vessel related cells are well adhered and spread on SLMed Mo, and it exhibits a low risk of hemolysis and thrombus. The SLMed stent is compatible to vessel tissues in rat abdominal aorta, and it can provide sufficient support in an animal model as an extravascular stent. This work possibly opens a new era of manufacturing Mo-based stents through additive manufacturing.
Collapse
Affiliation(s)
- Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Gencheng Gong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Liudang Fang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Wenda Gu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hui Yu
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510515, China
| | - Yufeng Zheng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
16
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
17
|
Sun Y, Li X, Ren Z. Tailoring the ion storage of MXene by aramid nanofibers towards self-standing electrodes for flexible solid-state supercapacitors. NANOTECHNOLOGY 2024; 35:365403. [PMID: 38865983 DOI: 10.1088/1361-6528/ad5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides (MXenes) are a class of 2D nanomaterials that can offer excellent properties for high-performance supercapacitors. Nevertheless, irreversible restacking of MXene sheets decreases the interlayer spacing, which inhibits the ion intercalation between the MXene nanosheets and finally deteriorates the electrochemical performance of supercapacitors. Herein, aramid nanofibers (ANFs) are mixed with Ti3C2TxMXene to prepare MXene/ANFs composite films. The restacking of MXene sheets is inhibited by the electrostatic repulsion between ANFs and MXene. The ANFs act as intercalation agents to increase the interlayer spacing of the composite films, which can improve the ion storage ability of supercapacitors. Furthermore, the ANFs enhance the mechanical strength of the composite films due to the strong hydrogen bonding interaction and nanomechanical interlocking between ANFs and MXene, endowing the composite films with self-standing property. The resultant composite films are used as electrodes for flexible solid-state supercapacitors to achieve high specific capacitance (996.5 mF cm-2at 5 mV s-1) and outstanding cycling stability. Thus, this work provides a potential strategy to regulate the properties of 2D nanomaterials, which may expand the application of them in energy storage, ionic separation, osmotic energy conversion and beyond.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| | - Zihan Ren
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| |
Collapse
|
18
|
Sun P, Li C, Yang C, Sun M, Hou H, Guan Y, Chen J, Liu S, Chen K, Ma Y, Huang Y, Li X, Wang H, Wang L, Chen S, Cheng H, Xiong W, Sheng X, Zhang M, Peng J, Wang S, Wang Y, Yin L. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat Commun 2024; 15:4721. [PMID: 38830884 PMCID: PMC11148186 DOI: 10.1038/s41467-024-49166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengchun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jinger Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuan Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiangling Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liu Wang
- School of Biological Science and Medical Engineering, Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
- School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, 102206, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, P. R. China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China
| | - Shirong Wang
- MegaRobo Technologies Co. ltd, Beijing, 100085, P. R. China.
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
19
|
Wu Q, Li F, Sheng H, Qi Y, Yuan J, Bi H, Li W, Xie E, Lan W. In Situ Fabrication of Hierarchical CuO@CoNi-LDH Composite Structures for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669688 DOI: 10.1021/acsami.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Layered double hydroxide (LDH) materials, despite their high theoretical capacity, exhibit significant performance degradation with increasing load due to their low conductivity. Simultaneously achieving both high capacity and high rate performance is challenging. Herein, we fabricated vertically aligned CuO nanowires in situ on the copper foam (CF) substrate by alkali-etching combined with the annealing process. Using this as a skeleton, electrochemical deposition technology was used to grow the amorphous α-phase CoNi-LDH nanosheets on its surface. Thanks to the high specific surface area of the CuO skeleton, ultrahigh loading (̃16.36 mg cm-2) was obtained in the fabricated CF/CuO@CoNi-LDH electrode with the cactus-like hierarchical structure, which enhanced the charge transfer and ion diffusion dynamics. The CF/CuO@CoNi-LDH electrode achieved a good combination of high areal capacitance (33.5 F cm-2) and high rate performance (61% capacitance retention as the current density increases 50 times). The assembled asymmetric supercapacitor device demonstrated a maximum potential window of 0-1.6 V and an energy density of 1.7 mWh cm-2 at a power density of 4 mW cm-2. This work provides a feasible strategy for the design and fabrication of high-mass-loading LDH composites for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Qiyuan Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Huasheng Bi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
20
|
Li Z, Pang Y, Peng G, Wang H, Li Q, Zhou X, Li Z, Wang Q, Jin Z. Aminoazanium of A-site Cations in Metal-Free Halide Perovskite Single Crystals to Reduce Thermal Expansion for Efficient X-ray Detection. J Phys Chem Lett 2024; 15:4375-4383. [PMID: 38620049 DOI: 10.1021/acs.jpclett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metal-free perovskites (MFPs) have recently become a newcomer in X-ray detection due to their flexibility and low toxicity characteristics. However, their photoelectronic properties and stability should be further improved mainly through materials design. Here, the aminoazanium of DABCO2+ was developed for the preparation of NDABCO-NH4Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs), and its physical properties, intermolecular interactions, and device performance were systematically explored. Notably, NDABCO-NH4Br3 can achieve improved stability by enlarging defect formation energy and inducing abundant intermolecular forces. Moreover, the slight lattice distortion could ensure the weakening electron-phonon coupling for improving carrier transport. In particular, the slight lattice distortion after the long-chain NDABCO2+ introduction could retard thermal expansion for the preparation of high-quality crystals. Finally, the corresponding X-ray detector delivered a moderate sensitivity of 623.3 μC Gyair-1 cm-2. This work provides a novel strategy through rationally designed organic cations to balance the material stability and device performance.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Yunqing Pang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Xu K, Zhang P, Zhang Y, Zhang Y, Li L, Shi Y, Wen X, Xu Y. MoO xNWs with mechanical damage - oriented synergistic photothermal / photodynamic therapy for highly effective treating wound infections. J Colloid Interface Sci 2024; 660:235-245. [PMID: 38244492 DOI: 10.1016/j.jcis.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Reactive oxygen species (ROS)-based therapy has emerged as a promising antibacterial strategy. However, it faces the limitations of uncontrollable space-time release and excessive lipid peroxidation, which may lead to a series of metabolic disorders and decreased immune function. In this study, mechanical damage by molybdenum oxide nanowires (MoOxNWs) is introduced as a synergistic factor to enhance the photothermal and photodynamic effects for controllable and efficient antibacterial therapy. Through their sharp ends, the nanowires can effectively pierce and damage the bacterial cells, thus facilitating the entry of externally generated ROS into the cells. The ROS are generated via photodynamic effect of the nanowires under a mere 5 min of near-infrared light irradiation. This approach enhances the photothermal (by 27.3 %) and photodynamic properties of ROS generation. MoOxNWs (100 μg·mL-1) achieve sterilisation rates of 97.67 % for extended-spectrum β-lactamase-producing E. coli and 96.34 % for methicillin-resistant Staphylococcus aureus, which are comparable or even exceeding the efficacy of most MoOx-based antibacterial agents. Moreover, they exhibit good biocompatibility and low in vivo toxicity.
Collapse
Affiliation(s)
- Kaikai Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Pengfei Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Xueyun Wen
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China.
| |
Collapse
|
22
|
Yamada S. Biodegradable Mg-Mo 2C MXene Air Batteries for Transient Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14759-14769. [PMID: 38497977 PMCID: PMC10982942 DOI: 10.1021/acsami.3c17692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Primary batteries are the fundamental power sources in small electronic gadgets and bio/ecoresorbable batteries. They are fabricated from benign and biodegradable materials and are of interest in environmental sensing and implants because of their low toxicity toward the environment and human body during decomposition. However, current bio/ecoresorbable batteries suffer from low operating voltages and output powers because of the occurrence of undesired hydrogen evolution reactions (HERs) at cathodes. Herein, Mo2C MXene was used as a cathode to achieve high operating voltage and areal power. Mo2C provides energy barriers for HERs in alkaline solutions, and such barriers suppress HERs and allow the oxygen reduction reaction to dominate at the cathode. The fabricated battery exhibits an operating voltage and areal power of 1.4 V and 0.92 mW cm-2, respectively. Degradation tests show that the full cell completely degrades within 123 days, leaving only Mo fragments from the electrode and biodegradable encapsulation. This study provides insights into bio/ecoresorbable batteries with high power and operating voltage, which can be used for environmental sensing.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Tohoku University, Room 113, Building
No. A15, Area A01, 6-6-01 Aoba,
Aramakiaza, Aobaku, Sendaishi, Miyagi 980-8579, Japan
| |
Collapse
|
23
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
24
|
Miziev S, Pawlak WA, Howard N. Comparative analysis of energy transfer mechanisms for neural implants. Front Neurosci 2024; 17:1320441. [PMID: 38292898 PMCID: PMC10825050 DOI: 10.3389/fnins.2023.1320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants.
Collapse
|
25
|
Park T, Lee DY, Ahn BJ, Kim M, Bok J, Kang JS, Lee JM, Choi C, Jang Y. Implantable anti-biofouling biosupercapacitor with high energy performance. Biosens Bioelectron 2024; 243:115757. [PMID: 37862758 DOI: 10.1016/j.bios.2023.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Biofluidic open-type supercapacitors offer significant advantages over batteries in implantable electronics. However, poor energy storage in bioelectrolytes and performance degradation owing to electrode biofouling remain challenges and hamper their implementation. In this study, we present a flexible polydopamine (PDA)-infiltrated carbon nanotube (CNT) yarn (PDA/CNT) supercapacitor with high performance in biofluids, encapsulated by a hydrogel-barrier circular knit that provides anti-biofouling protection. Infiltration of the biopolymer PDA provide a hydrophilic coating to obtain a hydrophobic CNT electrode under aqueous conditions and an energy density 250-fold higher than that of the pristine CNT in the biofluid. The PDA/CNT supercapacitor exhibited remarkable energy performance in biological fluids in terms of the maximum areal capacitance (503.91 mF cm-2), energy density (274 μWh/cm2), and power density (25.52 mW cm-2). Moreover, it demonstrated negligible capacitance loss after 10,000 repeated charge/discharge cycles and bending tests. To prevent biofouling, the PDA/CNT electrode was encapsulated in an agarose-coated circular knit that allows free movement of the electrolyte. Notably, implanting an encapsulated PDA/CNT supercapacitor into the abdominal cavity of rat resulted in stable in vivo energy storage performance without biofouling for 21 d, and the charged supercapacitor was used successfully to power a light-emitting diode in vivo.
Collapse
Affiliation(s)
- Taegyu Park
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong Yeop Lee
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Ju-Seop Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Energy and Materials Engineering, College of Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, College of Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea; Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
26
|
Li F, Ma H, Sheng H, Wang Z, Qi Y, Wan D, Shao M, Yuan J, Li W, Wang K, Xie E, Lan W. Interlayer and Phase Engineering Modifications of K-MoS 2 @C Nanoflowers for High-Performance Degradable Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306276. [PMID: 38126597 DOI: 10.1002/smll.202306276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Indexed: 12/23/2023]
Abstract
2D transition metal dichalcogenides (TMDs) have garnered significant interest as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their open transport channels and abundant Zn2+ intercalation sites. However, unmodified TMDs exhibit low electrochemical activity and poor kinetics owing to the high binding energy and large hydration radius of divalent Zn2+ . To overcome these limitations, an interlayer engineering strategy is proposed where K+ is preintercalated into K-MoS2 nanosheets, which then undergo in situ growth on carbon nanospheres (denoted as K-MoS2 @C nanoflowers). This strategy stimulates in-plane redox-active sites, expands the interlayer spacing (from 6.16 to 9.42 Å), and induces the formation of abundant MoS2 1T-phase. The K-MoS2 @C cathode demonstrates excellent redox activity and fast kinetics, attributed to the potassium ions acting as a structural "stabilizer" and an electrostatic interaction "shield," accelerating charge transfer, promoting Zn2+ diffusion, and ensuring structural stability. Meanwhile, the carbon nanospheres serve as a 3D conductive network for Zn2+ and enhance the cathode's hydrophilicity. More significantly, the outstanding electrochemical performance of K-MoS2 @C, along with its superior biocompatibility and degradability of its related components, can enable an implantable energy supply, providing novel opportunities for the application of transient electronics.
Collapse
Affiliation(s)
- Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Hongyun Ma
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Daicao Wan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Mingjiao Shao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
27
|
Wu L, Kang Y, Shi X, Yang E, Ma J, Zhang X, Wang S, Wu ZS. A Biodegradable High-Performance Microsupercapacitor for Environmentally Friendly and Biocompatible Energy Storage. ACS NANO 2023; 17:22580-22590. [PMID: 37961989 DOI: 10.1021/acsnano.3c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biodegradable and biocompatible microscale energy storage devices are very crucial for environmentally friendly microelectronics and implantable medical applications. Herein, a biodegradable and biocompatible microsupercapacitor (BB-MSC) with satisfying overall performance is realized via the combination of three-dimensional (3D) printing technique and biodegradable materials. Due to the 3D-interconnected structure of electrodes and elaborated design of electrolyte, the as-prepared BB-MSC exhibits superior overall performance than most of biodegradable devices, including a wide operation voltage of 1.8 V, high areal specific capacitance of 251 mF/cm2, good cycle stability, and favorable low-temperature resistance (-20 °C), demonstrative of reliability and practicality of our devices even in frosty environments. Importantly, the smooth degradation has been realized for the BB-MSC after being buried in natural soil for ∼90 days, and its implantation does not affect the healthy status of SD rats. Therefore, this work explores avenues for the design and construction of environmentally friendly and biocompatible microscale energy storage devices.
Collapse
Affiliation(s)
- Lu Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Endian Yang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116024, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Shaoxu Wang
- School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116024, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Sheng H, Jiang L, Wang Q, Zhang Z, Lv Y, Ma H, Bi H, Yuan J, Shao M, Li F, Li W, Xie E, Liu Y, Xie Z, Wang J, Yu C, Lan W. A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors. SCIENCE ADVANCES 2023; 9:eadh8083. [PMID: 37967195 PMCID: PMC10651135 DOI: 10.1126/sciadv.adh8083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
The advent of implantable bioelectronic devices offers prospective solutions toward health monitoring and disease diagnosis and treatments. However, advances in power modules have lagged far behind the tissue-integrated sensor nodes and circuit units. Here, we report a soft implantable power system that monolithically integrates wireless energy transmission and storage modules. The energy storage unit comprises biodegradable Zn-ion hybrid supercapacitors that use molybdenum sulfide (MoS2) nanosheets as cathode, ion-crosslinked alginate gel as electrolyte, and zinc foil as anode, achieving high capacitance (93.5 mF cm-2) and output voltage (1.3 V). Systematic investigations have been conducted to elucidate the charge storage mechanism of the supercapacitor and to assess the biodegradability and biocompatibility of the materials. Furthermore, the wirelessly transmitted energy can not only supply power directly to applications but also charge supercapacitors to ensure a constant, reliable power output. Its power supply capabilities have also been successfully demonstrated for controlled drug delivery.
Collapse
Affiliation(s)
- Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li Jiang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qi Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yurong Lv
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hongyun Ma
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huasheng Bi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, China
| | - Mingjiao Shao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
29
|
He E, Ren J, Wang L, Li F, Li L, Ye T, Jiao Y, Li D, Wang J, Wang Y, Gao R, Zhang Y. A Mitochondrion-Inspired Magnesium-Oxygen Biobattery with High Energy Density In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304141. [PMID: 37478834 DOI: 10.1002/adma.202304141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.
Collapse
Affiliation(s)
- Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Adelnia H, Moonshi SS, Wu Y, Bulmer AC, Mckinnon R, Fastier-Wooller JW, Blakey I, Ta HT. A Bioactive Disintegrable Polymer Nanoparticle for Synergistic Vascular Anticalcification. ACS NANO 2023; 17:18775-18791. [PMID: 37650798 DOI: 10.1021/acsnano.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | - Ryan Mckinnon
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | | | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
32
|
Lu H, Hu J, Wei X, Zhang K, Xiao X, Zhao J, Hu Q, Yu J, Zhou G, Xu B. A recyclable biomass electrolyte towards green zinc-ion batteries. Nat Commun 2023; 14:4435. [PMID: 37481665 PMCID: PMC10363112 DOI: 10.1038/s41467-023-40178-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023] Open
Abstract
The operation of traditional aqueous-electrolyte zinc-ion batteries is adversely affected by the uncontrollable growth of zinc dendrites and the occurrence of side reactions. These problems can be avoided by the development of functional hydrogel electrolytes as replacements for aqueous electrolytes. However, the mechanism by which most hydrogel electrolytes inhibit the growth of zinc dendrites on a zinc anode has not been investigated in detail, and there is a lack of a large-scale recovery method for mainstream hydrogel electrolytes. In this paper, we describe the development of a recyclable and biodegradable hydrogel electrolyte based on natural biomaterials, namely chitosan and polyaspartic acid. The distinctive adsorptivity and inducibility of chitosan and polyaspartic acid in the hydrogel electrolyte triggers a double coupling network and an associated synergistic inhibition mechanism, thereby effectively inhibiting the side reactions on the zinc anode. In addition, this hydrogel electrolyte played a crucial role in an aqueous acid-based Zinc/MnO2 battery, by maintaining its interior two-electron redox reaction and inhibiting the formation of zinc dendrites. Furthermore, the sustainable biomass-based hydrogel electrolyte is biodegradable, and could be recovered from the Zinc/MnO2 battery for subsequent recycling.
Collapse
Affiliation(s)
- Hongyu Lu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jisong Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xijun Wei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Kaiqi Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, P. R. China
| | - Xiao Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingxin Zhao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China.
| | - Qiang Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Jing Yu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China.
| |
Collapse
|
33
|
Xiao X, Meng X, Kim D, Jeon S, Park BJ, Cho DS, Lee DM, Kim SW. Ultrasound-Driven Injectable and Fully Biodegradable Triboelectric Nanogenerators. SMALL METHODS 2023; 7:e2201350. [PMID: 36908016 DOI: 10.1002/smtd.202201350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Indexed: 06/09/2023]
Abstract
Implantable medical devices (IMDs) provide practical approaches to monitor physiological parameters, diagnose diseases, and aid treatment. However, device installation, maintenance, and long-term implantation increase the risk of infection with conventional IMDs. Therefore, medical devices with biocompatibility, controllability, and miniaturization are highly demandable. An ultrasound-driven, biodegradable, and injectable triboelectric nanogenerator (I-TENG) is demonstrated to reduce the risks of implant-related injuries and infections. The injection can be given by subcutaneous injection with a needle to minimize the implantation incision. The stable output of I-TENG is driven by ultrasound (20 kHz, 1 W cm-2 ), with a voltage of 356.8 mV and current of 1.02 µA during in vivo studies and an electric field of about 0.92 V mm-1 during ex vivo experiments. The cell scratch and proliferation assays showed that the delivered electric field effectively increased cell migration and proliferation, indicating a significant potential to accelerate healing with electricity.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Xiangchun Meng
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dabin Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sera Jeon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byung-Joon Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Daniel Sanghyun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong-Min Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
34
|
Yamada S. A Transient Pseudo-Capacitor Using a Bioderived Ionic Liquid with Na Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205598. [PMID: 36651124 DOI: 10.1002/smll.202205598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Division of Mechanical Engineering, Tohoku University, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi, 980-8579, Japan
| |
Collapse
|
35
|
Huang X, Hou H, Yu B, Bai J, Guan Y, Wang L, Chen K, Wang X, Sun P, Deng Y, Liu S, Cai X, Wang Y, Peng J, Sheng X, Xiong W, Yin L. Fully Biodegradable and Long-Term Operational Primary Zinc Batteries as Power Sources for Electronic Medicine. ACS NANO 2023; 17:5727-5739. [PMID: 36897770 DOI: 10.1021/acsnano.2c12125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the advantages of high energy density and easy deployment, biodegradable primary battery systems remain as a promising power source to achieve bioresorbable electronic medicine, eliminating secondary surgeries for device retrieval. However, currently available biobatteries are constrained by operational lifetime, biocompatibility, and biodegradability, limiting potential therapeutic outcomes as temporary implants. Herein, we propose a fully biodegradable primary zinc-molybdenum (Zn-Mo) battery with a prolonged functional lifetime of up to 19 days and desirable energy capacity and output voltage compared with reported primary Zn biobatteries. The Zn-Mo battery system is shown to have excellent biocompatibility and biodegradability and can significantly promote Schwann cell proliferation and the axonal growth of dorsal root ganglia. The biodegradable battery module with 4 Zn-Mo cells in series using gelatin electrolyte accomplishes electrochemical generation of signaling molecules (nitric oxide, NO) that can modulate the behavior of the cellular network, with efficacy comparable with that of conventional power sources. This work sheds light on materials strategies and fabrication schemes to develop high-performance biodegradable primary batteries to achieve a fully bioresorbable electronic platform for innovative medical treatments that could be beneficial for health care.
Collapse
Affiliation(s)
- Xueying Huang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Bingbing Yu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Jun Bai
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xibo Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yuping Deng
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, , Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
37
|
Shao M, Sheng H, Lin L, Ma H, Wang Q, Yuan J, Zhang X, Chen G, Li W, Su Q, Xie E, Wang J, Zhang Z, Lan W. High-Performance Biodegradable Energy Storage Devices Enabled by Heterostructured MoO 3 -MoS 2 Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205529. [PMID: 36508711 DOI: 10.1002/smll.202205529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Biodegradable implantable devices are of growing interest in biosensors and bioelectronics. One of the key unresolved challenges is the availability of power supply. To enable biodegradable energy-storage devices, herein, 2D heterostructured MoO3 -MoS2 nanosheet arrays are synthesized on water-soluble Mo foil, showing a high areal capacitance of 164.38 mF cm-2 (at 0.5 mA cm-2 ). Employing the MoO3 -MoS2 composite as electrodes of a symmetric supercapacitor, an asymmetric Zn-ion hybrid supercapacitor, and an Mg primary battery are demonstrated. Benefiting from the advantages of MoO3 -MoS2 heterostructure, the Zn-ion hybrid supercapacitors deliver a high areal capacitance (181.86 mF cm-2 at 0.5 mA cm-2 ) and energy density (30.56 µWh cm-2 ), and the Mg primary batteries provide a stable high output voltage (≈1.6 V) and a long working life in air/liquid environment. All of the used materials exhibit desirable biocompatibility, and these fabricated devices are also fully biodegradable. Demonstration experiments display their potential applications as biodegradable power sources for various electronic devices.
Collapse
Affiliation(s)
- Mingjiao Shao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Liqi Lin
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongyun Ma
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qi Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Xuetao Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Gang Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Qing Su
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhibin Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala, 75237, Sweden
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
38
|
Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem Rev 2022; 122:17155-17239. [PMID: 36239919 DOI: 10.1021/acs.chemrev.2c00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - David P Wilkinson
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| |
Collapse
|
39
|
Zhai Z, Du X, Long Y, Zheng H. Biodegradable polymeric materials for flexible and degradable electronics. FRONTIERS IN ELECTRONICS 2022. [DOI: 10.3389/felec.2022.985681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodegradable electronics have great potential to reduce the environmental footprint of electronic devices and to avoid secondary removal of implantable health monitors and therapeutic electronics. Benefiting from the intensive innovation on biodegradable nanomaterials, current transient electronics can realize full components’ degradability. However, design of materials with tissue-comparable flexibility, desired dielectric properties, suitable biocompatibility and programmable biodegradability will always be a challenge to explore the subtle trade-offs between these parameters. In this review, we firstly discuss the general chemical structure and degradation behavior of polymeric biodegradable materials that have been widely studied for various applications. Then, specific properties of different degradable polymer materials such as biocompatibility, biodegradability, and flexibility were compared and evaluated for real-life applications. Complex biodegradable electronics and related strategies with enhanced functionality aimed for different components including substrates, insulators, conductors and semiconductors in complex biodegradable electronics are further researched and discussed. Finally, typical applications of biodegradable electronics in sensing, therapeutic drug delivery, energy storage and integrated electronic systems are highlighted. This paper critically reviews the significant progress made in the field and highlights the future prospects.
Collapse
|
40
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
41
|
Wei Z, Ma X, Zhao H, Wu X, Guo Q. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33472-33481. [PMID: 35830227 DOI: 10.1021/acsami.2c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biodegradable conductive composites are key materials or components for printable transient electronics that can be fabricated in a low-cost and high-efficiency manner, thereby boosting their wide applications in biomedical engineering, hardware security, and environmental-friendly electronics. Continuous efforts in this area still lie in the development of strategies for highly conductive, safe, and reliable biodegradable conductive composite materials and devices. This paper introduces molybdenum/wax composites for multimodally printable transient electronics in which multiple transience modes including dissolution-induced degradation and thermally triggered degradation are available. Systematic experiments demonstrate several advantages and unique properties of this material system, including solvent-free fabrication, self-sintering behavior, and long-term and high conductivity via accelerable self-sintering treatment and rehealing capabilities. Notably, the immersion of molybdenum/wax composites in phosphate buffer solution can provide both positive effects (accelerated self-sintering-dominated) and negative effects (degradation-dominated) on their electrical conductivities. Mechanism analyses reveal the basis for balancing the degradation and accelerated self-sintering processes. The presented demonstrations foreshadow opportunities of the developed molybdenum/wax composites in rehealable electronics, on-demand smart transient electronics with multiple transience modes, and many other related unusual applications.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiao Ma
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Haonan Zhao
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiaozhong Wu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
42
|
Yamada S. A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26595-26603. [PMID: 35653282 DOI: 10.1021/acsami.2c00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We develop an environmentally benign supercapacitor, which decomposes by contact with water, incorporating an ionic liquid, carbon powder, a cellulose separator, and a molybdenum electrode. The ionic liquid is dispersed into a water-dissolvable polymer, poly(vinyl alcohol), to produce a solid electrolyte, so-called ionic gel. A carbon composite mixed with the ionic liquid maintains a gel form. The ionic gel and the carbon composite enable an all-solid-state supercapacitor, which can be charged at a voltage of 1.5 V. The supercapacitor shows areal and volumetric capacitances of 65 mF/cm2 and 2.2 F/cm3, respectively. A cycle test reveals that capacitance retention and Coulombic efficiency are 77 and 90%, respectively. As for the dissolution test, the ionic gel and carbon composite dissolves in phosphate buffer solution in 18 days, and the Mo electrode is able to fully dissolve in 500-588 days. Potential applications of the environmentally benign supercapacitor include smart agriculture by monitoring of soil and disaster prevention by a wireless sensor network without the need for retrieval of devices after use.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Tohoku University, Room 113, Building No. A15, Area A01, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi 980-8579, Japan
| |
Collapse
|
43
|
Huang X, Li H, Li J, Huang L, Yao K, Yiu CK, Liu Y, Wong TH, Li D, Wu M, Huang Y, Gao Z, Zhou J, Gao Y, Li J, Jiao Y, Shi R, Zhang B, Hu B, Guo Q, Song E, Ye R, Yu X. Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. NANO LETTERS 2022; 22:3447-3456. [PMID: 35411774 DOI: 10.1021/acs.nanolett.2c00864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 μW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.
Collapse
Affiliation(s)
- Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Bofan Hu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
44
|
Liu S, Zhong Y, Zhang X, Pi M, Wang X, Zhu R, Cui W, Ran R. Highly Deformable, Conductive Double-Network Hydrogel Electrolytes for Durable and Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15641-15652. [PMID: 35317550 DOI: 10.1021/acsami.2c00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing flexible energy storage devices with the ability to retain capacitance under extreme deformation is promising but remains challenging. Here, we report the development of a durable supercapacitor with remarkable capacitance retention under mechanical deformation by utilizing a physical double-network (DN) hydrogel as an electrolyte. The first network is hydrophobically associating polyacrylamide cross-linked by nanoparticles, and the second network is Zn2+ cross-linked alginate. Through soaking such a DN hydrogel into a high concentration of ZnSO4 solution, a highly deformable electrolyte with good conductivity is fabricated, which also shows adhesion to diverse surfaces. Directly attaching the hydrogel electrolyte to two pieces of an active carbon cloth facilely produces a flexible supercapacitor with a high specific capacitance and theoretical energy density. Remarkable capacitance retention under tension, compression, and bending is observed for the supercapacitor, which can also maintain above 87% of the initial capacitance after 4000 charge-discharge cycles. This study provides a simple way to fabricate hydrogel electrolytes for deformable yet durable supercapacitors, which is expected to inspire the development of next-generation flexible energy storage devices.
Collapse
Affiliation(s)
- Shengqu Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuehui Zhong
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
45
|
Song H, Luo G, Ji Z, Bo R, Xue Z, Yan D, Zhang F, Bai K, Liu J, Cheng X, Pang W, Shen Z, Zhang Y. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. SCIENCE ADVANCES 2022; 8:eabm3785. [PMID: 35294232 PMCID: PMC8926335 DOI: 10.1126/sciadv.abm3785] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked device layout can overcome this limitation, the soft elastomers used in previous studies could highly restrict the deformation of stretchable interconnects. Here, we introduce stacked multilayer network materials as a general platform to incorporate individual components and stretchable interconnects, without posing any essential constraint to their deformations. Quantitative analyses show a substantial enhancement (e.g., by ~7.5 times) of elastic stretchability of serpentine interconnects as compared to that based on stacked soft elastomers. The proposed strategy allows demonstration of a miniaturized electronic system (11 mm by 10 mm), with a moderate elastic stretchability (~20%) and an unprecedented areal coverage (~110%), which can serve as compass display, somatosensory mouse, and physiological-signal monitor.
Collapse
Affiliation(s)
- Honglie Song
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Guoquan Luo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
- National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Ziyao Ji
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Renheng Bo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhaoguo Xue
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Dongjia Yan
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Fan Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Ke Bai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Jianxing Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Cheng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Wenbo Pang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhangming Shen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
- Corresponding author.
| |
Collapse
|
46
|
Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022; 197:113761. [PMID: 34800926 DOI: 10.1016/j.bios.2021.113761] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|
47
|
Sun X, Chen K, Liang F, Zhi C, Xue D. Perspective on Micro-Supercapacitors. Front Chem 2022; 9:807500. [PMID: 35087793 PMCID: PMC8787070 DOI: 10.3389/fchem.2021.807500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid development of portable, wearable, and implantable electronic devices greatly stimulated the urgent demand for modern society for multifunctional and miniaturized electrochemical energy storage devices and their integrated microsystems. This article reviews material design and manufacturing technology in different micro-supercapacitors (MSCs) along with devices integrate to achieve the targets of their various applications in recent years. Finally, We also critically prospect the future development directions and challenges of MSCs.
Collapse
Affiliation(s)
- Xiangfei Sun
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key laboratory of Crystal Material, Jinan, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Feng Liang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Application, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Kunfeng Chen, ; Feng Liang, ; Dongfeng Xue,
| |
Collapse
|
48
|
Tong X, Sheng G, Yang D, Li S, Lin CW, Zhang W, Chen Z, Wei C, Yang X, Shen F, Shao Y, Wei H, Zhu Y, Sun J, Kaner RB, Shao Y. Crystalline tetra-aniline with chloride interactions towards a biocompatible supercapacitor. MATERIALS HORIZONS 2022; 9:383-392. [PMID: 34586118 DOI: 10.1039/d1mh01081f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent advances in wearable and implantable electronics have increased the demand for biocompatible integrated energy storage systems. Conducting polymers, such as polyaniline (PANi), have been suggested as promising electrode materials for flexible biocompatible energy storage systems, based on their intrinsic structural flexibility and potential polymer chain compatibility with biological interfaces. However, due to structural disorder triggering insufficient electronic conductivity and moderate electrochemical stability, PANi still cannot fully satisfy the requirements for flexible and biocompatible energy storage systems. Herein, we report a biocompatible physiological electrolyte activated flexible supercapacitor encompassing crystalline tetra-aniline (c-TANi) as the active electrode material, which significantly enhances the specific capacitance and electrochemical cycling stability with chloride electrochemical interactions. The crystallization of TANi endows it with sufficient electronic conductivity (8.37 S cm-1) and a unique Cl- dominated redox charge storage mechanism. Notably, a fully self-healable and biocompatible supercapacitor has been assembled by incorporating polyethylene glycol (PEG) with c-TANi as a self-healable electrode and a ferric-ion cross-linked sodium polyacrylate (Fe3+-PANa)/0.9 wt% NaCl as a gel electrolyte. The as-prepared device exhibits a remarkable capacitance retention even after multiple cut/healing cycles. With these attractive features, the c-TANi electrode presents a promising approach to meeting the power requirements for wearable or implantable electronics.
Collapse
Affiliation(s)
- Xiaoling Tong
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Guan Sheng
- Center for Electron Microscopy State Key Laboratory, Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dongzi Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Shuo Li
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Cheng-Wei Lin
- Department of Chemistry, Department of Materials Science and Engineering, and California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhihui Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Xianzhong Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Fei Shen
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Yanyan Shao
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Hui Wei
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
| | - Yihan Zhu
- Center for Electron Microscopy State Key Laboratory, Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Richard B Kaner
- Department of Chemistry, Department of Materials Science and Engineering, and California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA.
| | - Yuanlong Shao
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, P. R. China.
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| |
Collapse
|
49
|
Chang P, Mei H, Zhang M, Zhao Y, Wang X, Cheng L, Zhang L. 3D Printed Electrochromic Supercapacitors with Ultrahigh Mechanical Strength and Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102639. [PMID: 34510732 DOI: 10.1002/smll.202102639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
With the accelerating update of advanced electronic gadgets, a great deal of attention is being paid today to the function integration and intelligent design of electronic devices. Herein, a novel kind of multitasking 3D oxygen-deficient WO3- x ∙ 2H2 O/Ag/ceramic microscaffolds, possessing simultaneous giant energy density, ultrahigh mechanical strength, and reversible electrochromic performance is proposed, and fabricated by a 3D printing technique. The ceramic microscaffolds ensure outstanding mechanical strength and stability, the topology optimized porous lattice structure provides developed surface area for coloration as well as abundant easily accessible channels for rapid ion transportation, and the bifunctional oxygen-defective pseudomaterials enable the large areal capacity and impressive electrochromic performance. As a result, this 3D-printed multitasking microscaffolds simultaneously perform structure-designable, electrochromic, compression resistant, and energy storage functions, behaving with true 3D structure with tailorable curvatures, excellent compressive strength (61.9 MPa), large color variations (>145% in b* value), good aesthetic visual quality as well as exciting electrochemical performances for energy storage including ultrahigh areal capacitance (10.05 F cm-2 at 5 mA cm-2 ), record-high energy density (0.60 mWh cm-2 ), and superior long-term cycling stability (88.6% capacity retention after 10 000 cycles). This work opens up the possibility for high-performance multi-functional coupling structural materials and integrated systems.
Collapse
Affiliation(s)
- Peng Chang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Mei
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Minggang Zhang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yu Zhao
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Wang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Litong Zhang
- Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
50
|
Ye Y, Zhuang Z, Yao S, Li S, Tang Y, Liu Y, Wang H. Rapid fabrication of partially exfoliated graphite foil with 3D hierarchical structure and its application in electrochemical detection of olaquindox. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|